JP3218833B2 - Non-excitation actuated electromagnetic brake - Google Patents

Non-excitation actuated electromagnetic brake

Info

Publication number
JP3218833B2
JP3218833B2 JP34946393A JP34946393A JP3218833B2 JP 3218833 B2 JP3218833 B2 JP 3218833B2 JP 34946393 A JP34946393 A JP 34946393A JP 34946393 A JP34946393 A JP 34946393A JP 3218833 B2 JP3218833 B2 JP 3218833B2
Authority
JP
Japan
Prior art keywords
pole
yoke
magnet
assembly
electromagnetic brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34946393A
Other languages
Japanese (ja)
Other versions
JPH07197965A (en
Inventor
孝久 藤原
昌則 相川
洋 中川
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP34946393A priority Critical patent/JP3218833B2/en
Publication of JPH07197965A publication Critical patent/JPH07197965A/en
Application granted granted Critical
Publication of JP3218833B2 publication Critical patent/JP3218833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/20Electric or magnetic using electromagnets
    • F16D2121/22Electric or magnetic using electromagnets for releasing a normally applied brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2129/00Type of operation source for auxiliary mechanisms
    • F16D2129/06Electric or magnetic
    • F16D2129/065Permanent magnets

Abstract

PURPOSE:To enhance magnetic efficiency, and thereby make for compactness by forming each permanent magnet into each powerful thin type one so as to be incorporated in a magnet assembly, and thereby letting each exciting force the magnetic flux of which is equal in magnitude, but opposite in polarity to each permanent magnet, be generated in an exciting coil. CONSTITUTION:A first permanent magnet 2a thin in thickness is embedded in a position close to the releasing end side of an outer pole Po for a magnet assembly 3, and an inner permanent magnet 2b thin in thickness which is coaxial, but opposite in polarity, is also embedded in a free end side close to the armature 1 of an inner pole Pi at the side of a yoke releasing end. In a state that an exciting coil 11 is deenergized, the armature 1 is attracted to the magnet assembly against a spring plate 4 by the magnetic flux phim of each permanent magnet 2a and 2b, so that constant braking torque is thereby produced. When the exciting coil is energized by specified current, magnetic flux phi is produced, which is equal in magnitude to magnetic flux phim, but opposite in polarity, and the armature 1 is thereby released by the spring plate 4, so that braking torque becomes thereby zero. Torque can be controlled with magnetic flux adjusted to be ;m> ;c. By this constitution as mentioned above, efficiency can thereby be improved with each magnetic path made small in size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は永久磁石型の無励磁作動
型電磁ブレ−キに関する。近年ACサ−ボモ−タの普及
や安全性が重視されるのに伴い、無励磁作動型のブレ−
キの需要が増えつつあり、中でも永久磁石型のものは下
記に示すような特徴を有することから広く利用されてい
る。 1)ばね式のものに比較して小形で制動トルクが大きく
応答性がよい。 2)コイルの励磁状態での電流(電圧)の大きさを調整
することにより保持トルクを制御できる。 3)コイルにブレ−キ解放時の通電極性と逆の電圧を印
加すれば、永久磁石の磁束と励磁コイルの磁束とが重合
して定格トルク以上の制動トルクを発生させることがで
きる。 4)放熱特性に優れ、スリップサ−ビスができ、トルク
容量が大きい。本発明はこのような永久磁石型の無励磁
作動型電磁ブレ−キの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet type non-excitation type electromagnetic brake. With the recent spread of AC servomotors and the importance of safety, non-excitation type brakes
The demand for keys is increasing, and among them, the permanent magnet type is widely used because it has the following characteristics. 1) Compared with the spring type, it is small and has a large braking torque and good responsiveness. 2) The holding torque can be controlled by adjusting the magnitude of the current (voltage) in the excited state of the coil. 3) If a voltage opposite to the polarity of the current flowing when the brake is released is applied to the coil, the magnetic flux of the permanent magnet and the magnetic flux of the exciting coil overlap to generate a braking torque greater than the rated torque. 4) Excellent heat dissipation characteristics, slip service, and large torque capacity. The present invention relates to an improvement of such a permanent magnet type non-excitation operation type electromagnetic brake.

【0002】[0002]

【従来の技術】従来の永久磁石型の無励磁作動型電磁ブ
レ−キの通電されない状態と通電された状態での横断面
図を、それぞれ図14の(A)と(B)に、更にそれぞ
れに対応する等価回路を図15の(A)と(B)に示
す。図14(A)を参照すると、図で左端近くに配置さ
れている磁性体製のア−マチュア組立体1は、スプライ
ンハブ5とスプライン5aを介して回転軸9に対し軸方
向に移動可能に装着され、スプライン5aとこのア−マ
チュア組立体1との間にはばねプレ−ト4が配置されア
−マチュア組立体1は常時制動から解放される方向(図
で左方)に押圧されている。一方、ア−マチュア組立体
1に対向し軸方向の右側に配置されたマグネット組立体
3は、磁性体製でアウタポ−ルPoと、インナポ−ルP
iと、これらを連結する底部3bとを有し断面形状が底
付き2重円筒状のマグネット組立体3と、このマグネッ
ト組立体3の前記ア−マチュア組立体1に対向する側の
アウタポ−ルPoとインナポ−ルPiとの間の空隙内に
コイル11が配置され、マグネット組立体3の、前記ア
−マチュア組立体1と軸方向で反対側(図で右側)のア
ウタポールPoの内周から回転軸9の手前までの間の空
隙内には、比較的に大形の永久磁石2が配置されてい
る。この永久磁石2によりマグネット組立体3に沿って
発生する磁束φmによってア−マチュア組立体1は、ば
ねプレ−ト4の力に抗してスプラインハブ5のスプライ
ン5aに沿って図で右方へ動かされ、マグネット組立体
3に吸着されてマグネット組立体3及びフェ−シング6
に摩擦接触する。
2. Description of the Related Art FIGS. 14A and 14B are cross-sectional views of a conventional permanent magnet type non-excited operation type electromagnetic brake in a non-energized state and in an energized state, respectively. (A) and (B) of FIG. Referring to FIG. 14A, the armature assembly 1 made of a magnetic material, which is disposed near the left end in the figure, is movable in the axial direction with respect to the rotating shaft 9 via the spline hub 5 and the spline 5a. A spring plate 4 is disposed between the spline 5a and the armature assembly 1 so that the armature assembly 1 is constantly pressed in a direction (left side in the figure) to be released from braking. I have. On the other hand, the magnet assembly 3 disposed on the right side in the axial direction opposite to the armature assembly 1 is made of a magnetic material and has an outer pole Po and an inner pole P.
i, a magnet assembly 3 having a bottom and a bottom 3b connecting them, and having a double cross section with a bottom, and an outer pole on the side of the magnet assembly 3 facing the armature assembly 1. A coil 11 is disposed in a gap between Po and the inner pole Pi, and the magnet assembly 3 extends from the inner periphery of the outer pole Po on the opposite side (right side in the drawing) of the armature assembly 1 from the armature assembly 1 in the axial direction. The relatively large permanent magnet 2 is arranged in the space before the rotating shaft 9. Due to the magnetic flux φm generated along the magnet assembly 3 by the permanent magnet 2, the armature assembly 1 moves to the right along the spline 5 a of the spline hub 5 against the force of the spring plate 4. The magnet assembly 3 and the facing 6
Frictional contact with

【0003】マグネット組立体3はフランジ7を介して
静止体8に固定されているので、回転軸9の回転トルク
にはスプラインハブ5、ア−マチュア組立体1、マグネ
ット組立体3などを介してブレ−キ作用が加えられる。
図14の(B)を参照すると、リ−ド線10を介してア
−マチュア組立体1のコイル11に通電されると永久磁
石2による磁束φmとは方向が反対の磁束φcが生じて
磁束φmを打ち消し、ばねプレ−ト4の力でア−マチュ
ア組立体1は図で左方へ動かされギャップGaを生じ、
回転軸9の回転トルクに及ぼしていたブレ−キ作用は解
除される。この説明ではばねプレ−ト4として説明した
が、ばねに限定されるものではなく、磁石による反発力
を利用して解放する構造でもよいことは勿論である。上
記の作動に関連して、回転トルクとコイル11に与えら
れる電圧(従って電流)との関係は図16に示す通りで
あり、また図14の(A)と(B)に於ける等価回路
は、それぞれ図15の(A)と(B)に示され、図15
の(B)においてEmと(Ec1+Ec2)とは等しく、
永久磁石の起磁力とコイルの起磁力であり、φm、φm
Lは、それぞれ、永久磁石の磁束の有効分と漏れ分であ
り、Rga1、Rga2はア−マチュア、ヨ−ク間のギャ
ップGaの抵抗であり、Rgyはヨ−ク部のギャップG
yの抵抗である。
Since the magnet assembly 3 is fixed to the stationary body 8 via the flange 7, the rotational torque of the rotating shaft 9 is applied to the magnet assembly 3 via the spline hub 5, the armature assembly 1, the magnet assembly 3, and the like. A braking action is added.
Referring to FIG. 14B, when the coil 11 of the armature assembly 1 is energized via the lead wire 10, a magnetic flux φc having a direction opposite to that of the magnetic flux φm generated by the permanent magnet 2 is generated. The armature assembly 1 is moved to the left in the figure by the force of the spring plate 4 to create a gap Ga,
The braking action exerted on the rotating torque of the rotating shaft 9 is released. In this description, the spring plate 4 has been described. However, the spring plate is not limited to the spring, and it is a matter of course that the spring plate 4 may be released using a repulsive force of a magnet. In relation to the above operation, the relationship between the rotational torque and the voltage (accordingly, the current) applied to the coil 11 is as shown in FIG. 16, and the equivalent circuits in FIGS. 14 (A) and (B) are 15A and 15B, respectively, and FIG.
In (B), Em is equal to (Ec 1 + Ec 2 ),
These are the magnetomotive force of the permanent magnet and the magnetomotive force of the coil.
L is an effective component and a leakage component of the magnetic flux of the permanent magnet, Rga 1 and Rga 2 are the resistance of the gap Ga between the armature and the yoke, and Rgy is the gap G of the yoke portion.
is the resistance of y.

【0004】[0004]

【発明が解決しようとする課題】図14(A)に示すよ
うにア−マチュア組立体とマグネット組立体との接触部
において、永久磁石による磁気回路とコイルによる電磁
石の磁気回路とを共用し磁束を形成するためヨ−クギャ
ップGyを設けた磁気回路φnが不可欠である。しか
し、この磁気回路は、無励磁状態においては図15
(A)に示すように永久磁石磁束のほぼ半分の磁束φm
Lを外部に漏らしてしまう結果となり、ア−マチュアギ
ャップGaに必要な磁束を供給するためには、図14
(B)に示されるようにかなり大形の永久磁石2を使用
する必要があり、そのため小形化とコスト低減に対する
支障となっていた。
As shown in FIG. 14A, at the contact portion between the armature assembly and the magnet assembly, a magnetic circuit formed by a permanent magnet and a magnetic circuit formed by an electromagnet formed by a coil are shared. The magnetic circuit .phi.n provided with the yoke gap Gy is indispensable for forming the magnetic field .phi. However, this magnetic circuit does not
(A) As shown in FIG.
L is leaked to the outside, and in order to supply the magnetic flux required for the armature gap Ga, it is necessary to use FIG.
As shown in (B), it is necessary to use a considerably large permanent magnet 2, which hinders downsizing and cost reduction.

【0005】[0005]

【課題を解決するための手段】本発明では前述した課題
を解決するため、下記の2つの手段を採用した。 1)第1の手段としては、請求項1に記載した構成で、
マグネット組立体の断面形状が回転軸と同心で底付き2
重円筒状のヨ−クの主磁気回路の任意の位置に、薄肉で
強力であって肉厚方向と直角をなす2表面を異なる極性
に着磁した永久磁石を円周方向に所定の間隔、例えば
3、4、6に分割して複数個または連続したリング状と
して埋め込む構成として、効率が良い磁気回路を形成し
て小形ロ−コストの無励磁作動型電磁ブレ−キを提供し
た。 2)第2の手段としては、請求項8に記載の構成で、ア
−マチュア組立体の主磁気回路の任意の位置に、薄肉で
強力な永久磁石を円周方向に所定の間隔、例えば3、
4、6に分割して複数個または連続したリング状として
埋め込み、無励磁状態ではア−マチュア組立体自体に配
置された強力な永久磁石によりア−マチュア組立体が解
放手段、例えば解放ばねに抗してマグネット組立体側に
引き寄せられて制動され、マグネット組立体のコイルに
通電されると、ア−マチュア組立体とマグネット組立体
の互いに対向している端部が同極となり、磁気的反発力
が生じてア−マチュア組立体がマグネット組立体との吸
着から解放され制動が解除されるように構成して大型の
永久磁石と強力な解放ばねを使用する必要をなくし、前
項1)の手段による電磁ブレ−キよりもさらに小形ロ−
コストの無励磁作動型電磁ブレ−キを提供するものであ
る。
The present invention employs the following two means to solve the above-mentioned problems. 1) As the first means, in the configuration described in claim 1,
Cross section of magnet assembly is concentric with the rotation axis and has a bottom 2
At a given position in the main magnetic circuit of the heavy cylindrical yoke, permanent magnets having two thin surfaces, strong and perpendicular to the thickness direction and magnetized with different polarities are provided at predetermined positions in the circumferential direction at arbitrary positions in the main magnetic circuit of the heavy cylindrical yoke. For example, a small, low-cost, non-excitation-type electromagnetic brake is provided by dividing into three, four, and six and embedding a plurality of or continuous rings to form an efficient magnetic circuit. 2) As a second means, in the configuration according to claim 8, a thin and strong permanent magnet is provided at an arbitrary position in the main magnetic circuit of the armature assembly in a circumferential direction at a predetermined interval, for example, 3 mm. ,
The armature assembly is divided into four or six parts and embedded as a plurality or a continuous ring. Under a non-excited state, the armature assembly resists a release means, for example, a release spring by a strong permanent magnet disposed on the armature assembly itself. When the coil of the magnet assembly is energized by being attracted to the magnet assembly side and braked, the ends of the armature assembly and the magnet assembly facing each other have the same polarity, and the magnetic repulsion force is reduced. Then, the armature assembly is released from the attraction with the magnet assembly and the braking is released, eliminating the need to use a large permanent magnet and a strong release spring. Smaller than the brake
A cost-effective non-excited operation type electromagnetic brake is provided.

【0006】[0006]

【作用】解決手段の前記1)項の構成の場合、コイルに
通電しない状態では、永久磁石の磁束φmによりア−マ
チュア組立体を吸着して一定の制動トルクを発生する。
コイルに所定の電流を流すと、永久磁石磁束φmと大き
さが等しく方向が逆の磁束φcが発生し、永久磁石磁束
φmを打ち消すので、ばねプレ−トなどの解放手段の力
でア−マチュア組立体はヨ−クとの吸着から解放され、
ブレ−キトルクは零となる。又φm>φcの範囲で調整
して通電することで、従来の無励磁作動型電磁ブレ−キ
と同様に、トルクを制御することができる。
In the configuration of the above item 1), when the coil is not energized, the armature assembly is attracted by the magnetic flux φm of the permanent magnet to generate a constant braking torque.
When a predetermined current is applied to the coil, a magnetic flux φc having the same magnitude as the permanent magnet magnetic flux φm and having the opposite direction is generated, and the permanent magnet magnetic flux φm is canceled, so that the armature is released by the force of the releasing means such as a spring plate. The assembly is released from the suction with the yoke,
The brake torque becomes zero. Further, by adjusting the current in the range of φm> φc and energizing, the torque can be controlled similarly to the conventional non-excitation operation type electromagnetic brake.

【0007】前記2)項の場合も前記1)項と同様であ
るが、異なる点はア−マチュアギャップ部において、電
磁石に通電されるとア−マチュア組立体とマグネット組
立体との接触部において、永久磁石によって形成されて
いるア−マチュア組立体の端部の磁極の極性と同一極性
の磁極がマグネット組立体に形成され、この同一極性の
磁極によって両組立体は反発され、その結果としてばね
プレ−トなどの解放手段を設けなくともア−マチュアが
解放され、ブレ−キトルクは零となる。又、φm>φc
の範囲の小さな電流領域では、従来の無磁作動型電磁ブ
レ−キと同様、トルクを制御することができる。また、
従来技術及び本発明の解決手段1)項による場合は、φ
m≒φcの狭い範囲でしか2次側の解放が出来なかった
(図16参照)のに対して、本磁気回路ではある値以上
の電流(起磁力)では総て反発力となる(図8参照)。
The item 2) is the same as the item 1) except that the armature gap portion is provided at the contact portion between the armature assembly and the magnet assembly when the electromagnet is energized. A magnetic pole having the same polarity as that of the magnetic pole at the end of the armature assembly formed by the permanent magnet is formed on the magnet assembly, and the magnetic poles having the same polarity repel both assemblies. The armature is released without providing release means such as a plate, and the brake torque becomes zero. Also, φm> φc
In the small current range, the torque can be controlled in the same manner as in the conventional non-magnetized electromagnetic brake. Also,
According to the prior art and the solution 1) of the present invention, φ
While the secondary side could be released only in a narrow range of m ≒ φc (see FIG. 16), in the magnetic circuit according to the present invention, all the currents (magnetomotive force) become a repulsive force at a certain current or more (magnetomotive force) (FIG. 8). reference).

【0008】[0008]

【実施例】本発明による前記解決手段の1)項による第
1実施例の、無励磁状態と励磁状態の横断面図を、それ
ぞれ図1の(A)及び(B)に、更にそれぞれの等価回
路を図2の(A)及び(B)、に示す。なお、図1を含
め以下に示す本発明の各実施例において永久磁石の配置
は、円周方向に所定の間隔で分割した複数のものあるい
は連続したリング状のいずれか一方を示したが、本発明
の効果は記載した一方に制限されるものではない。な
お、各実施例において、永久磁石の着磁は肉厚方向に対
して直交する各表面がそれぞれ異なる極性に着磁されて
いるものとする。この着磁方法によって得られる永久磁
石は磁極の単位当たりの発生磁束を著しく増大させるこ
とができる。図1の(A)及び(B)において、図14
の(A)、(B)と同じ部材には同じ符号を付し、図2
の(A)及び(B)において図15の(A)、(B)と
同じ符号を付して重複を避け異なる点のみを述べる。底
付き2重円筒状のマグネット組立体3のアウタポ−ルP
oの解放端部に近い位置に、薄肉の第1の永久磁石2a
を、同様にしてヨ−クの解放端側のインナポ−ルPiの
ア−マチュア組立体(以下ア−マチュアと称する)1に
近い自由端側に、同心で極性が反対の薄板状の内側永久
磁石2bを、それぞれの肉厚方向がギャップGaの幅方
向と一致して埋め込まれている以外は従来のものと同一
である。作用として、図1(A)の構成の場合励磁コイ
ル11に通電しない状態で、ア−マチュア1が永久磁石
の磁束φmによりばねプレ−ト4の力に抗してマグネッ
ト組立体3に吸着され一定の制動トルクを発生する。励
磁コイル11に所定の電流を流すと、図2(B)に示す
ように永久磁石磁束φmと大きさが等しく方向が逆の磁
束φcが発生し、φmを打ち消し、解放手段としてのば
ねプレ−ト4の力でア−マチュア1が解放されて、図2
(B)に示すようにギャップGaを生じてブレ−キトル
クはゼロとなる。又、φm>φcの範囲になるように調
整して電流を流すことにより従来の無励磁作動型電磁ブ
レ−キと同様、トルクを制御することができる(図16
参照)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Cross sections of the first embodiment according to the first aspect of the present invention in the non-excited state and the excited state are shown in FIGS. 1A and 1B, respectively. The circuit is shown in FIGS. In each of the embodiments of the present invention shown below including FIG. 1, the arrangement of the permanent magnets is either a plurality of permanent magnets divided at predetermined intervals in a circumferential direction or a continuous ring shape. The effect of the invention is not limited to the one described. In each embodiment, it is assumed that the surfaces of the permanent magnets that are orthogonal to the thickness direction are magnetized to different polarities. The permanent magnet obtained by this magnetizing method can significantly increase the magnetic flux generated per unit of magnetic pole. In FIGS. 1A and 1B, FIG.
(A) and (B) are denoted by the same reference numerals, and FIG.
(A) and (B) are denoted by the same reference numerals as in (A) and (B) in FIG. Outer pole P of double cylindrical magnet assembly 3 with bottom
o, a thin first permanent magnet 2a
Similarly, on the free end side near the armature assembly (hereinafter referred to as armature) 1 of the inner pole Pi on the open end side of the yoke, a thin plate-like inner permanent member having concentric and opposite polarities is provided. The magnet 2b is the same as the conventional magnet except that the thickness direction of each magnet is embedded so as to match the width direction of the gap Ga. 1A, the armature 1 is attracted to the magnet assembly 3 against the force of the spring plate 4 by the magnetic flux φm of the permanent magnet in a state in which the exciting coil 11 is not energized in the configuration of FIG. Generates constant braking torque. When a predetermined current is applied to the exciting coil 11, a magnetic flux φc having the same size and the opposite direction as the permanent magnet magnetic flux φm is generated as shown in FIG. Armature 1 is released by the force of
As shown in (B), a gap Ga is generated and the brake torque becomes zero. Further, by adjusting the current so as to satisfy the range of φm> φc and supplying the current, the torque can be controlled similarly to the conventional non-excitation operation type electromagnetic brake (FIG. 16).
reference).

【0009】図3は第2実施例として、薄板状の永久磁
石2bを半体断面でコの字形を有するヨ−ク3bの、ア
ウタポ−ルPoとインナポ−ルPiを連結して回転軸に
直角にフランジ7に沿って装着されている垂直部3hの
中央部に埋め込んだもので、永久磁石2bの肉厚方向は
ギャップGaの幅方向と直角である。図4は第3実施例
として、同心で軸心までの距離が異なる薄板状で極性が
反対の内外2枚の永久磁石2c(軸方向内方がS極)と
2d(軸方向外方がS極)を、ヨ−ク3cのアウタポ−
ルPoとインナポ−ルPiのア−マチュア1に対向する
側の端部に、それぞれ付着したものである。図5は第4
実施例として、ヨ−ク3dのアウタポ−ルPoとインナ
ポ−ルPiを連結する垂直部3hに、1対の薄板状永久
磁石2d1と2d2を、それぞれの肉厚方向をギャップG
aの幅方向に一致させ、極性を反対に軸心に垂直な方向
に直列に連続して埋め込んだものである。図6は第5実
施例として、前記と同じくコの字形断面を有するヨ−ク
3eの、アウタポ−ルPoとインナポ−ルPiを連結す
る垂直部の半径方向内外両端に、薄板状の永久磁石2e
1、2e2を、肉厚方向をギャップの幅方向と同じになる
ように半径方向に所定の間隔を保ち極性を逆にして付着
し、前記垂直部のこれらの永久磁石2e1と2e2が配置
されている内外両端を除いた中間部において永久磁石2
1と2e2よりも軸方向内側に非磁性体3e1を挿入し
てある。図3から図6までに示した実施例は、いずれも
励磁コイル11に通電され制動が解除された状態の側断
面図を示す。作用は何れも第1実施例と同じである。
FIG. 3 shows a second embodiment in which a thin plate-shaped permanent magnet 2b is connected to an outer pole Po and an inner pole Pi of a yoke 3b having a U-shape in a half body cross section to form a rotary shaft. The permanent magnet 2b is embedded in the center of the vertical portion 3h mounted at right angles along the flange 7, and the thickness direction of the permanent magnet 2b is perpendicular to the width direction of the gap Ga. FIG. 4 shows a third embodiment in which two inner and outer permanent magnets 2c (the inner side in the axial direction are S poles) and 2d (the outer side in the axial direction are S-plates) which are concentric and have different distances to the axis and have opposite polarities. Pole) to the outer port of the yoke 3c.
Are attached to the ends of the side Po and the inner pole Pi on the side facing the armature 1, respectively. FIG.
As an example, Yo - click 3d of Autapo - Le Po and In'napo - the vertical portion 3h connecting the Le Pi, a thin plate-shaped permanent magnet 2d 1 pair and 2d 2, the gap G the respective thickness direction
In this example, the polarities are aligned in the width direction of a, and the polarities are continuously buried in series in the direction perpendicular to the axis. FIG. 6 shows a fifth embodiment in which a yoke 3e having the same U-shaped cross section as above is provided with thin plate-like permanent magnets at both radially inner and outer ends of a vertical portion connecting the outer pole Po and the inner pole Pi. 2e
1 and 2e 2 are adhered in such a way that the thickness direction is the same as the width direction of the gap, with a predetermined interval in the radial direction and the polarity reversed, and these permanent magnets 2e 1 and 2e 2 in the vertical portion are A permanent magnet 2 is provided at an intermediate portion excluding both inner and outer ends.
than e 1 and 2e 2 are inserted a non-magnetic material 3e 1 axially inward. The embodiments shown in FIGS. 3 to 6 are side sectional views in a state where the exciting coil 11 is energized and the braking is released. The operation is the same as that of the first embodiment.

【0010】図7乃至図12は、前述した解決手段2)
項によりア−マチュア(2次側)内に薄板状の永久磁石
を埋め込んだ第6〜第11実施例である。第6実施例の
励磁状態と無励磁状態との横断面図を、それぞれ図7の
(A)と(B)に示し、従来技術を示す図14の
(A)、(B)と同じ部材には同じ符号を付けて説明す
る。図7において、回転軸9に固定されたハブ5fに
は、伝達ばね4fを介してア−マチュア1fが取り付け
られ、このア−マチュア1fの半径方向外端に近くアウ
タポ−ルPoのほぼ半径方向内端に近い位置には薄板状
の永久磁石2fが、その厚方向が軸に直角に埋め込ま
れている。前記の伝達ばね4fはア−マチュア1fの力
を円滑に伝達するためのものであり、開放ばねのように
強力なばね作用を必要としない。一方、コの字形断面を
有する磁性体のヨ−ク3fはアウタポ−ルPoとインナ
ポ−ルPiの間の空隙に励磁コイル11を収容して、図
1(A)と同様に静止体8に固定されている。励磁コイ
ル11に通電されない時は、図7の(B)に示すように
永久磁石による磁束φmと、伝達ばね4fの回転軸の軸
線方向に柔軟な動きとによりア−マチュア1fはヨ−ク
3fに吸着される。励磁コイル11に通電されると図7
の(A)に示すように磁束φcを生じ、図8に示すよう
に、φcの大きさがφmに近い値を生ずる電圧Vcで永
久磁石2fが図示の極性ならば、ヨ−ク3fのアウタポ
−ルPoがN、インナポ−ルPiがSとなってア−マチ
ュア1fはヨ−ク3fに対して反発力を生じ、図7
(A)に示すように両者間にギャップGaを生じ、ブレ
−キトルクは解放される。この際のコイル電流(従って
電圧)とトルクの関係は、図8に示すように解放電圧領
域が広く、従来及び本発明の解決手段としての前記1)
項の場合を示す図16のように、解放電圧領域が狭く限
定されないことを示している。
FIGS. 7 to 12 show the above-mentioned solution 2).
In the sixth to eleventh embodiments, a thin plate-shaped permanent magnet is embedded in an armature (secondary side) according to the item. FIGS. 7A and 7B are cross-sectional views of the sixth embodiment in an excited state and a non-excited state, respectively. The same members as in FIGS. 14A and 14B showing the prior art are shown. Will be described with the same reference numerals. In FIG. 7, an armature 1f is attached to a hub 5f fixed to the rotating shaft 9 via a transmission spring 4f. The armature 1f is located near the radially outer end of the armature 1f and substantially in the radial direction of the outer pole Po. thin shaped permanent magnet 2f is closer to the inner end, the thickness direction are embedded at right angles to the axis. The transmission spring 4f is for smoothly transmitting the force of the armature 1f, and does not require a strong spring action like an open spring. On the other hand, a magnetic yoke 3f having a U-shaped cross section accommodates the exciting coil 11 in the gap between the outer pole Po and the inner pole Pi, and is attached to the stationary body 8 as in FIG. Fixed. When the excitation coil 11 is not energized, the armature 1f makes the yoke 3f due to the magnetic flux .phi.m by the permanent magnet and the flexible movement of the transmission spring 4f in the axial direction as shown in FIG. 7B. Is adsorbed. When the excitation coil 11 is energized, FIG.
8A, a magnetic flux .phi.c is generated, and as shown in FIG. 8, if the permanent magnet 2f has the polarity shown in FIG. As shown in FIG. 7, the arm Po is N, the inner pole Pi is S, and the armature 1f generates a repulsive force against the yoke 3f.
As shown in (A), a gap Ga is formed between the two, and the brake torque is released. At this time, the relationship between the coil current (therefore, the voltage) and the torque is as shown in FIG.
As shown in FIG. 16 showing the case of the term, the open voltage region is not narrow and is not limited.

【0011】図9は第7実施例としてヨ−ク3fのアウ
タポ−ルPoとインナポ−ルPiの解放端面(図で左)
に対向する側の、ア−マチチュア1gの軸方向内端面に
薄板状で、それぞれの肉厚方向がギャップ方向に一致す
る内外1組の永久磁石2g2(内)と2g1(外)とを、
極性を逆にし外の永久磁石2g1の内周に密接して内の
永久磁石2g2が(図9では上、下)配置された構造で
ある。図10は、第8実施例として、ヨ−ク3fのアウ
タポ−ルPoとインナポ−ルPiの解放側端面(図で
左)に対向するア−マチュア1hの軸方向内側の中央部
に非磁性スペ−サ1h1を配置し、半径方向でこの非磁
性スペ−サ1h1に対向しない半径方向内外の位置(図
10では上、下)に、半径が異なり極性が逆で肉厚方向
がギャップ方向に一致する内外1組の薄板状の永久磁石
2h1と2h2を、それぞれ同心に半径方向に直列に埋め
込んだ構造である。図11は、第9実施例を示すもので
あり、第8実施例としての図10では、薄板状の永久磁
石2h1、2h2を非磁性スペ−サ1h1の軸方向外側で
半径方向の外と内から間隔を置いて配置したのと異な
り、図11に示すこの実施例では、ヨ−ク3fのアウタ
ポ−ルPoとインナポ−ルPiとの全体を半径方向に覆
う長さを有して延在するア−マチュア1iの軸方向最外
側の非励磁スペ−サ1i1の内側面に密接して、肉厚方
向がギャップの幅方向に一致する薄板状の内外1組の永
久磁石2i1(外)と2i2(内)を極性を逆にし直列に
接合してある。これらの永久磁石の軸方向内側面に密接
して、肉厚方向がギャップの幅方向に一致するヨ−ク3
fのアウタポ−ルPoとインナポ−ルPiのそれぞれに
対応する薄板状の内外1組の永久磁石2i1と2i2を極
性を逆にして直列に接合し、これらの永久磁石の軸方向
内側面に密接しヨーク3fのアウタポ−ルPoとインナ
ポ−ルPiのそれぞれに対応する位置に、半径方向の幅
が等しいか、又はそれを上回るア−マチュア1iのアウ
タポ−ルRoとインナポ−ルRiを接合して配置した構
造である。
FIG. 9 shows, as a seventh embodiment, the open end faces of the outer pole Po and the inner pole Pi of the yoke 3f (left side in the figure).
A pair of inner and outer permanent magnets 2g 2 (inside) and 2g 1 (outside) having a thin plate shape on the axial inner end face of the armature 1g on the side facing ,
Permanent magnets 2 g 2 in closely to the inner periphery of the permanent magnet 2 g 1 outside the polarity is reversed (top in FIG. 9, below) is arranged structures. FIG. 10 shows an eighth embodiment in which a nonmagnetic material is provided at the axially inner central portion of an armature 1h opposed to the open end faces (left in the figure) of the outer pole Po and the inner pole Pi of the yoke 3f. space - place the sub 1h 1, the non-magnetic space in the radial direction - the position of the radial inner and outer not facing the sub 1h 1 (top in FIG. 10, below), the gap thickness direction polarity different radius in reverse the inner and outer set of thin plate-like permanent magnet 2h 1 and 2h 2 matching direction, a structure embedded in series in the radial direction concentrically respectively. FIG. 11 shows a ninth embodiment. In FIG. 10 as an eighth embodiment, the thin plate-shaped permanent magnets 2h 1 and 2h 2 are arranged radially outside the non-magnetic spacer 1h 1 in the axial direction. Unlike the embodiment in which the outer and inner poles Pi of the yoke 3f are radially covered, the embodiment shown in FIG. extending Te a - armature 1i axially outermost non-excitation space of - in close contact with the inner surface of the support 1i 1, thin plate-like inner and outer pair of permanent magnets 2i which thickness direction coincides with the width direction of the gap 1 (outer) and 2i 2 (inner) are connected in series with the polarity reversed. The yoke 3 which is in close contact with the inner side surface in the axial direction of these permanent magnets and whose thickness direction corresponds to the width direction of the gap.
f of Autapo - Le Po and In'napo - a thin plate-like inner and outer pair of permanent magnets 2i 1 and 2i 2 corresponding to each Le Pi joined in series with the polarity reversed, the axial inner surface of the permanent magnet The outer pole Ro and the inner pole Ri of the armature 1i whose radial width is equal to or greater than the radial width are provided at positions corresponding to the outer pole Po and the inner pole Pi of the yoke 3f in close contact with each other. It is a structure that is joined and arranged.

【0012】図12は、第10実施例としてア−マチュ
ア組立体1jはヨ−ク3fのアウタポ−ルPoとインナ
ポ−ルPiの端面(図で左)に対向する開口部側の先端
が、半径方向に互いに対向するように回転軸に直角に曲
げられ半体断面がほぼC字形の形状とされている。この
曲げられた2部分の先端のそれぞれには内外1対で薄肉
の永久磁石2j1と2j2を、それぞれの肉厚方向が回転
軸に直角で、それぞれの半径方向外側の面が何れもN極
になるようにして埋め込まれ、アウタポ−ルPoとイン
ナポ−ルPiの端面(図で左)に対向する部分には、そ
れぞれのポ−ルに等しいか又は大きい肉厚を有する磁性
体材料製のリング1j2、1j3を嵌め込んで一体に接合
して、接合後の両永久磁石間の間隔が、ヨ−ク3fのア
ウタポ−ルPoとインナポ−ルPiの全体の幅よりも僅
かに大きくされ、これによりア−マチュア1jの内部に
は断面がほぼ凸字形の空間部が画定される。
FIG. 12 shows a tenth embodiment in which the armature assembly 1j has an end on the opening side opposed to the end faces (left in the figure) of the outer pole Po and the inner pole Pi of the yoke 3f. It is bent at right angles to the rotation axis so as to face each other in the radial direction, and has a half-section having a substantially C-shape. The inner and outer 1 thin permanent magnet 2j 1 against and 2j 2 Each of the tip of the bent second portion, a respective thickness direction perpendicular to the rotation axis, any respective radially outer surface N The portions which are embedded so as to be poles and which are opposed to the end faces (left in the figure) of the outer pole Po and the inner pole Pi are made of a magnetic material having a thickness equal to or larger than the respective poles. The rings 1j 2 and 1j 3 are fitted and joined together, and the distance between the two permanent magnets after joining is slightly smaller than the overall width of the outer pole Po and the inner pole Pi of the yoke 3f. As a result, a space having a substantially convex cross section is defined inside the armature 1j.

【0013】図13(A)、(B)は、図4に示した解
決手段1)項の実施例に対応する解決手段2)項による
第11実施例を示し、図4ではヨ−ク3cの外と内のポ
−ルPoとPiの開口端に薄板状永久磁石2cと2dを
極性を逆にして配置したのに対して、この実施例ではヨ
−ク3cのポ−ルPo、Piの開口端に対向するア−マ
チュア1kの内側端面に、薄板状永久磁石2k1、2k2
をそれぞれの肉厚方向をギャップGaの方向と同じに極
性を逆にして配置し、伝達ばねの代わりに解決手段1)
で使用した開放ばねを使用したものである。図13の
(A)は非励磁で制動状態を、同図(B)は励磁により
解放された状態を示している。
FIGS. 13 (A) and 13 (B) show an eleventh embodiment according to the solution means 2) corresponding to the embodiment of the solution means 1) shown in FIG. 4, and FIG. The permanent magnets 2c and 2d are disposed at the open ends of the outer and inner poles Po and Pi with their polarities reversed. In this embodiment, the poles Po and Pi of the yoke 3c are arranged in this embodiment. The permanent magnets 2k 1 and 2k 2 on the inner end face of the armature 1k facing the open end of
Are arranged in the same thickness direction as the direction of the gap Ga, but with the opposite polarity, and instead of the transmission spring, a solution 1)
The release spring used in the above is used. FIG. 13A shows a braking state by non-excitation, and FIG. 13B shows a state of release by excitation.

【0014】[0014]

【発明の効果】【The invention's effect】

(1)永久磁石の磁束がギャップ磁束にほぼ等しくなり
漏れ磁束が低減され、磁石使用量が大幅に削減される。 (2)磁石を大幅に小形化できるので磁路全体が小形化
され、磁路効率が改善される。 (3)リアクタンス分が小さくなり応答性が向上する。 (4)小形化によりコストダウンになる。 (5)漏れ磁束回路がなくなることで磁路の非線形性が
改善され、電流に対する出力トルクにリニアリティが良
くなり、トルク制御性が改善される。 (6)2次側(ア−マチュア側)に磁石を配置する方式
では、 イ)一次側(ヨ−ク側)に他方式のクラッチ・ブレ−キ
の部品を共用でき、 ロ)二次側の解放にばね力を必要とせず、解放電圧範囲
が一定電圧以上であればよく、信頼性の高い解放が行わ
れ、 ハ)ア−マチュア組立体解放用のばね及びその付属部品
が低減され、これととともに、対向するギャップ面の磁
極を同極とし磁気反発力を利用するこによりばね力に打
ち勝つ電磁力とする必要がないので一層小形化が可能で
ある。
(1) The magnetic flux of the permanent magnet is substantially equal to the gap magnetic flux, the leakage magnetic flux is reduced, and the magnet usage is greatly reduced. (2) Since the size of the magnet can be significantly reduced, the entire magnetic path is reduced in size, and the efficiency of the magnetic path is improved. (3) The reactance is reduced and the response is improved. (4) Cost reduction due to miniaturization. (5) By eliminating the leakage magnetic flux circuit, the nonlinearity of the magnetic path is improved, the linearity of the output torque with respect to the current is improved, and the torque controllability is improved. (6) In the method of arranging the magnet on the secondary side (armature side), a) the parts of the clutch and brake of the other system can be shared on the primary side (yoke side), and b) the secondary side. Does not require a spring force to release the armature, it is sufficient that the release voltage range is equal to or higher than a certain voltage, and reliable release is performed. C) The spring for armature assembly release and its accessories are reduced, At the same time, by making the magnetic poles of the opposing gap surfaces the same, and utilizing the magnetic repulsion force, there is no need to provide an electromagnetic force that overcomes the spring force, so that the size can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による無励磁作動型電磁ブレ−キの第1
実施例で、ヨ−クのア−マチュア組立体側の端部付近に
薄板状形永久磁石を埋め込んだものであり、本図の
(A)は無励磁状態、(B)は励磁状態の横断面図であ
る。
FIG. 1 shows a first embodiment of a non-excited operation type electromagnetic brake according to the present invention.
In the embodiment, a thin plate-shaped permanent magnet is embedded near the end of the yoke on the side of the armature assembly, and (A) in this drawing is a non-excited state, and (B) is a cross-sectional view in an excited state. FIG.

【図2】本図の(A)、(B)は、それぞれ図1の
(A)、(B)に対応する等価回路である。
FIGS. 2A and 2B are equivalent circuits corresponding to FIGS. 1A and 1B, respectively.

【図3】第2実施例として薄板状永久磁石をコの字形断
面を有するヨ−クの垂直部に埋め込んだものの励磁状態
における横断面図である。
FIG. 3 is a cross-sectional view in an excited state of a yoke having a U-shaped cross section embedded in a vertical portion of a yoke as a second embodiment.

【図4】第3実施例として薄板状永久磁石をヨ−クのア
−マチュア組立体に接する端部に付着したものの励磁状
態における横断面図である。
FIG. 4 is a cross-sectional view in an excited state of a third embodiment in which a thin plate-shaped permanent magnet is attached to an end of the yoke in contact with an armature assembly.

【図5】第4実施例としてヨ−クの水平部と垂直部の接
続部に1対の薄板状永久磁石を極性を逆にして埋め込ん
だものの励磁状態における横断面図である。
FIG. 5 is a cross-sectional view in an excited state of a yoke in which a pair of thin plate-like permanent magnets are embedded in a connection portion between a horizontal portion and a vertical portion of a yoke with reversed polarities.

【図6】第5実施例としてヨ−クの垂直部中央に非磁性
体を挟み、ヨ−クと磁性体との間の上、下に薄板状永久
磁石を極性を逆にして付着したものの励磁状態における
横断面図である。
FIG. 6 shows a fifth embodiment in which a non-magnetic material is sandwiched in the center of the vertical portion of the yoke, and a thin plate-shaped permanent magnet is attached between the yoke and the magnetic material with the polarity reversed, above and below. FIG. 3 is a transverse sectional view in an excited state.

【図7】第6実施例としてア−マチュア組立体に薄板状
永久磁石を埋め込んだ横断面図で、本図の(A)は励磁
状態、(B)は無励磁状態を示す。
FIG. 7 is a cross-sectional view of a sixth embodiment in which a thin plate-shaped permanent magnet is embedded in an armature assembly. FIG. 7A shows an excited state, and FIG. 7B shows a non-excited state.

【図8】図7(A)、(B)に示す第6実施例の励磁電
圧とトルクの関係図である。
FIG. 8 is a diagram showing the relationship between the excitation voltage and the torque of the sixth embodiment shown in FIGS. 7 (A) and (B).

【図9】第7実施例としてア−マチュア組立体の側面に
1対の薄板状永久磁石を極性を逆にして付着したものの
励磁状態の横断面図である。
FIG. 9 is a cross-sectional view of a state in which a pair of thin plate-like permanent magnets are attached to side surfaces of an armature assembly in a reversed polarity as an seventh embodiment, in an excited state.

【図10】第8実施例としてア−マチュア組立体の中央
部ヨ−ク側に非磁性体を挟み、その上、下位置に極性を
逆にした1対の薄板状永久磁石を埋め込んだものの励磁
状態の横断面図である。
FIG. 10 shows an eighth embodiment of the present invention in which a non-magnetic material is sandwiched in the center yoke side of the armature assembly, and a pair of thin plate-like permanent magnets having reversed polarities are embedded in the lower position. FIG. 4 is a cross-sectional view in an excited state.

【図11】第9実施例としてア−マチュア組立体の垂直
方向内部に1対の極性を逆にした薄板状永久磁石を接続
して埋め込んだものの励磁状態の横断面図である。
FIG. 11 is a cross-sectional view of an excited state of a pair of thin permanent magnets having inverted polarities connected and embedded in a vertical direction inside an armature assembly as a ninth embodiment.

【図12】第10実施例としてア−マチュア組立体の
上、下端部近くでヨ−ク側に1対の薄板状永久磁石を水
平姿勢に埋め込んだものの励磁状態の横断面図である。
FIG. 12 is a cross-sectional view of a tenth embodiment in which a pair of thin plate-shaped permanent magnets are embedded in a horizontal attitude on the yoke side near the upper and lower ends of an armature assembly, in an excited state.

【図13】第11実施例としてア−マチュア組立体の、
ヨ−クのアウタポ−ル、インナポ−ルの対向位置に1対
の極性を逆にした薄板状永久磁石を埋め込んだ場合の励
磁状態の横断面図である。
FIG. 13 shows an eleventh embodiment of an armature assembly;
FIG. 4 is a cross-sectional view of an excited state when a pair of thin-plate permanent magnets having opposite polarities are embedded in opposing positions of an outer pole and an inner pole of a yoke.

【図14】従来の無励磁作動型電磁ブレ−キにおける横
断面図であり、本図の(A)は無励磁状態を、本図の
(B)は励磁状態における横断面図である。
14A and 14B are cross-sectional views of a conventional non-excitation operation type electromagnetic brake. FIG. 14A is a cross-sectional view in a non-excitation state, and FIG.

【図15】図14の(A)、(B)に対する等価回路
を、それぞれ本図の(A)と(B)に示す。
15A and 15B show equivalent circuits corresponding to FIGS. 14A and 14B, respectively.

【図16】図14の(A)、(B)に示す従来の無励磁
作動型電磁ブレ−キにおける励磁電圧とトルクの関係図
である。
FIG. 16 is a relationship diagram between an excitation voltage and a torque in the conventional non-excitation operation type electromagnetic brake shown in FIGS. 14 (A) and (B).

【符号の説明】[Explanation of symbols]

1、1f、1g、1h、1i、1j、1k ア−マチュ
ア組立体 1h1、1i1:非磁性スペ−サ 2、2a、2b、2c、2d、2d1、2d2、2e1
2e2、2f、2g1、2g2、2h1、2h2、2i1、2
2、2j1、2j2、2k1、2k2 永久磁石 3 マグネット組立体 3a、3b、3c、3d、3e、3f ヨ−ク 4: ばねプレ−ト 4f 動力伝達ばね 5、5f:ハブ 6 環状空隙 7 フランジ 8 静止体 9 回転軸 11 励磁コイル Ga ギャップ Pi インナポ−ル Po アウタポ−ル φc コイルによる磁束 φm 永久磁石による磁束
1,1f, 1g, 1h, 1i, 1j, 1k A - armature assembly 1h 1, 1i 1: nonmagnetic space - Sa 2,2a, 2b, 2c, 2d, 2d 1, 2d 2, 2e 1,
2e 2, 2f, 2g 1, 2g 2, 2h 1, 2h 2, 2i 1, 2
i 2, 2j 1, 2j 2 , 2k 1, 2k 2 permanent magnet 3 magnet assembly 3a, 3b, 3c, 3d, 3e, 3f Yo - click 4: Spring Pre - DOO 4f power transmission spring 5,5F: Hub 6 Annular air gap 7 Flange 8 Stationary body 9 Rotation axis 11 Excitation coil Ga gap Pi Inner pole Po Outer pole φc Magnetic flux by coil φm Magnetic flux by permanent magnet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 平1−156333(JP,U) 実開 昭55−115444(JP,U) 実開 平4−71826(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16D 65/21 F16D 55/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A 1-156333 (JP, U) JP-A 55-115444 (JP, U) JP 4-71826 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) F16D 65/21 F16D 55/28

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転軸と、この回転軸に対して直角に相
対回転可能に配置され、静止体に対し固定され、その外
周と内周がそれぞれアウタ−ポ−ルとインナ−ポ−ルと
され、これらの中間に画定される環状の空隙を有する中
空円筒体状のヨ−クと、このヨ−クの前記環状空隙内に
収容されている励磁コイルを有し、1次側の電磁石とし
て作動するマグネット組立体と、 このマグネット組立体の一部に取り付けられた永久磁石
と、 前記マグネット組立体の前記アウタポ−ルとインナポ−
ルの開口端側に対向して回転軸に直角に一体に回転可能
にされ、軸方向への相対移動が可能に装着された2次側
回転体としてのア−マチュア組立体と、このア−マチュ
ア組立体を常時前記マグネット組立体から引き離す方向
に作動する解放手段と、 を有して、前記マグネット組立体が励磁されない状態で
は、前記ア−マチュア組立体は前記マグネット組立体に
取り付けられた永久磁石の磁束により前記マグネット組
立体に吸着されて制動され、前記マグネット組立体が励
磁されると前記励磁コイルにより前記永久磁石の磁束を
打ち消す磁束が発生し、前記解放手段によりア−マチュ
ア組立体が吸着から解放され、所定のギャップが形成さ
れて制動から解放され前記ア−マチュア組立体が回転軸
と一体に回転する無励磁作動型電磁ブレ−キにおいて、 前記永久磁石は少なくとも1個の強力で薄型であって、
肉厚方向に対し直角の各表面が互いに異なる極性に着磁
される磁石として前記マグネット組立体の主磁束回路内
の任意の位置の円周方向に所定の間隔で分割した複数個
又は連続したリング状として配置され、前記励磁コイル
に前記永久磁石の磁束と大きさがほぼ等しく方向が逆の
起磁力が発生される範囲の励磁電流が流されることを特
徴とする無励磁作動型電磁ブレ−キ。
1. A rotating shaft, which is disposed so as to be rotatable relative to the rotating shaft at right angles to the rotating shaft, and is fixed to a stationary body. The outer periphery and the inner periphery of the rotating body are formed with an outer pole and an inner pole, respectively. And a hollow cylindrical yoke having an annular gap defined therebetween, and an exciting coil housed in the annular gap of the yoke. A magnet assembly that operates, a permanent magnet attached to a part of the magnet assembly, the outer pole and the inner pole of the magnet assembly.
An armature assembly as a secondary rotator, which is rotatable integrally at right angles to the rotation shaft, facing the opening end side of the armature, and is mounted so as to be capable of relative movement in the axial direction; Releasing means for always operating the armature assembly in a direction to separate the armature assembly from the magnet assembly, wherein the armature assembly is attached to the magnet assembly when the magnet assembly is not excited. The magnet set is generated by the magnetic flux of the magnet.
Braked adsorbed on solid, the magnet assembly flux canceling the magnetic flux of the permanent magnet is generated by the exciting coil to be excited by said release means A - armature assembly is released from the adsorption, predetermined A non-excited operation type electromagnetic brake in which a gap is formed to release from braking and the armature assembly rotates integrally with a rotating shaft, wherein the permanent magnet is at least one strong and thin,
A plurality or continuous rings divided at predetermined intervals in the circumferential direction at arbitrary positions in the main magnetic flux circuit of the magnet assembly as magnets whose surfaces perpendicular to the thickness direction are magnetized with different polarities. A non-excited operation type electromagnetic brake characterized in that an exciting current in a range in which a magnetomotive force having a magnitude substantially equal to the magnetic flux of the permanent magnet and an opposite direction is generated flows through the exciting coil. .
【請求項2】 請求項1記載の無励磁作動型電磁ブレ−
キにおいて、前記解放手段が解放ばねである無励磁作動
型電磁ブレ−キ。
2. The non-excited operation type electromagnetic brake according to claim 1.
2. A non-excited operation type electromagnetic brake according to claim 1, wherein said release means is a release spring.
【請求項3】 請求項1又は2記載の無励磁作動型電磁
ブレ−キにおいて、前記薄型の永久磁石は内外1対とし
て、それぞれが前記マグネット組立体のヨ−クの前記ア
−マチュア組立体と対向する側のアウタポ−ルとインナ
ポ−ルの端部から僅かに軸方向内方に離れた位置に、そ
れぞれの肉厚方向が前記ギャップの幅方向に配置され、
回転軸と同心で互いに平行で軸方向同側での極性が互い
に反対に配置されている無励磁作動型電磁ブレ−キ。
3. The armature assembly according to claim 1, wherein said thin permanent magnet is a pair of inner and outer permanent magnets each of which is a yoke of said magnet assembly. The thickness direction of each of the outer and inner poles is arranged in the width direction of the gap at a position slightly inward in the axial direction from the ends of the outer and inner poles opposite to each other.
A non-excited operation type electromagnetic brake which is concentric with a rotating shaft, parallel to each other, and opposite in polarity on the same axial side.
【請求項4】 請求項1又は2記載の無励磁作動型電磁
ブレ−キにおいて、前記薄型の永久磁石は、前記ヨ−ク
の前記ア−マチュア組立体と対向する側と反対側の端部
において前記アウタポ−ルとインナポ−ルを半径方向に
連結する部分のほぼ中間において、その肉厚方向が前記
ギャップの幅方向と直角に配置されている無励磁作動型
電磁ブレ−キ。
4. The non-excited operation type electromagnetic brake according to claim 1, wherein the thin permanent magnet has an end opposite to a side of the yoke facing the armature assembly. A non-excited operation type electromagnetic brake in which the thickness direction is substantially perpendicular to the width direction of the gap substantially at the middle of a portion connecting the outer pole and the inner pole in the radial direction.
【請求項5】 請求項1又は2記載の無励磁作動型電磁
ブレ−キにおいて、前記薄型の永久磁石は、内外1対と
して前記マグネット組立のヨ−クの前記ア−マチュア
組立体と対向する側の前記アウタポ−ルとインナポ−ル
のそれぞれの先端において、それぞれの肉厚方向が前記
ギャップの幅方向に配置され、回転軸と同心で互いに平
行で軸方向同側での極性が互いに反対に配置されている
無励磁作動型電磁ブレ−キ。
5. A method according to claim 1 or 2 non-excitation type electromagnetic vibration according - in key, the thin permanent magnet, the magnet assembly of Yo as the inner and outer pair - click of the A - armature assembly and the counter At the tips of the outer and inner poles, the thickness direction is arranged in the width direction of the gap, and are concentric with the rotation axis and parallel to each other, and have opposite polarities on the same side in the axial direction. Non-excited operation type electromagnetic brake located in
【請求項6】 請求項1又は2記載の無励磁作動型電磁
ブレ−キにおいて、前記薄型の永久磁石は、回転軸と同
心で互いに平行な内外側で1対の円周上に、前記ヨ−ク
の前記ア−マチュア組立体と対向する側とは反対側の端
部において、前記ヨ−クのアウタポ−ルとインナポ−ル
を半径方向に連結する部分の軸方向のやや内側に、それ
ぞれの肉厚方向が前記ギャップの幅方向と平行に、前記
外側円周に配置された前記永久磁石の半径方向内周側に
接して前記内側円周上の永久磁石が配置され、軸方向同
側での極性が互いに反対にされている無励磁作動型電磁
ブレ−キ。
6. The non-excited operation type electromagnetic brake according to claim 1, wherein the thin permanent magnet is arranged on a pair of inner and outer circumferences concentric with a rotating shaft and parallel to each other. At the end of the yoke opposite the side facing the armature assembly, slightly axially inside the portion of the yoke that radially connects the outer and inner poles, respectively. The thickness direction of the magnet is parallel to the width direction of the gap, and the permanent magnets on the inner circumference are arranged in contact with the radially inner circumference side of the permanent magnets arranged on the outer circumference, and are arranged on the same axial side. A non-excited operation type electromagnetic brake in which the polarities are opposite to each other.
【請求項7】 請求項1又は2記載の無励磁作動型電磁
ブレ−キにおいて、前記ヨ−クの前記ア−マチュア組立
体と対向する側と反対側の端部のアウタポ−ルとインナ
ポ−ルを半径方向に連結する部分の軸方向の端部には、
前記回転軸と同心で互いに平行で内外側1対の円周上に
薄型の永久磁石として、それぞれの肉厚方向が前記ギャ
ップの幅方向と平行に、前記内側リングが前記外側リン
グの半径方向内方に所定の間隔を保って配置され、軸方
向同側での極性が互いに反対にされ、前記ヨ−クのアウ
タポ−ルとインナポ−ルを半径方向に連結する部分は、
その軸方向の幅が前記永久磁石の肉厚を越えて厚くさ
れ、前記1対の内外側永久磁石間から軸方向内方に外れ
た位置には半径方向の長さが前記1対の内外側永久磁石
間の間隔に相当する環状の貫通穴が明けられ、その内部
に非磁性スペ−サが配置されている無励磁作動型電磁ブ
レ−キ。
7. The non-excited operation type electromagnetic brake according to claim 1, wherein an outer pole and an inner pole at an end of the yoke opposite to a side facing the armature assembly. At the axial end of the part that connects the
As a thin permanent magnet on a pair of inner and outer circumferences concentric with the rotation axis and parallel to each other, the thickness direction of each magnet is parallel to the width direction of the gap, and the inner ring is in the radial direction of the outer ring. A part of the yoke which radially connects the outer pole and the inner pole is disposed at a predetermined distance from each other, and the polarities on the same side in the axial direction are opposite to each other.
The width in the axial direction is thicker than the thickness of the permanent magnet, and the radial length at the position deviated inward in the axial direction from between the pair of inner and outer permanent magnets is the radial length. A non-excited operation type electromagnetic brake in which an annular through-hole corresponding to the interval between permanent magnets is formed, and a non-magnetic spacer is disposed therein.
【請求項8】 回転軸と、この回転軸に対して直角に相
対回転可能に配置され静止体に対し固定され、その外
周と内周がそれぞれアウタポ−ルとインナポ−ルとさ
れ、これらの中間に環状の空隙が画定される中空円筒体
状のヨ−クと、このヨ−クの前記環状の空隙内に収容さ
れている励磁コイルを有し、1次側の電磁石として作動
する円盤状のマグネット組立体と、 前記マグネット組立体の前記アウタポ−ルとインナポ−
ルの開口端側に対向して回転軸に固定されたハブに伝達
ばねを介し軸方向への相対移動が可能に装着され、回転
軸と一体に回転される2次側回転体としてのア−マチュ
ア組立体と、 このア−マチュア組立体とマグネット組立体とにより形
成される磁気回路の一部に取り付けられた永久磁石とを
有して、前記マグネット組立体が励磁されない状態で
は、前記ア−マチュア組立体は前記マグネット組立体に
取り付けられた永久磁石の磁束により吸着されて制動さ
れ、前記マグネット組立体が励磁されると、前記ア−マ
チュア組立体との間に所定のギャップが形成されて制動
から解放される無励磁作動型電磁ブレ−キにおいて、 前記永久磁石は少なくとも1個の強力で薄型であって、
肉厚方向に対し直角の各表面が互いに異なる極性に着磁
される磁石として前記ア−マチュア組立体の主磁束回路
内の任意の位置の円周方向に所定の間隔で分割した複数
個又は連続したリング状として配置され、前記励磁コイ
ルに通電されると、前記マグネット組立体のヨ−クのア
ウタポ−ルとインナポ−ルのそれぞれと接触している前
記ア−マチュア組立体の内外極の部分が、同一極性の磁
極とされて反発力が生じア−マチュア組立体が反発され
所定のギャップが形成されて制動から解放されることを
特徴とする無励磁作動型電磁ブレ−キ。
8. A rotary shaft and a rotary shaft, which are disposed so as to be relatively rotatable at right angles to the rotary shaft , are fixed to a stationary body, and have outer and inner peripheries which are an outer pole and an inner pole, respectively. A hollow cylindrical yoke having an annular gap defined in the middle, and an exciting coil housed in the annular gap of the yoke, and a disc-shaped yoke acting as a primary electromagnet. And an outer pole and an inner pole of the magnet assembly.
An arc as a secondary rotating body which is mounted on a hub fixed to the rotating shaft facing the opening end of the rotating shaft so as to be capable of relative movement in the axial direction via a transmission spring and is rotated integrally with the rotating shaft. A permanent magnet attached to a part of a magnetic circuit formed by the armature assembly and the magnet assembly, wherein the magnet assembly is not excited when the magnet assembly is not excited. The armature assembly is attracted and braked by a magnetic flux of a permanent magnet attached to the magnet assembly, and when the magnet assembly is excited, a predetermined gap is formed between the armature assembly and the armature assembly. A non-excited operation type electromagnetic brake released from braking, wherein the permanent magnet is at least one strong and thin ,
Each surface perpendicular to the thickness direction is magnetized to a different polarity
Wherein A as a magnet which is - arranged as Mature assembly of a plurality or continuous ring-shaped divided at predetermined intervals in the circumferential direction at an arbitrary position in the main magnetic flux circuit, when energizing the exciting coil, The inner and outer poles of the armature assembly that are in contact with the outer and inner poles of the yoke of the magnet assembly are magnetic poles of the same polarity, and a repulsive force is generated to produce the armature. A non-excited operation type electromagnetic brake characterized in that the assembly is repelled to form a predetermined gap and release from braking.
【請求項9】 請求項8記載の無励磁作動型電磁ブレ−
キにおいて、前記の強力で薄型の磁石は、分割した一組
又はリング1個が前記マグネット組立体のヨ−クのアウ
タポ−ルと対向する前記ア−マチュア組立体の外側の極
の半径方向の内周面にその肉厚方向が前記ギャップに直
角に配置されている無励磁作動型電磁ブレ−キ。
9. A non-excited operation type electromagnetic brake according to claim 8.
In the key, the strong thin magnet may be a radially outer pole of the armature assembly in which one set or one ring is opposed to a yoke outer pole of the magnet assembly. A non-excited operation type electromagnetic brake having a thickness direction perpendicular to the gap on the inner peripheral surface.
【請求項10】 請求項8記載の無励磁作動型電磁ブレ
−キにおいて、前記の強力で薄型の磁石は、半径方向に
連続して整列された1対として、その一方は前記ア−マ
チュア組立体の前記ヨ−クのアウタポ−ルと対向する端
面に、他方はインナポ−ルと対向する端面に、それぞれ
の肉厚方向が前記ギャップに平行にされ、それぞれの軸
方向同側面の極性が反対になるように配置されている無
励磁作動型電磁ブレ−キ。
10. A non-excited operation type electromagnetic brake according to claim 8, wherein said strong thin magnet is a pair continuously arranged in a radial direction, one of which is said armature set. On the end face of the three-dimensional yoke facing the outer pole, and on the other end face facing the inner pole, the thickness direction of each is made parallel to the gap, and the polarities of the same axial side faces are opposite. A non-excited operation type electromagnetic brake arranged so that
【請求項11】 請求項8記載の無励磁作動型電磁ブレ
−キにおいて、前記の強力で薄型の磁石は、半径方向に
所定の間隔を保って整列された1対として、その1方は
前記ア−マチュア組立体の前記ヨ−クのアウタポ−ルと
対向する極の端面から、他方はインナポ−ルと対向する
端面から、それぞれ軸方向外方に所定の距離だけ離れた
位置に、それぞれの肉厚方向が前記ギャップに平行にさ
れ、それぞれの軸方向同側面の極性が反対になるように
配置され、それぞれの端から前記1対の薄型の磁石に到
るまでの間には、半径方向の長さが前記1対の円周上に
配置された磁石の間隔に等しい非磁性スペ−サが配置さ
れ、前記ア−マチュア組立体の半径方向内方端と回転軸
の外周との間には非磁性スペ−サが配置されている無励
磁作動型電磁ブレ−キ。
11. A non-excited operation type electromagnetic brake according to claim 8, wherein said strong thin magnet is a pair of magnets arranged at predetermined intervals in a radial direction, one of said magnets being one of said pair. Each of the armature assemblies is positioned at a predetermined axial distance outward from the end face of the pole facing the outer pole of the yoke and the other end face facing the inner pole. The thickness direction is made parallel to the gap, and the respective axially same side surfaces are arranged so that the polarities thereof are opposite to each other. From each end to the pair of thin magnets, a radial direction is used. A non-magnetic spacer having a length equal to the distance between the magnets disposed on the pair of circumferences is disposed between the radially inner end of the armature assembly and the outer circumference of the rotating shaft. Is a non-excitation operation type electromagnetic brake in which a non-magnetic spacer is arranged. Ki.
【請求項12】 請求項8記載の無励磁作動型電磁ブレ
−キにおいて、前記の強力で薄型の磁石は、半径方向に
連続して整列された1対として、その1方は前記ア−マ
チュア組立体の前記ヨ−クのアウタポ−ルと対向する極
の端面から、他の1つはインナポ−ルと対向する端面か
ら、それぞれ軸方向内方に所定の距離だけ離れた位置
に、それぞれの肉厚方向が前記ギャップに平行に、それ
ぞれの軸方向同側面の極性が反対になるように配置さ
れ、前記ア−マチュア組立体の前記ヨ−クのアウタポ−
ルと対向する外極の端面は半径方向内方に、前記ヨ−ク
のインナポ−ルと対向する内極の端面は半径方向外方
に、それぞれ前記ヨ−クのアウタポ−ルとインナポ−ル
との間に所定の環状空隙を残すよう延長され、この環状
空隙内に非磁性スペ−サが配置されている無励磁作動型
電磁ブレ−キ。
12. A non-excited operation type electromagnetic brake according to claim 8, wherein said strong and thin magnets are a pair continuously arranged in a radial direction, one of said magnets being said armature. The other end of the assembly is located at a predetermined axial distance inward from the end face of the pole facing the outer pole and the other end face facing the inner pole. The outer wall of the yoke of the armature assembly is arranged so that the thickness direction is parallel to the gap and the polarities of the same axial side surfaces are opposite.
The end faces of the outer pole facing the inner pole of the yoke are radially inward, and the end faces of the inner pole facing the inner pole of the yoke are radially outward, and the outer pole and the inner pole of the yoke, respectively. A non-excited operation type electromagnetic brake which is extended so as to leave a predetermined annular gap therebetween, and a non-magnetic spacer is arranged in the annular gap.
【請求項13】 請求項8記載の無励磁作動型電磁ブレ
−キにおいて、前記ア−マチュア組立体の前記ヨ−クの
アウタポ−ルと対向する極の端面に近い部分は半径方向
内方に、前記インナポ−ルと対向する極の端面に近い部
分は半径方向内方に曲げられ断面がほぼC形にされ、前
記の強力で薄型の磁石は軸方向に平行に配列された1対
として、その1方は前記ア−マチュア組立体の前記ヨ−
クのアウタポ−ルと対向する外極の端面から半径方向内
方に曲げられた部分の中間で、前記ヨ−クのアウタ−ポ
−ルの外周面と軸方向に整列し、他方はインナポ−ルと
対向する極の端面から半径方向外方に曲げられた部分の
中間で前記ヨ−クのインナポ−ルの半径方向の外周面と
軸方向にほぼ整列し、それぞれの肉厚方向が前記ギャッ
プの幅方向に直角に、それぞれの半径方向同側面の極性
が反対になるように配置され、前記ア−マチュア組立体
の、前記ヨ−クのアウタポ−ルと対向する外極の端面は
半径方向内方に、前記ヨ−クのインナポ−ルと対向する
内極の端面は半径方向外方に、所定の環状空隙を残すよ
う延長され、これにより形成された断面がC字形の環状
空隙内に断面が凸字形の非磁性スペ−サが配置されてい
る無励磁作動型電磁ブレ−キ。
13. A non-excited electromagnetic brake according to claim 8, wherein a portion of the armature assembly near the end face of the pole facing the outer pole of the yoke is radially inward. The part near the end face of the pole facing the inner pole is bent inward in the radial direction to have a substantially C-shaped cross section, and the strong and thin magnets are arranged as a pair arranged in parallel in the axial direction. One of them is the arm of the armature assembly.
In the middle of a portion bent radially inward from the end face of the outer pole facing the outer pole of the yoke, the outer pole of the yoke is axially aligned with the outer peripheral surface of the outer pole, and the other is the inner pole. In the middle of a portion bent radially outward from the end face of the pole facing the pole, is substantially aligned in the axial direction with the radially outer peripheral surface of the inner pole of the yoke, and the thickness direction of each gap is equal to the gap. The end faces of the outer poles of the armature assembly facing the outer pole of the yoke are arranged at right angles to the width direction of the armature so that the polarities of the same radial side faces are opposite to each other. Inward, the end face of the inner pole facing the inner pole of the yoke is extended radially outward so as to leave a predetermined annular gap, and the cross section formed by this extends into a C-shaped annular gap. A non-excited operation type in which a non-magnetic spacer having a convex cross section is arranged. Shake - key.
【請求項14】 請求項8記載の無励磁作動型電磁ブレ
−キにおいて、前記ア−マチュア組立体の前記ヨ−クの
アウタポ−ルの端面と対向する外極の端面と前記インナ
ポ−ルと対向する極の端面とに、前記の強力で薄型の磁
石が、半径方向内外に所定の間隔を保って整列された1
対として、それぞれの肉厚方向が前記ギャップの幅方向
と一致して、それぞれの軸方向同側面の極性が反対にな
るように配置されている無励磁作動型電磁ブレ−キ。
14. A non-excited operation type electromagnetic brake according to claim 8, wherein an end face of an outer pole facing an end face of an outer pole of the yoke of the armature assembly and the inner pole are provided. The above-mentioned strong and thin magnets are arranged at predetermined intervals inside and outside the radial direction on the opposite pole end faces.
A pair of non-excited electromagnetic brakes arranged such that the thickness direction of each pair is aligned with the width direction of the gap, and the polarities of the same axial side surfaces are opposite.
【請求項15】 請求項8記載の無励磁作動型電磁ブレ
−キにおいて、前記伝達ばねは解放ばねを兼ねた強力な
ばねとして装着されている無励磁作動型電磁ブレ−キ。
15. The non-excited operation type electromagnetic brake according to claim 8, wherein said transmission spring is mounted as a strong spring also serving as a release spring.
JP34946393A 1993-12-28 1993-12-28 Non-excitation actuated electromagnetic brake Expired - Fee Related JP3218833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34946393A JP3218833B2 (en) 1993-12-28 1993-12-28 Non-excitation actuated electromagnetic brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34946393A JP3218833B2 (en) 1993-12-28 1993-12-28 Non-excitation actuated electromagnetic brake

Publications (2)

Publication Number Publication Date
JPH07197965A JPH07197965A (en) 1995-08-01
JP3218833B2 true JP3218833B2 (en) 2001-10-15

Family

ID=18403922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34946393A Expired - Fee Related JP3218833B2 (en) 1993-12-28 1993-12-28 Non-excitation actuated electromagnetic brake

Country Status (1)

Country Link
JP (1) JP3218833B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188559A (en) * 2003-12-24 2005-07-14 Ntn Corp Electromagnetic clutch
US8205727B2 (en) * 2005-02-15 2012-06-26 Kendrion Binder Magnete Gmbh Electromagnetic permanent magnet brake
DE102011011857A1 (en) * 2011-02-21 2012-08-23 Wittenstein Ag Holding brake for shaft, particularly for shaft of electrical machine, has friction element, which is connected with shaft in torque-proof manner, where friction element lies in position on firmly mounted friction surface

Also Published As

Publication number Publication date
JPH07197965A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
JPS626129B2 (en)
KR100674286B1 (en) Rotary electric motor having at least two axially air gaps separating stator and rotor segments
WO2007000114A1 (en) Brushless motor
KR20080097237A (en) Rotational coupling device
JP2016217371A (en) Engagement system and brake system using the same
JP3082565B2 (en) Non-excitation actuated electromagnetic brake / clutch
JP3218833B2 (en) Non-excitation actuated electromagnetic brake
JP2701321B2 (en) Electromagnetic brake
GB2395370A (en) A permanent magnet electrical machine
CA1309449C (en) Dual conversion force motor
JP3500402B2 (en) Linear actuator
US3866729A (en) Electromagnetic operated clutches and brakes
JPH1042518A (en) Motor driver
JP2576443B2 (en) Electromagnet device
JPH0979294A (en) Deenergisation operating electromagnetic brake
JP2002340034A (en) Non-excitation-operated electromagnetic coupling device
JP2002025819A (en) Magnetic force type attraction device using hybrid magnet
JPH07277664A (en) Lifting device
JPH10267052A (en) Unexcited operation type electromagnetic clutch/brake
JP3750127B2 (en) Voice coil linear motor
JPH0419431A (en) Electromagnetic brake or electromagnetic clutch mainly composed of no-excitation action
JP2000136837A (en) Electromagnetic brake
JP2000192996A (en) Magnetically attracting connecting device
JPH0140353Y2 (en)
JP2771780B2 (en) electromagnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees