JPH07277664A - Lifting device - Google Patents

Lifting device

Info

Publication number
JPH07277664A
JPH07277664A JP6616194A JP6616194A JPH07277664A JP H07277664 A JPH07277664 A JP H07277664A JP 6616194 A JP6616194 A JP 6616194A JP 6616194 A JP6616194 A JP 6616194A JP H07277664 A JPH07277664 A JP H07277664A
Authority
JP
Japan
Prior art keywords
magnet
magnetic
poles
magnets
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6616194A
Other languages
Japanese (ja)
Inventor
Masao Ogata
正男 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6616194A priority Critical patent/JPH07277664A/en
Publication of JPH07277664A publication Critical patent/JPH07277664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Load-Engaging Elements For Cranes (AREA)

Abstract

PURPOSE:To improve the suction force by providing a magnetic circuit structure in which a suction surface in the direction of a rotatable magnet is multipolarized at the same number of poles with both magnets including a main magnet member and an auxiliary magnet member. CONSTITUTION:In a hollow hole 9, a main magnet 13 in which plural permanent magnets 10a to 10j magnetized in the diameter direction are connected in the axial direction, and a magnetic core 12 is inserted to the inside, is provided rotatable. As to the permanent magnets 10a to 10j, magnet units 11a to 11f which consist of one or more of permanent magnets 10a to 10j are fixed and integrated through nonmagnetic rings 14. Furthermore, at the lower side of a nonmagnetic spacer 8b, an auxiliary magnet 16 which consists of a block form permanent magnet 15 magnetized in the direction X is formed, and both magnets 13 and 16 are composed into a magnetic circuit structure multipolarized at the same number of poles of the magnets 13 and 16. Consequently, the suction force can be increased broadly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼材等の磁性体を吸
着、吊上げ、運搬等に使用する永久磁石式吊上装置に係
り、特に内蔵した永久磁石を回転させることによって着
脱を切り替える装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet type hoisting device used for attracting, hoisting, and carrying magnetic materials such as steel materials, and more particularly to a device for switching attachment / detachment by rotating a built-in permanent magnet. It is a thing.

【0002】[0002]

【従来の技術】従来、この種の吊上装置は、例えば実公
昭62−39020号に記載されているように、ヨーク
内で回転する主磁石とヨークに固定された副磁石を有す
る。詳述すると、図13(a)、(b)および図14
(a)、(b)に示す通り吊上装置は、磁気回路部1
と、非磁性体からなる磁気遮断板2を介して磁気回路部
を支持し、吊金具部4を有する基板3とを有し、これら
はボルト5によって一体的に組立てられている。磁気回
路部1は、吸着面6a、6bを各々有し強磁性体よりな
る一対のヨーク7a、7bとこれらの間に介装された非
磁性スペーサ8a、8bを有すると共に、スペーサ8
a、8bの間に形成された空孔9を有する。空孔9内に
は、径方向に磁化され且つ軸方向(Y方向)が単極着磁
された円柱状の主磁石13が回転自在に配置される。非
磁性スペーサ8bの下部あるいは上部の一方には、X方
向に磁化された副磁石16が固定される。上記構成によ
り、主磁石13を回転し、図13(a)に示すN極とS
極の位置(主磁石13の極性と副磁石16の極性が同
極)にすると、ヨーク7aの端部である吸着面6aには
N極、ヨーク7bの端部である6bにはS極が生じるよ
うに励磁され、これにより鉄鋼片または鉄鋼製品等を吸
着し吊上可能となる。次いで、主磁石13を180゜回
転し、主磁石13の極性と副磁石16の極性が異極の位
置にすると(図示せず)消磁し、吸着面6a、6bは非
励磁となり吸着力を失う。
2. Description of the Related Art Conventionally, a hoisting device of this type has a main magnet rotating in a yoke and an auxiliary magnet fixed to the yoke, as described in, for example, Japanese Utility Model Publication No. 62-39020. More specifically, FIGS. 13 (a), 13 (b) and FIG.
As shown in (a) and (b), the lifting device includes the magnetic circuit unit 1
And a substrate 3 that supports a magnetic circuit portion via a magnetic blocking plate 2 made of a non-magnetic material and has a hanging metal member portion 4, which are integrally assembled by a bolt 5. The magnetic circuit unit 1 has a pair of yokes 7a and 7b made of a ferromagnetic material and having non-magnetic spacers 8a and 8b, respectively, which have attraction surfaces 6a and 6b, respectively.
It has a hole 9 formed between a and 8b. In the hole 9, a columnar main magnet 13 magnetized in a radial direction and unipolarly magnetized in an axial direction (Y direction) is rotatably arranged. The sub magnet 16 magnetized in the X direction is fixed to one of the lower portion and the upper portion of the nonmagnetic spacer 8b. With the above configuration, the main magnet 13 is rotated, and the N pole and S shown in FIG.
When the pole position (the polarities of the main magnet 13 and the sub magnet 16 are the same), the attracting surface 6a, which is the end of the yoke 7a, has the N pole, and the end 6b, which is the end of the yoke 7b, has the S pole. It is excited so as to be generated, and thereby, steel pieces or steel products can be adsorbed and lifted. Next, when the main magnet 13 is rotated 180 ° and the polarities of the main magnet 13 and the sub-magnet 16 are at different polarities (not shown), they are demagnetized, and the attraction surfaces 6a and 6b are de-excited and lose the attraction force. .

【0003】[0003]

【発明が解決しようとする課題】前述の如く、従来の装
置は回転磁石が同一面長さ方向に単一の磁極が形成され
ているため、磁石動作点が低いので、必然的に吸引力も
小さくならざるを得ないという問題がある。このため、
所望の吸引力を得るために、大きな永久磁石を使用する
ようになり、装置の大型化を招来していた。本発明は、
上記従来技術に存在する問題点を解消し、吸着力を向上
することのできる吊上装置を提供することを目的とす
る。
As described above, in the conventional device, since the rotating magnet has the single magnetic pole formed in the same plane length direction, the magnet operating point is low, so that the attraction force is necessarily small. There is a problem inevitable. For this reason,
In order to obtain a desired attractive force, a large permanent magnet has come to be used, resulting in an increase in size of the device. The present invention is
An object of the present invention is to provide a hoisting device that can solve the problems existing in the above-mentioned conventional techniques and can improve the suction force.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明においては、非磁性体からなるスペーサ
を介して対向し、且つ各々が吸着面を有する一対のヨー
クと、前記スペーサと前記ヨークで形設された円筒状空
孔を有するヨーク部材と、前記空孔内に回転自在に配置
された外周面に互いに異極性の一対の磁極を有する円筒
状永久磁石を軸方向に相隣る極性が異なるように非磁性
体を介して複数個多極接続して形成した主磁石部材と、
前記ヨーク部材に前記主磁石部の極性と対応した磁極を
有する回転軸と直交する方向に磁化された副磁石部材と
を有し、且つ回転自在の磁石方向の吸着面を前記両磁石
の極数と同数に多極化した磁気回路構造を有する、とい
う技術的手段を採用した。また、第2の発明において
は、非磁性体からなる複数対のスペーサを介して対向
し、且つ前記スペーサと同数対で各々が吸着面を有する
ヨークと、前記スペーサと前記ヨークで形設された円筒
状空孔を有するヨーク部材と、前記空孔内に回転自在に
配置された外周面に異極性の少なくとも前記スペーサと
同数対の磁極を有する円筒状永久磁石を軸方向に複数個
接続して形成した主磁石部材と、前記ヨーク部材の吸着
面側およびこの吸着面の反対側に前記主磁石部の回転軸
と直交する方向に磁化された永久磁石からなる副磁石部
材とを有する磁気回路構造を有する、という技術的手段
を採用した。また、第2の発明においては、円筒状永久
磁石を軸方向に相隣る極性が異なるように非磁性体を介
して複数個多極接続して形成した主磁石部材と、前記主
磁石部材の極性と対応した磁極を有する回転軸と直交す
る方向に磁化された副磁石部材を有し、且つ回転自在の
磁石軸方向の吸着面を前記両磁石の極数と同数に多極化
した磁気回路ユニットを有することが望ましい。さら
に、第1の発明および第2の発明の各々においては、各
々の磁気回路構造を複数個有する、という技術的手段を
採用しても良い。また本発明においては、上記永久磁石
としては、公知の永久磁石(フェライト磁石、アルニコ
磁石など)を用い得るが、大きな吸着力を得るために希
土類磁石、特にR−Fe−B系磁石(R:Nd、Pr等
の希土類元素の1種以上)を用いることが好ましい。
In order to achieve the above object, in the first invention, a pair of yokes facing each other with a spacer made of a non-magnetic material and each having an attracting surface, and the spacer. And a yoke member having a cylindrical hole formed by the yoke, and a cylindrical permanent magnet having a pair of magnetic poles of opposite polarities on the outer peripheral surface rotatably arranged in the hole, in the axial direction. A main magnet member formed by connecting a plurality of multipoles through a non-magnetic material so that adjacent polarities are different;
The yoke member has a sub magnet member magnetized in a direction orthogonal to the rotation axis having a magnetic pole corresponding to the polarity of the main magnet portion, and the attracting surface in the rotatable magnet direction has the number of poles of both magnets. We adopted the technical means of having a magnetic circuit structure with the same number of poles as the above. Further, in the second aspect of the present invention, the yokes are opposed to each other through a plurality of pairs of spacers made of a non-magnetic material, and the same number of pairs of the spacers each have an attracting surface, and the spacers and the yokes are formed. A yoke member having a cylindrical hole and a plurality of cylindrical permanent magnets having at least the same number of pairs of magnetic poles as the spacer and having different polarities are axially connected to an outer peripheral surface rotatably arranged in the hole. A magnetic circuit structure having a formed main magnet member and a sub-magnet member composed of a permanent magnet magnetized in a direction orthogonal to the rotation axis of the main magnet portion on the attracting surface side of the yoke member and on the opposite side of the attracting surface. Has been adopted. In the second invention, a main magnet member formed by connecting a plurality of cylindrical permanent magnets in multipoles via a non-magnetic body so that polarities adjacent to each other in the axial direction are different from each other; A magnetic circuit unit having a sub-magnet member magnetized in a direction orthogonal to a rotation axis having magnetic poles corresponding to polarities, and having a rotatable attracting surface in the magnet axis direction in which the number of poles is the same as the number of poles of both magnets. It is desirable to have. Further, in each of the first invention and the second invention, a technical means of having a plurality of each magnetic circuit structure may be adopted. In the present invention, known permanent magnets (ferrite magnets, alnico magnets, etc.) can be used as the permanent magnet, but rare earth magnets, especially R-Fe-B magnets (R: It is preferable to use one or more rare earth elements such as Nd and Pr.

【0005】[0005]

【作用】磁気による吸着力Fと磁気回路との関係は、磁
気吸着面の磁束密度をB、面積をSとすれば、F B2
×Sの関係にあり、すなわち磁束密度Bを増加させると
その二乗で吸着力Fが増加する。他方、磁束密度Bは、
永久磁石の減磁曲線と永久磁石の動作点Pcとの交点P
から定まる有効磁束密度Bdと比例関係にあるため、図
12に示すように、磁束密度Bの向上のためには永久磁
石の動作点Pcを高くすることが必要である。永久磁石
の動作点Pcは、その異方性方向長さをLm、異方性方
向と直交する面積をAmとすれば、Pc Lm/Amの
関係にあるから、異方性方向長さLmが一定であれば、
面積Amを小さくすることによって動作点Pcを高くす
ることができる。すなわち、前述の構成の如く、永久磁
石を多極化することによって動作点Pcが向上し、有効
磁束密度Bdが向上し、磁気吸着面における磁束密度B
が向上し、吸着力Fの増加が可能となる。
The relationship between the magnetic attraction force F and the magnetic circuit is F B 2 where B is the magnetic flux density of the magnetic attraction surface and S is the area.
There is a relationship of × S, that is, when the magnetic flux density B is increased, the attraction force F increases by the square thereof. On the other hand, the magnetic flux density B is
Intersection P between the demagnetization curve of the permanent magnet and the operating point Pc of the permanent magnet
Since it has a proportional relationship with the effective magnetic flux density Bd determined by the above, as shown in FIG. 12, in order to improve the magnetic flux density B, it is necessary to raise the operating point Pc of the permanent magnet. The operating point Pc of the permanent magnet has a relationship of Pc Lm / Am, where Lm is the length in the anisotropic direction and Am is the area orthogonal to the anisotropic direction. If constant,
The operating point Pc can be increased by reducing the area Am. That is, the operating point Pc is improved, the effective magnetic flux density Bd is improved, and the magnetic flux density B on the magnetic attraction surface B is improved by increasing the number of permanent magnets as described above.
And the suction force F can be increased.

【0006】[0006]

【実施例】【Example】

(実施例1)図1(a)および(b)に示す吊上装置
は、磁気回路部1と、非磁性体からなる磁気遮断板2を
介して磁気回路部を支持し、吊金具部4を有する基板3
とを有し、これらはボルト5によって一体的に組立てら
れている。磁気回路部1は、吸着面6a、6bを各々有
する、強磁性体(鉄、鋼など)からなる一対のヨーク7
a、7bとこれらの間に介装された非磁性スペーサ8
a、8bを有すると共に、ヨーク7a、7bおよびスペ
ーサ8a、8bの間に形成された空孔9を有する。空孔
9内には、径方向に磁化された永久磁石10a、10
b、10c、…を軸方向に複数個接続し、内部に磁性コ
ア12を挿着した主磁石13が回転自在に配置される。
ここで図2(a)および(b)に示す通り、永久磁石1
0a、10b、10c、…は、長手方向に沿って異極性
の磁極が交互に現出するように、1個または2個以上の
永久磁石10a、10b、…からなる磁石ユニット11
a、11b、…を非磁性リング14を介して固着一体化
されている。非磁性スペーサ8bの下部には、X方向に
磁化されたブロック状永久磁石15からなる副磁石16
が固定されている。但し、前記副磁石は非磁性スペーサ
8aの上部に固定する構成(図示せず)でも良い。上記
構成により、主磁石13を回転し、図1(a)に示すN
極とS極の位置(主磁石13の極性と副磁石16の極性
が同極)にすると、ヨーク7aの端部である吸着面6a
にはN極、ヨーク7bの端部である6bにはS極が生じ
るように励磁され、これにより鉄鋼材料または鉄鋼製品
等を吸着し吊上可能となる。次いで、主磁石13を18
0゜回転し、主磁石13の極性と副磁石16の極性が異
極の位置にすると(図示せず)消磁し(主磁石により発
生する磁束が打ち消される)、吸着面6a、6bは非励
磁となり吸着力を失う。ここで実施例1における実験例
として、径方向に異方性を有する回転可能な主磁石13
の永久磁石10a、10b、10c…としては、外径2
4mm、内径15mm、長さ11mmのNd−Fe−B系永久
磁石(日立金属(株)製HS−35CH)を1台当たり
10個使用し、磁性コア12の外周に長さ方向の極位置
に合わせて接着、組立を行った。長さ方向の分割極数
は、1、2、4、6、8および10極の各極間に外径2
4mm、内径15mm、厚さ2mmのSUS304製非磁性リ
ング14を装着した。分割極数1、2、4、6、8およ
び10極の磁石配列は、10、5:5、2:3:3:
2、1:2:2:2:2:1、1:1:1:2:2:
1:1:1および1:1:1:1:1:1:1:1:
1:1とした。図2(a)および(b)に分割極数6
極、磁石配列1:2:2:2:2:1の場合の回転可能
な主磁石13の組立配列図を示す。また固定用のブロッ
ク状永久磁石15としては、15mm×5mm×8mm(異方
性方向)および15mm×10mm×8mm(異方性方向)の
二種類のNd−Fe−B系永久磁石(日立金属(株)製
HS−30CV)を使用した。SS材よりなるヨーク7
aおよび7bのY方向の磁気的遮断は厚さ2mmのSUS
304製非磁性スペーサ17を使用し、図1(a)およ
び(b)の如く組立て各分割極数を有する6台の磁石装
置を用いて吸着力を測定した。図3に分割極数と相対吸
着力の関係を示す。なお相対吸着力の定義は、分割極数
1の従来の吸着力を1としたときの各々の吸着力を無次
元数で表す。図3より明らかなように、分割極数1(従
来技術)に比較し、分割極数を増やすことにより吸着力
が1.3〜2倍以上に増加していることが分かる。なお
本実施例においては、回転可能な永久磁石としてリング
状の径2極磁石を使用したが、円柱状径2極磁石、径2
極着磁されたラジアル異方性を有するリング磁石あるい
は両端に三日月状ポールピースを有するブロック状磁石
でも同様の効果が得られる。一方、図1(a)および
(b)の磁気回路ユニットを複数個有する場合は、吸着
力が一層増加し、より良い効果が得られる。図4(a)
および(b)に磁気回路構造を2個有する場合の吊上装
置を示し、図1(a)および(b)と同一部分は同一の
参照符号で示す。
(Embodiment 1) The hoisting device shown in FIGS. 1 (a) and 1 (b) supports a magnetic circuit part 1 via a magnetic circuit part 1 and a magnetic blocking plate 2 made of a non-magnetic material, and a hanging metal part 4 Substrate 3 having
And they are integrally assembled by bolts 5. The magnetic circuit unit 1 includes a pair of yokes 7 made of a ferromagnetic material (iron, steel, etc.) having attraction surfaces 6a and 6b, respectively.
a, 7b and a non-magnetic spacer 8 interposed therebetween
In addition to having a and 8b, it has a hole 9 formed between the yokes 7a and 7b and the spacers 8a and 8b. Radially magnetized permanent magnets 10 a, 10
.. are connected in the axial direction, and a main magnet 13 having a magnetic core 12 inserted therein is rotatably arranged.
Here, as shown in FIGS. 2A and 2B, the permanent magnet 1
0a, 10b, 10c, ... are magnet units 11 each including one or more permanent magnets 10a, 10b, ... so that magnetic poles of different polarities appear alternately along the longitudinal direction.
The a, 11b, ... Are fixedly integrated via the non-magnetic ring 14. A sub-magnet 16 composed of a block-shaped permanent magnet 15 magnetized in the X direction is provided below the non-magnetic spacer 8b.
Is fixed. However, the sub magnet may be fixed to the upper portion of the non-magnetic spacer 8a (not shown). With the above configuration, the main magnet 13 is rotated and the N shown in FIG.
When the positions of the pole and the S pole (the polarities of the main magnet 13 and the sub magnet 16 are the same), the attracting surface 6a which is the end of the yoke 7a.
Is excited so that an N pole is generated and an S pole is generated at 6b, which is an end portion of the yoke 7b, so that a steel material, a steel product or the like can be adsorbed and lifted. Then, the main magnet 13
When it is rotated by 0 ° and the polarities of the main magnet 13 and the sub-magnet 16 are set to different polarities (not shown), demagnetization is performed (the magnetic flux generated by the main magnet is canceled), and the attraction surfaces 6a and 6b are de-energized. And loses its adsorptive power. Here, as an experimental example in Example 1, the rotatable main magnet 13 having anisotropy in the radial direction is used.
Of the permanent magnets 10a, 10b, 10c ...
Ten Nd-Fe-B based permanent magnets (HS-35CH manufactured by Hitachi Metals, Ltd.) having a diameter of 4 mm, an inner diameter of 15 mm, and a length of 11 mm were used per unit, and the magnetic core 12 was provided with a pole position in the longitudinal direction on the outer circumference. They were also bonded and assembled. The number of divided poles in the length direction is 1, 2, 4, 6, 8 and 10 with an outer diameter of 2 between each pole.
A non-magnetic ring 14 made of SUS304 having a diameter of 4 mm, an inner diameter of 15 mm and a thickness of 2 mm was attached. The magnet arrangement with the number of divided poles of 1, 2, 4, 6, 8 and 10 is 10, 5: 5, 2: 3: 3:
2, 1: 2: 2: 2: 2: 1, 1: 1: 1: 2: 2:
1: 1: 1 and 1: 1: 1: 1: 1: 1: 1: 1:
It was set to 1: 1. The number of division poles is 6 in FIGS. 2 (a) and 2 (b).
FIG. 3 shows an assembled arrangement diagram of the rotatable main magnet 13 in the case of pole and magnet arrangement 1: 2: 2: 2: 2: 1. As the block-shaped permanent magnet 15 for fixing, two types of Nd-Fe-B-based permanent magnets of 15 mm x 5 mm x 8 mm (anisotropic direction) and 15 mm x 10 mm x 8 mm (anisotropic direction) (Hitachi Metals Ltd. (HS-30CV manufactured by Co., Ltd.) was used. Yoke 7 made of SS material
A and 7b magnetic cutoff in Y direction is SUS with 2mm thickness
The non-magnetic spacer 17 made of 304 was used, and the attracting force was measured using six magnet devices each having the number of divided poles assembled as shown in FIGS. 1 (a) and 1 (b). FIG. 3 shows the relationship between the number of divided poles and the relative attraction force. The relative attraction force is expressed by a dimensionless number when the conventional attraction force with the number of divided poles is set to 1. As is clear from FIG. 3, the attraction force is increased by 1.3 to 2 times or more by increasing the number of divided poles as compared with the number of divided poles of 1 (conventional technology). In this embodiment, a ring-shaped two-pole magnet having a ring shape is used as the rotatable permanent magnet.
The same effect can be obtained by a pole magnetized ring magnet having radial anisotropy or a block magnet having crescent-shaped pole pieces at both ends. On the other hand, when a plurality of magnetic circuit units shown in FIGS. 1 (a) and 1 (b) are provided, the attraction force is further increased and a better effect is obtained. Figure 4 (a)
1 and (b) show a hoisting device having two magnetic circuit structures, and the same parts as those in FIGS. 1 (a) and 1 (b) are denoted by the same reference numerals.

【0007】(実施例2)図7(a)および(b)に外
周面に二対の異極性の磁極を有する円筒状永久磁石を使
用した吊上装置を示し、図1(a)および(b)と同一
部分は同一の参照符号で示す。磁気回路部1は、吸着面
6a、6bを各々有する、強磁性体よりなる一対のヨー
ク7a、7bおよび吸着面6c、6dを各々有する一対
のヨーク7c、7dと、これらの間にそれぞれ介装され
た非磁性スペーサ8a、8bと8c、8dを有すると共
に、各スペーサと各ヨークの間には空孔9が形成されて
いる。空孔9内には、永久磁石10が軸方向に複数個接
続され該永久磁石内部に磁性コア12が挿着された後、
ラジアル方向に磁化された主磁石13が回転自在に配置
される。非磁性スペーサ8aの上部にはX方向に磁化さ
れたブロック状永久磁石15aからなる副磁石16aが
固定され、非磁性スペーサ8bの下部にはX方向に磁化
されたブロック状永久磁石15bからなる副磁石16b
が固定されている。上記構成により、主磁石13を回転
し、図7(a)に示すN極とS極の位置(主磁石13の
極性と副磁石16aおよび16bの極性が同極)にする
と、ヨーク7aの端部である吸着面6aにはS極、ヨー
ク7bの端部である6bにはN極が生じるように励磁さ
れ、またヨーク7cの端部である吸着面6cにはN極、
ヨーク7dの端部である6dにはS極が生じるように励
磁され、これにより鉄鋼片または鉄鋼製品等を吸着し吊
上可能となる。次いで、主磁石13を90゜回転し、主
磁石13の極性と副磁石16a、16bの極性が異極の
位置にすると(図示せず)消磁し、吸着面6a、6bお
よび6c、6dは非励磁となり吸着力を失う。本実施例
において回転可能な主磁石13の永久磁石10としては
外径48.6mm、内径38.6mm、長さ18mmのNd−
Fe−B系ラジアル異方性リング磁石(日立金属(株)
製HS−30CR)を10個使用し、磁性コア12の外
周に接着組立を行った後に該主磁石外周部に二対の異極
性の磁極を着磁する。またブロック状永久磁石15a、
15bとしては、20mm×16mm×5mm(異方性方向)
および20mm×8mm×5mm(異方性方向)の二種類のN
d−Fe−B系永久磁石(日立金属(株)製HS−27
CV)を適宜組合わせ使用する。8cおよび8dの非磁
性スペーサとして3mm厚のSUS304を用いて、図7
(a)および(b)に示す如く組立て、X面に鋼材を置
いて吸着力を測定した。比較のために図5(a)および
(b)に示す磁気回路(比較例)を用いてその吸着力も
測定した。また図5(a)および(b)における磁石形
状および寸法は本発明装置と同一のものを使用したが、
回転可能な主磁石組立部品のみは磁石外周部に一対の異
極性の磁極を着磁したものを使用した。比較例と本発明
装置の相対吸着力値を比較すると1.19倍となり、本
発明装置の吸着特性が優れていることが理解できる。ま
た、本実施例の場合も前記実施例1と同様に上記磁気回
路構造を複数個有すること(図示せず)により、吸着力
が格段に増加し、より良い効果が得られる。
(Embodiment 2) FIGS. 7 (a) and 7 (b) show a hoisting device using a cylindrical permanent magnet having two pairs of magnetic poles of opposite polarities on the outer peripheral surface, and FIGS. The same parts as in b) are designated by the same reference numerals. The magnetic circuit unit 1 includes a pair of yokes 7a and 7b made of a ferromagnetic material having attraction surfaces 6a and 6b and a pair of yokes 7c and 7d having attraction surfaces 6c and 6d, respectively, and interposed between them. The non-magnetic spacers 8a, 8b and 8c, 8d are formed, and a hole 9 is formed between each spacer and each yoke. After a plurality of permanent magnets 10 are axially connected in the holes 9 and the magnetic core 12 is inserted inside the permanent magnets,
A main magnet 13 magnetized in the radial direction is rotatably arranged. A sub-magnet 16a composed of a block-shaped permanent magnet 15a magnetized in the X direction is fixed to the upper part of the non-magnetic spacer 8a, and a sub-magnet 16a composed of a block-shaped permanent magnet 15b magnetized in the X direction to the lower part of the non-magnetic spacer 8b. Magnet 16b
Is fixed. With the above configuration, when the main magnet 13 is rotated to the N-pole and S-pole positions (the polarities of the main magnet 13 and the sub-magnets 16a and 16b are the same) shown in FIG. Is attracted so that the attraction surface 6a, which is the end portion, has an S pole, the end portion 6b of the yoke 7b has an N pole, and the attraction surface 6c, which is the end portion of the yoke 7c, has an N pole.
The yoke 6d, which is an end portion of the yoke 7d, is excited so as to generate an S pole, and thereby a steel piece or a steel product can be adsorbed and lifted. Next, when the main magnet 13 is rotated by 90 ° and the polarities of the main magnet 13 and the auxiliary magnets 16a, 16b are at different polarities (not shown), the demagnetization occurs, and the attraction surfaces 6a, 6b and 6c, 6d become non-polarized. It becomes excited and loses its attractive force. In the present embodiment, the permanent magnet 10 of the rotatable main magnet 13 is made of Nd-having an outer diameter of 48.6 mm, an inner diameter of 38.6 mm and a length of 18 mm.
Fe-B system radial anisotropic ring magnet (Hitachi Metals Ltd.)
HS-30CR manufactured by the present invention is used, and after bonding and assembling to the outer circumference of the magnetic core 12, two pairs of different magnetic poles are magnetized to the outer circumference of the main magnet. In addition, the block-shaped permanent magnet 15a,
As 15b, 20 mm x 16 mm x 5 mm (anisotropic direction)
And 20 mm x 8 mm x 5 mm (anisotropic direction) N
d-Fe-B system permanent magnet (HS-27 manufactured by Hitachi Metals, Ltd.)
CV) is used in an appropriate combination. Using 3 mm thick SUS304 as the non-magnetic spacers 8c and 8d,
Assembled as shown in (a) and (b), a steel material was placed on the X surface, and the adsorption force was measured. For comparison, the attraction force was also measured using the magnetic circuit (comparative example) shown in FIGS. 5A and 5B. The magnet shape and dimensions in FIGS. 5 (a) and 5 (b) were the same as those of the device of the present invention.
Only the rotatable main magnet assembly was used in which a pair of magnetic poles of opposite polarities were magnetized on the outer circumference of the magnet. Comparing the relative adsorption force values of the comparative example and the device of the present invention, it is 1.19 times, and it can be understood that the adsorption property of the device of the present invention is excellent. Also, in the case of the present embodiment, as in the case of the first embodiment, by having a plurality of the magnetic circuit structures (not shown), the attraction force is remarkably increased, and a better effect can be obtained.

【0008】(実施例3)図9(a)および(b)に外
周面に二対の異極性の磁極を有する円筒状永久磁石を使
用し、前記円筒状永久磁石を相隣る極性が異なるように
非磁性体を介して軸方向に複数個接続して形成した主磁
石を使用する吊上装置を示し、図1(a)および(b)
と同一部分は同一の参照符号で示す。磁気回路部1は、
吸着面6a、6bを各々有する、強磁性体からなる一対
のヨーク7a、7bおよび吸着面6c、6dを各々有す
る一対のヨーク7c、7dと、これらの間にそれぞれ介
装された非磁性スペーサ8a、8bと8c、8dを有す
ると共に、各スペーサと各ヨークの間には空孔9が形成
されている。空孔9内には、ラジアル方向に磁化された
永久磁石10a、10b、10c、…を軸方向に複数個
接続し、内部に磁性コア12を挿着した主磁石13が回
転自在に配置される。ここで図10(a)および(b)
に示す通り、永久磁石10a、10b、10c、…は、
長手方向に沿って異極性の磁石が交互に現出するよう
に、1個または2個以上の永久磁石10a、10b、…
からなる磁石ユニット11a、11bを非磁性リング1
4を介して固着一体化されている。非磁性スペーサ8a
の上部にはX方向に磁化されたブロック状永久磁石15
aからなる副磁石16aが固定され、非磁性スペーサ8
bの下部にはX方向に磁化されたブロック状永久磁石1
5bからなる副磁石16bが固定されいる。上記構成に
より、主磁石13を回転し、図9(a)に示すN極とS
極の位置(主磁石13の極性と副磁石16aおよび16
bの極性が同極)にすると、ヨーク7aの端部である吸
着面6aにはS極、ヨーク7bの端部である6bにはN
極が生じるように励磁され、またヨーク7cの端部であ
る吸着面6cにはN極、ヨーク7dの端部である6dに
はS極が生じるように励磁され、これにより鉄鋼片また
は鉄鋼製品等を吸着し吊上可能となる。次いで、主磁石
13を90゜回転し、主磁石13の極性と副磁石16
a、16bの極性が異極の位置にすると(図示せず)消
磁し、吸着面6a、6bおよび6c、6dは非励磁とな
り吸着力を失う。本実施例において外周面に二対の異極
性の磁極に着磁された回転可能な主磁石13の永久磁石
10a、10b、10c、…としては、外径48.6m
m、内径38.6mm、長さ18mmの予め外周面に二対の
異極性の磁極に着磁を施したNd−Fe−B系ラジアル
異方性リング磁石(日立金属(株)製HS−30CR)
を1台当たり10個使用し、磁性コア12の外周に長さ
方向の極位置を合わせて接着、組立を行った。長さ方向
の分割極数は1、2、4、6、8および10極とし、各
磁極間には外径48.6mm、内径38.6mm、厚さ2mm
のSUS304製非磁性リング14を装着した。分割極
数1、2、4、6、8および10極の磁石配列は、1
0、5:5、2:3:3:2、1:2:2:2:2:
1、1:1:1:2:2:1:1:1および1:1:
1:1:1:1:1:1:1:1とした。図10(a)
および(b)に分割極数6極、磁石配列1:2:2:
2:2:1の場合の回転可能な主磁石13の組立配列図
を示す。また固定用のブロック状永久磁石15a、15
bとしては20mm×16mm×5mm(異方性方向)および
20mm×8mm×5mm(異方性方向)の二種類のNd−F
e−B系永久磁石(日立金属(株)製HS−27CV)
を適宜組合わせ使用する。SS材よりなるヨーク7a、
7bおよび7c、7dのY方向の磁気的遮断は、厚さ2
mmのSUS304製非磁性スペーサ17a、17bを使
用し図9(a)、(b)の如く組立て、各分割極数を有
する6台の磁石装置を用いて吸着力を測定した。図11
に分割極数と相対吸着力の関係を示す。なお相対吸着力
は、分割極数1の従来の吸着力を1としたときの各々の
吸着力を無次元数で表したものである。図11より明か
なように分割極数1(従来技術)に比較し、分割極数を
増やすことにより吸着力が1.3〜2.5倍以上と大幅
に向上していることが分かる。なお、本実施例において
は回転可能な永久磁石としてリング状のラジアル異方性
磁石を使用したが、リング状極異方性磁石(例えば米国
特許第4,888,122号明細書参照)、アークセグメント状
磁石を円筒状に組合せた磁石でも同様の効果が得られ
る。一方、本実施例も前記実施例1と同様に磁気回路構
造を複数個有すること(図示せず)により、吸着力が格
段に増加し、より良い効果が得られる。
(Embodiment 3) In FIGS. 9 (a) and 9 (b), a cylindrical permanent magnet having two pairs of magnetic poles of different polarities on the outer peripheral surface is used, and the polarities adjacent to each other are different. 1A and 1B show a hoisting device that uses a main magnet formed by connecting a plurality of magnets in the axial direction through a non-magnetic material as shown in FIGS.
The same parts as are indicated by the same reference numerals. The magnetic circuit unit 1 is
A pair of ferromagnetic yokes 7a and 7b having attraction surfaces 6a and 6b, and a pair of yokes 7c and 7d having attraction surfaces 6c and 6d, and a non-magnetic spacer 8a interposed therebetween. , 8b and 8c, 8d, and a hole 9 is formed between each spacer and each yoke. A plurality of radially magnetized permanent magnets 10a, 10b, 10c, ... Are connected axially in the hole 9, and a main magnet 13 having a magnetic core 12 inserted therein is rotatably arranged. . 10 (a) and 10 (b).
, The permanent magnets 10a, 10b, 10c, ...
One or more permanent magnets 10a, 10b, ... so that magnets of different polarities appear alternately along the longitudinal direction.
The magnet units 11a and 11b are
It is firmly fixed and integrated via 4. Non-magnetic spacer 8a
The block-shaped permanent magnet 15 magnetized in the X direction is provided on the upper part of the
The sub-magnet 16a made of a is fixed, and the non-magnetic spacer 8
A block-shaped permanent magnet 1 magnetized in the X direction is provided under b.
The sub magnet 16b composed of 5b is fixed. With the above configuration, the main magnet 13 is rotated, and the N pole and S shown in FIG.
Position of pole (polarity of main magnet 13 and sub magnets 16a and 16
If the polarities of b are the same), the attracting surface 6a which is the end of the yoke 7a has an S pole, and the end 6b of the yoke 7b has an N pole.
A magnet is excited so as to generate a pole, and an attracting surface 6c which is an end of the yoke 7c is excited so as to have an N pole and an end 6d which is an end of the yoke 7d is excited so as to generate an S pole. It becomes possible to hang up by adsorbing etc. Then, the main magnet 13 is rotated by 90 °, and the polarity of the main magnet 13 and the auxiliary magnet 16
When the polarities of a and 16b are different from each other (not shown), they are demagnetized, and the attraction surfaces 6a, 6b and 6c, 6d are de-excited and lose the attraction force. In the present embodiment, the outer diameter of the permanent magnets 10a, 10b, 10c, ... Of the rotatable main magnet 13 magnetized with two pairs of magnetic poles of opposite polarities is 48.6m.
Nd-Fe-B system radial anisotropic ring magnet (HS-30CR manufactured by Hitachi Metals, Ltd.) having m, inner diameter of 38.6 mm, and length of 18 mm and having previously magnetized two pairs of magnetic poles having different polarities on the outer peripheral surface. )
10 units were used for each unit, and the pole positions in the lengthwise direction were aligned with the outer periphery of the magnetic core 12 and bonded and assembled. The number of divided poles in the length direction is 1, 2, 4, 6, 8 and 10 poles. The outer diameter is 48.6 mm, the inner diameter is 38.6 mm and the thickness is 2 mm between each magnetic pole.
The non-magnetic ring 14 made of SUS304 was attached. The magnet arrangement with 1, 2, 4, 6, 8 and 10 poles divided is 1
0, 5: 5, 2: 3: 3: 2, 1: 2: 2: 2: 2:
1, 1: 1: 1: 2: 2: 1: 1: 1 and 1: 1:
The ratio was 1: 1: 1: 1: 1: 1: 1: 1: 1. Figure 10 (a)
In (b), the number of divided poles is 6, and the magnet arrangement is 1: 2: 2 :.
The assembly arrangement diagram of the rotatable main magnet 13 in the case of 2: 2: 1 is shown. Further, block-shaped permanent magnets 15a, 15 for fixing
As b, two types of Nd-F of 20 mm × 16 mm × 5 mm (anisotropic direction) and 20 mm × 8 mm × 5 mm (anisotropic direction)
e-B system permanent magnet (HS-27CV manufactured by Hitachi Metals, Ltd.)
Are used in appropriate combination. Yoke 7a made of SS material,
The magnetic interception in the Y direction of 7b and 7c, 7d has a thickness of 2
The non-magnetic spacers 17a and 17b made of SUS304 of mm were assembled as shown in FIGS. 9 (a) and 9 (b), and the attracting force was measured using six magnet devices having each pole number. Figure 11
Shows the relationship between the number of divided poles and the relative attractive force. The relative attraction force is a dimensionless number representing each attraction force when the conventional attraction force with one division pole is 1. As is clear from FIG. 11, it can be seen that the adsorption force is significantly improved to 1.3 to 2.5 times or more by increasing the number of divided poles as compared with the number of divided poles of 1 (conventional technology). In this example, a ring-shaped radial anisotropic magnet was used as the rotatable permanent magnet, but a ring-shaped polar anisotropic magnet (see, for example, U.S. Pat. No. 4,888,122), an arc segment magnet was used. The same effect can be obtained with magnets combined in a cylindrical shape. On the other hand, this embodiment also has a plurality of magnetic circuit structures (not shown) as in the case of the first embodiment, so that the attraction force is remarkably increased and a better effect is obtained.

【0009】[0009]

【発明の効果】本発明は以上記述のように、磁気回路を
回転可能な永久磁石の長手方向(Y方向)を複数に磁気
的に分割し、或いは径方向(X方向)および長手方向
(Y方向)を複数に磁気的に分割し、隣接する磁石を異
極にして磁石の動作点を高くすることにより吸着力を大
幅に増加することができる。
As described above, the present invention magnetically divides the longitudinal direction (Y direction) of a rotatable permanent magnet into a plurality of magnetic circuits, or radial direction (X direction) and longitudinal direction (Y direction). Direction) is magnetically divided into a plurality of magnets, and adjacent magnets are made to have different polarities to increase the operating point of the magnets, whereby the attraction force can be significantly increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す正面図(a)、同A−
A断面図(b)である。
FIG. 1A is a front view showing an embodiment of the present invention, FIG.
It is an A sectional view (b).

【図2】図1における主磁石の組立配列正面図(a)、
同側面図(b)である。
FIG. 2 is a front view (a) of an assembling arrangement of main magnets in FIG.
It is the same side view (b).

【図3】図1における主磁石の分割極数と相対吸着力と
の関係を示す図である。
3 is a diagram showing the relationship between the number of divided poles of the main magnet in FIG. 1 and the relative attractive force.

【図4】本発明の他の実施例を示す正面図(a)、同A
−A断面図(b)である。
FIG. 4 is a front view (a) showing the other embodiment of the present invention, FIG.
It is a sectional view (b) of FIG.

【図5】比較例を示す正面図(a)、同A−A断面図
(b)である。
FIG. 5 is a front view (a) and a sectional view (b) taken along line AA of the comparative example.

【図6】図5における主磁石の組立配列正面図(a)、
同側面図(b)である。
FIG. 6 is a front view (a) of an assembling arrangement of main magnets in FIG.
It is the same side view (b).

【図7】本発明の他の実施例を示す正面図(a)、同A
−A断面図(b)である。
FIG. 7 is a front view (a) showing the other embodiment of the present invention, FIG.
It is a sectional view (b) of FIG.

【図8】図7における主磁石の組立配列正面図(a)、
同側面図(b)である。
FIG. 8 is a front view (a) of an assembly arrangement of main magnets in FIG.
It is the same side view (b).

【図9】本発明の他の実施例を示す正面図(a)、同A
−A断面図(b)である。
9 is a front view (a) showing the other embodiment of the present invention, FIG.
It is a sectional view (b) of FIG.

【図10】図9における主磁石の組立配列正面図
(a)、同側面図(b)である。
FIG. 10 is a front view (a) and a side view (b) of the main magnet assembling arrangement in FIG. 9.

【図11】図9における主磁石の分割極数と相対吸着力
との関係を示す図である。
11 is a diagram showing the relationship between the number of divided poles of the main magnet in FIG. 9 and the relative attractive force.

【図12】永久磁石の減磁曲線を示す図である。FIG. 12 is a diagram showing a demagnetization curve of a permanent magnet.

【図13】従来例を示す正面図(a)、同A−A断面図
(b)である。
FIG. 13 is a front view (a) showing the conventional example and a cross-sectional view (b) taken along the line AA of the same.

【図14】図13における主磁石の正面図(a)、同側
面図(b)である。
FIG. 14 is a front view (a) and a side view (b) of the main magnet in FIG.

【符号の説明】[Explanation of symbols]

1…磁気回路部、2…磁気遮断板、3…基板、4…吊金
具部、5…ボルト、6a、6b、6c…吸着面、7a、
7b、7c、7d…ヨーク、8a、8b、8c、8d…
非磁性スペーサ、9…空孔、10、10a、10b、1
0c…永久磁石、11a、11b…磁石ユニット、12
…磁性コア、13…主磁石、14…非磁性リング、1
5、15a、15b…ブロック状永久磁石、16、16
a、16b…副磁石17、17a、17b…非磁性スペ
ーサ
DESCRIPTION OF SYMBOLS 1 ... Magnetic circuit part, 2 ... Magnetic blocking plate, 3 ... Substrate, 4 ... Hanging metal fitting part, 5 ... Bolt, 6a, 6b, 6c ... Adsorption surface, 7a,
7b, 7c, 7d ... Yoke, 8a, 8b, 8c, 8d ...
Non-magnetic spacers, 9 ... Holes, 10, 10a, 10b, 1
0c ... Permanent magnets, 11a, 11b ... Magnet unit, 12
... magnetic core, 13 ... main magnet, 14 ... non-magnetic ring, 1
5, 15a, 15b ... Block-shaped permanent magnets, 16, 16
a, 16b ... Sub magnets 17, 17a, 17b ... Non-magnetic spacer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性体からなるスペーサを介して対向
し、且つ各々が吸着面を有する一対のヨークと、前記ス
ペーサと前記ヨークで形設された円筒状空孔を有するヨ
ーク部材と、 前記空孔内に回転自在に配置された外周面に互いに異極
性の一対の磁極を有する円筒状永久磁石を軸方向に相隣
る極性が異なるように非磁性体を介して複数個多極接続
して形成した主磁石部材と、 前記ヨーク部材に前記主磁石部の極性と対応した磁極を
有する回転軸と直交する方向に磁化された副磁石部材と
を有し、且つ回転自在の磁石方向の吸着面を前記両磁石
の極数と同数に多極化した磁気回路構造を有することを
特徴とする吊上装置。
1. A pair of yokes facing each other through a spacer made of a non-magnetic material and each having an attracting surface, a yoke member having a cylindrical hole formed by the spacer and the yoke, A cylindrical permanent magnet having a pair of magnetic poles of opposite polarities is rotatably arranged in the hole, and a plurality of multipoles are connected via a non-magnetic material so that the polarities adjacent to each other in the axial direction are different. And a secondary magnet member magnetized in a direction orthogonal to a rotation axis having a magnetic pole corresponding to the polarity of the main magnet portion on the yoke member, and attracting in a rotatable magnet direction. A hoisting device having a magnetic circuit structure in which the number of poles is the same as the number of poles of both magnets.
【請求項2】 非磁性体からなる複数対のスペーサを介
して対向し、且つ前記スペーサと同数対で各々が吸着面
を有するヨークと、前記スペーサと前記ヨークで形設さ
れた円筒状空孔を有するヨーク部材と、 前記空孔内に回転自在に配置された外周面に異極性の少
なくとも前記スペーサと同数対の磁極を有する円筒状永
久磁石を軸方向に複数個接続して形成した主磁石部材
と、 前記ヨーク部材の吸着面側およびこの吸着面の反対側に
前記主磁石部の回転軸と直交する方向に磁化された永久
磁石からなる副磁石部材とを有する磁気回路構造を有す
ることを特徴とする吊上装置。
2. A yoke having a plurality of pairs of spacers made of a non-magnetic material and facing each other and having the same number of pairs of said spacers each having an attracting surface, and a cylindrical hole formed by said spacer and said yoke. And a main magnet formed by axially connecting a plurality of cylindrical permanent magnets having at least the same number of pairs of magnetic poles as the spacers of different polarities on the outer peripheral surface rotatably arranged in the holes. A magnetic circuit structure having a member, and an attracting surface side of the yoke member, and a sub-magnet member made of a permanent magnet magnetized in a direction orthogonal to the rotation axis of the main magnet portion on the opposite side of the attracting surface. Characteristic lifting device.
【請求項3】 円筒状永久磁石を軸方向に相隣る極性が
異なるように非磁性体を介して複数個多極接続して形成
した主磁石部材と、前記主磁石部材の極性と対応した磁
極を有する回転軸と直交する方向に磁化された副磁石部
材を有し、且つ回転自在の磁石軸方向の吸着面を前記両
磁石の極数と同数に多極化した磁気回路ユニットを有す
ることを特徴とする請求項2記載の吊上装置。
3. A main magnet member formed by connecting a plurality of cylindrical permanent magnets in multiple poles through a non-magnetic material so that the polarities adjacent to each other in the axial direction are different, and the polarities of the main magnet member correspond to each other. A magnetic circuit unit having a sub-magnet member magnetized in a direction orthogonal to a rotation axis having magnetic poles, and having a rotatable attracting surface in the magnet axis direction having the same number of poles as those of the both magnets. The lifting device according to claim 2.
【請求項4】 請求項1〜3のいずれかに記載の磁気回
路構造を複数個有することを特徴とする吊上装置。
4. A hoisting device comprising a plurality of magnetic circuit structures according to claim 1.
JP6616194A 1994-04-04 1994-04-04 Lifting device Pending JPH07277664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6616194A JPH07277664A (en) 1994-04-04 1994-04-04 Lifting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6616194A JPH07277664A (en) 1994-04-04 1994-04-04 Lifting device

Publications (1)

Publication Number Publication Date
JPH07277664A true JPH07277664A (en) 1995-10-24

Family

ID=13307859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6616194A Pending JPH07277664A (en) 1994-04-04 1994-04-04 Lifting device

Country Status (1)

Country Link
JP (1) JPH07277664A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218418A (en) * 2005-07-19 2007-08-30 Toyo Tire & Rubber Co Ltd Active liquid-sealed vibration control device
JP2014053389A (en) * 2012-09-06 2014-03-20 Kanetec Co Ltd Magnetic attraction device
CN105916630A (en) * 2013-11-15 2016-08-31 磁转换技术股份有限公司 Permanent magnetic device
WO2019107504A1 (en) 2017-11-29 2019-06-06 Jfeスチール株式会社 Attachment magnetic pole for lifting magnet, lifting magnet having magnetic pole for hoisting steel material, method for conveying steel material, and method for manufacturing steel plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218418A (en) * 2005-07-19 2007-08-30 Toyo Tire & Rubber Co Ltd Active liquid-sealed vibration control device
JP2014053389A (en) * 2012-09-06 2014-03-20 Kanetec Co Ltd Magnetic attraction device
CN105916630A (en) * 2013-11-15 2016-08-31 磁转换技术股份有限公司 Permanent magnetic device
WO2019107504A1 (en) 2017-11-29 2019-06-06 Jfeスチール株式会社 Attachment magnetic pole for lifting magnet, lifting magnet having magnetic pole for hoisting steel material, method for conveying steel material, and method for manufacturing steel plate
KR20200074211A (en) 2017-11-29 2020-06-24 제이에프이 스틸 가부시키가이샤 Attachment stimulus for lifting magnets, lifting magnet with stimulus for steel hoisting, steel conveying method, and steel sheet manufacturing method
US11875940B2 (en) 2017-11-29 2024-01-16 Jfe Steel Corporation Lifting-magnet attachment magnetic pole unit, steel-lifting magnetic-pole-equipped lifting magnet, steel material conveying method, and steel plate manufacturing method

Similar Documents

Publication Publication Date Title
US4314219A (en) Permanent magnet type lifting device
EP1734645A2 (en) Axial air gap-type electric motor
JP2005524376A (en) Rotating electric motor having at least two axial gaps separating the stator and rotor segments
US4459500A (en) Magnetic field pole assembly
US4110645A (en) Electric motor
JPH07277664A (en) Lifting device
JP3902066B2 (en) Magnetic circuit for speakers
EP1810391B1 (en) Rotor-stator structure for electrodynamic machines
US3803522A (en) Air gap extending the width of a permanent magnet assembly
JP2528307Y2 (en) Magnetic circuit for speaker
WO2012100379A1 (en) Magnetic-variation type electrical permanent-magnetic chuck
JP3218833B2 (en) Non-excitation actuated electromagnetic brake
JP3337568B2 (en) Steel lifting equipment
JPH0337283B2 (en)
JPH11103568A (en) Movable magnet type linear actuator
JPH07211542A (en) Holding device by magnetism
JPH0244482Y2 (en)
JP2536297Y2 (en) Magnetic circuit for sputtering equipment
JPH0416925B2 (en)
JPH0314017Y2 (en)
JP2887024B2 (en) Radial magnetic bearing
JPS591414Y2 (en) Reciprocating drive device
JPH02140907A (en) Magnetization in radial direction
JPS6177310A (en) Polarized electromagnet
JPH0873177A (en) Steel lifting device