JPH0727544A - Lens inspecting device - Google Patents

Lens inspecting device

Info

Publication number
JPH0727544A
JPH0727544A JP19690593A JP19690593A JPH0727544A JP H0727544 A JPH0727544 A JP H0727544A JP 19690593 A JP19690593 A JP 19690593A JP 19690593 A JP19690593 A JP 19690593A JP H0727544 A JPH0727544 A JP H0727544A
Authority
JP
Japan
Prior art keywords
laser beam
lens
measured
laser
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19690593A
Other languages
Japanese (ja)
Inventor
Kiyoshi Iyori
潔 伊従
Kan Tominaga
完 臣永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP19690593A priority Critical patent/JPH0727544A/en
Publication of JPH0727544A publication Critical patent/JPH0727544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure and inspect the lens angle at an optional point on the surface of a continuous lens having a complex curved surface or a discontinuous lens. CONSTITUTION:This lens inspecting device is constituted of a laser oscillating device 1 emitting a laser beam, a sample stage 7 positioning a measured object in the perpendicular direction to the laser beam, a detecting device 6 detecting the spot image position of the laser beam after it transmits the measured object, and a detection section stage 8 positioning the detecting device 6 in the perpendicular direction to the optical axis of the laser oscillating device 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオプロジェクタ装
置やCRT装置等で利用される不連続レンズや連続レン
ズの任意の点の傾斜角度を検査するレンズ検査装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens inspection device used for a video projector device, a CRT device or the like for inspecting an inclination angle of an arbitrary point of a discontinuous lens or a continuous lens.

【0002】[0002]

【従来の技術】従来は前記不連続レンズや連続レンズの
傾斜角度や出来上がり状態を単体又は、装置に組込んだ
状態で人が目視検査を行っていたため、品質上の問題が
あった。又、これらの定量的な測定装置として、触針式
の三次元測定機があるが、これは被測定物に接触するた
め、被測定物を傷つけたり汚したりする問題がある。
又、レーザや光の反射光から高さ情報を得る、非接触式
の三次元測定機や、表面形状測定機が考えられるが、被
測定物がガラスやプラスチック材料の場合、測定点の角
度による反射率の変化や、透過光の反射などの要因で、
実用化には問題がある。また、レーザ干渉法を利用した
レンズ表面検査装置は、被測定物の形状に限定があり、
不連続レンズや複雑な曲面を持った連続レンズの検査
は、困難である。その他光学式のレンズ表面測定装置が
実用化されているが、いずれも、特殊な光学系を必要と
し、制御や解析も繁雑なため、非常に高価なものであっ
た。
2. Description of the Related Art Conventionally, there has been a problem in quality because a person has visually inspected the inclination angle and the finished state of the discontinuous lens or the continuous lens alone or in a state of being assembled in the apparatus. Further, as these quantitative measuring devices, there is a stylus-type three-dimensional measuring machine, but there is a problem that the measuring object is damaged or soiled because it comes into contact with the measuring object.
In addition, a non-contact type three-dimensional measuring machine or surface shape measuring machine that obtains height information from the reflected light of laser or light can be considered, but when the measured object is glass or plastic material, it depends on the angle of the measuring point. Due to factors such as change in reflectance and reflection of transmitted light,
There is a problem in practical application. Further, the lens surface inspection apparatus using the laser interferometry has a limitation in the shape of the object to be measured,
Inspection of a discontinuous lens or a continuous lens having a complicated curved surface is difficult. Other optical lens surface measuring devices have been put into practical use, but all of them are very expensive because they require a special optical system and control and analysis are complicated.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これらの問
題を除去し、簡単な構成で安価に複雑な曲面を持った連
続レンズや不連続レンズの表面上の任意の点の角度測定
及び検査を実現することを目的とする。
SUMMARY OF THE INVENTION The present invention eliminates these problems, and the angle measurement and inspection of an arbitrary point on the surface of a continuous lens or a discontinuous lens having a simple structure at a low cost and having a complicated curved surface. The purpose is to realize.

【0004】[0004]

【課題を解決するための手段】本発明の全体構成を図1
に示す。本発明のレンズ検査装置は、レーザ発振装置1
と検出装置6、試料ステージ7、及び検出装置ステージ
8から構成される。3は、被測定物で、図2(a)に示
す。不連続レンズ又は、(b)に示す連続レンズのいず
れかである。ここでレーザ発振装置1から出射されたレ
ーザビームは、被測定物3に対し垂直に当たる様に配置
されている。また検出装置6は、被測定物がない時に、
レーザビームが検出装置の検出面に対し垂直に当たる様
に配置されている。検出ステージ8は、XY方向の移動
量情報を管理する機能を具備している。又、被検査物3
と検出装置6は、一定の距離Lで設置されている。
FIG. 1 shows the overall configuration of the present invention.
Shown in. The lens inspection device of the present invention is a laser oscillation device 1.
And a detection device 6, a sample stage 7, and a detection device stage 8. 3 is an object to be measured and is shown in FIG. Either the discontinuous lens or the continuous lens shown in (b). Here, the laser beam emitted from the laser oscillator 1 is arranged so as to hit the DUT 3 perpendicularly. In addition, the detection device 6 is
The laser beam is arranged so as to strike the detection surface of the detection device perpendicularly. The detection stage 8 has a function of managing movement amount information in the XY directions. Also, the inspection object 3
And the detection device 6 are installed at a constant distance L.

【0005】[0005]

【作用】レーザ発射装置1から発射されたレーザビーム
は、被測定物3に入射し、被測定物3を透過後、出射面
より出射する。このときレーザビームは、被測定物の測
定点における出射面の角度θx、θyに応じ屈折する。
この出射レーザビームスポット位置のレーザ発振装置光
軸からのずれ量Fx、Fyを検出ステージ8の移動量と
検出装置6の位置検出情報より検出し、前記ずれ量F
x、Fyと距離Lからθx、θyを検出する。
The laser beam emitted from the laser emitting device 1 is incident on the object 3 to be measured, passes through the object 3 to be measured, and then is emitted from the emitting surface. At this time, the laser beam is refracted according to the angles θx and θy of the emission surface at the measurement point of the object to be measured.
The deviation amounts Fx and Fy of the emission laser beam spot position from the optical axis of the laser oscillation device are detected from the movement amount of the detection stage 8 and the position detection information of the detection device 6, and the deviation amount F is detected.
θx and θy are detected from x and Fy and the distance L.

【0006】[0006]

【実施例】以下、本発明の一実施例を図3、図4により
説明する。図3は装置の平面図、図4は側面図である。
1は半導体レーザ発振装置、7は被測定物を任意の位置
に位置決めする中ヌキタイプの試料ステージ、3は被測
定物で、2は被測定物を固定するクランプ装置、4、5
は全反射ミラー、6はレーザビームのスポット位置を検
出する検出装置、8は検出装置ステージ、9はこれらの
装置が固定される筺体である。試料ステージ7は、レー
ザ発振装置1の光軸に対し、垂直面内で被測定物3が動
作する様に設置されている。ミラー4、5及び検出ステ
ージ8は、レーザ発振装置1の光軸に対し、検出装置6
の検出面が、垂直面内で動作する様に設置されている。
以下この動作について説明する。レーザ発振装置1より
出射したレーザビームは、被測定物3の任意の測定点を
透過した後、ミラー4、5で全反射し、検出装置6の検
出面に結像する。レーザビームは、被測定物3を透過す
る際、出射面のレーザビーム光軸に対する角度(レンズ
角度)によって屈折する。この屈折により、検出装置6
の検出面高さ位置でのレーザビームスポット位置がXY
方向に移動するため、検出ステージ8を移動し、XY方
向のレーザビームスポットの位置ずれ量を測定する。こ
こで被測定物3の測定点にレンズ角度θx、θyの設計
値は、既知のため、その設計値に応じ、あらかじめ、検
出ステージを移動し、設計値に対するずれ量を検出装置
6で検出し、被測定物の検査を行う。以下レーザスポッ
トの位置ずれ量Fx、Fyと被測定物3の測定点におけ
るレンズ角度θx、θyの関係について図5で説明す
る。被測定物の入射面に対し垂直に入射したレーザビー
ムは、被測定物の出射面で、出射面の法線に対しαxの
角度で屈折して出射する。ここでθxとαxの関係は、
スネルの法則より(1)式で表わされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 3 is a plan view of the apparatus, and FIG. 4 is a side view.
1 is a semiconductor laser oscillator, 7 is a hollow sample stage for positioning an object to be measured at an arbitrary position, 3 is an object to be measured, 2 is a clamp device for fixing the object to be measured 4, 5
Is a total reflection mirror, 6 is a detector for detecting the spot position of the laser beam, 8 is a detector stage, and 9 is a housing to which these devices are fixed. The sample stage 7 is installed so that the DUT 3 operates in a plane perpendicular to the optical axis of the laser oscillator 1. The mirrors 4 and 5 and the detection stage 8 are arranged on the optical axis of the laser oscillation device 1 with respect to the detection device 6
The detection surface of is installed so as to operate in a vertical plane.
This operation will be described below. The laser beam emitted from the laser oscillating device 1 passes through an arbitrary measuring point of the DUT 3, is then totally reflected by the mirrors 4 and 5, and forms an image on the detection surface of the detecting device 6. When passing through the DUT 3, the laser beam is refracted by the angle (lens angle) of the emitting surface with respect to the optical axis of the laser beam. By this refraction, the detection device 6
The laser beam spot position at the height of the detection surface is XY
In order to move in the direction, the detection stage 8 is moved, and the positional deviation amount of the laser beam spot in the XY directions is measured. Since the design values of the lens angles θx and θy at the measurement point of the DUT 3 are known, the detection stage is moved in advance according to the design values, and the deviation amount from the design value is detected by the detection device 6. , Inspect the object to be measured. The relationship between the positional deviation amounts Fx and Fy of the laser spot and the lens angles θx and θy at the measurement point of the DUT 3 will be described below with reference to FIG. The laser beam that is perpendicularly incident on the incident surface of the measured object is refracted at the emission surface of the measured object at an angle of αx with respect to the normal line of the emission surface and emitted. Here, the relationship between θx and αx is
It is expressed by equation (1) according to Snell's law.

【0007】 (1):n2・sinθx=n1・sinαx(1): n2 · sin θx = n1 · sin αx

【0008】また、検出面でのスポット位置のずれFx
は、幾何学的に(2)式で表される。
Further, the deviation Fx of the spot position on the detection surface
Is geometrically expressed by equation (2).

【0009】 (2):Fx=L・tan(αx−θx)(2): Fx = L · tan (αx−θx)

【0010】 ここで、θx:被測定物のX方向の出射面傾斜角度 L:被測定物と検出面の距離 Fx:レーザビームスポット位置のX方向の変位量Here, θx: inclination angle of the emission surface of the measured object in the X direction L: distance between the measured object and the detection surface Fx: displacement amount of the laser beam spot position in the X direction

【0011】被検査物3の出射面と検出面の距離L、空
気の屈折率n1、被測定物の屈折率n2は、既知である
からレーザビームスポット位置のずれFxを測定すれば
被検査物のレンズ角度θxを知ることができる。以上X
方向の傾き角度について述べたが、y方向についても同
様にレーザビームスポット位置のずれFyを測定するこ
とにより、レンズ角度θyを知ることができる。又、被
検査物3が不連続レンズの場合について述べたが、連続
レンズについても連続レンズ面の角度変化量が小さい範
囲であれば、同様に測定が可能である。以上説明した様
に、レーザ発振装置から出射したレーザビームを被測定
物に照射し、被測定物透過時のレーザビームの屈折量を
測定することにより、従来困難であった、複雑な曲面を
持った連続レンズや不連続レンズのレンズ角度測定及び
検査を安価に実現できる。又、本実施例においては、装
置寸法を小さくする装置の重心を低くする等の理由で、
ミラー4、5を設置しているが、これは必ずしも本発明
に重要ではなく、ミラー4、5を介せず直接検出装置に
取込んでも良い。また本実施例では、レーザ発振装置を
固定とし、被測定物及び検出部を可動としているが、こ
れは、特に限定せず、例えばレーザ発振装置と、被測定
物を可動とし、検出部を固定としても良い。又、検出装
置は、CCD素子やPSD素子を用いた二次元センサ等
が考えられるが、特に限定はせず2次元的に検出できる
ものであれば良い。
Since the distance L between the emission surface and the detection surface of the object 3 to be inspected, the refractive index n1 of air, and the refractive index n2 of the object to be measured are already known, the object to be inspected can be measured by measuring the deviation Fx of the laser beam spot position. It is possible to know the lens angle θx of. Or more X
Although the tilt angle in the direction has been described, the lens angle θy can be known also in the y direction by similarly measuring the deviation Fy of the laser beam spot position. Further, although the case where the inspection object 3 is the discontinuous lens has been described, the same measurement can be performed on the continuous lens as long as the amount of change in angle of the continuous lens surface is small. As described above, by irradiating the laser beam emitted from the laser oscillator to the DUT and measuring the refraction amount of the laser beam when passing through the DUT, it is possible to obtain a complicated curved surface that was difficult in the past. The lens angle measurement and inspection of continuous lenses and discontinuous lenses can be realized at low cost. Further, in the present embodiment, for reasons such as reducing the size of the device and lowering the center of gravity of the device,
Although the mirrors 4 and 5 are provided, this is not necessarily important to the present invention, and the mirrors 4 and 5 may be directly incorporated into the detection device without passing through them. Further, in the present embodiment, the laser oscillation device is fixed, and the DUT and the detection unit are movable, but this is not particularly limited, and for example, the laser oscillation device and the DUT are movable, and the detection unit is fixed. Also good. The detecting device may be a two-dimensional sensor using a CCD element or a PSD element, but is not particularly limited as long as it can detect two-dimensionally.

【0012】[0012]

【発明の効果】本発明によれば、特別な光学系を必要と
せず、安価なレーザ発振装置とカメラステージ及びTV
カメラを適切に配置するのみで、不連続レンズや複雑な
曲面を持つ連続レンズ表面の任意位置の傾斜角度計測及
び検査を正確になおかつ安価に実現できる。
According to the present invention, an inexpensive laser oscillating device, a camera stage, and a TV, which do not require a special optical system, are provided.
Only by properly arranging the camera, it is possible to accurately and inexpensively measure and inspect the inclination angle of the discontinuous lens or the surface of the continuous lens having a complicated curved surface at an arbitrary position.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成図。FIG. 1 is an overall configuration diagram of the present invention.

【図2】被測定物の概略断面図。FIG. 2 is a schematic sectional view of an object to be measured.

【図3】本発明の一実施例を示す構造平面図。FIG. 3 is a structural plan view showing an embodiment of the present invention.

【図4】本発明の一実施例を示す構造正面図。FIG. 4 is a structural front view showing an embodiment of the present invention.

【図5】本発明の原理説明図。FIG. 5 is an explanatory view of the principle of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ発振装置 3 被測定物 6 検出装置 7 試料ステージ 8 検出部ステージ 1 Laser oscillator 3 Object to be measured 6 Detector 7 Sample stage 8 Detector stage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザビームを出射するレーザ発振装
置、被測定物の位置決めを行う試料ステージ、被測定物
を透過したレーザビームのスポット像を検出する検出装
置、検出装置を位置決めする検出部ステージを具備し、
レーザビームが被測定物を透過する際のレーザビームの
屈折量を、検出部ステージの移動量情報と検出装置の検
出情報から算出し、レーザビーム透過点のレンズ角度を
検出するレンズ検査装置。
1. A laser oscillating device for emitting a laser beam, a sample stage for positioning an object to be measured, a detector for detecting a spot image of a laser beam transmitted through the object to be measured, and a detector stage for positioning the detector. Be equipped with
A lens inspection device that calculates a refraction amount of a laser beam when the laser beam passes through an object to be measured from movement amount information of a detection unit stage and detection information of a detection device, and detects a lens angle of a laser beam transmission point.
JP19690593A 1993-07-14 1993-07-14 Lens inspecting device Pending JPH0727544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19690593A JPH0727544A (en) 1993-07-14 1993-07-14 Lens inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19690593A JPH0727544A (en) 1993-07-14 1993-07-14 Lens inspecting device

Publications (1)

Publication Number Publication Date
JPH0727544A true JPH0727544A (en) 1995-01-27

Family

ID=16365602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19690593A Pending JPH0727544A (en) 1993-07-14 1993-07-14 Lens inspecting device

Country Status (1)

Country Link
JP (1) JPH0727544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887452A (en) * 2019-12-05 2020-03-17 中国人民解放军国防科技大学 Method for measuring surface inclination angle of target position of curved surface object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887452A (en) * 2019-12-05 2020-03-17 中国人民解放军国防科技大学 Method for measuring surface inclination angle of target position of curved surface object

Similar Documents

Publication Publication Date Title
US6731380B2 (en) Method and apparatus for simultaneous measurement of the refractive index and thickness of thin films
JP2913984B2 (en) Tilt angle measuring device
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
CN100442010C (en) Single-photodetector confocal laser triangulation device
JPS6379004A (en) Light probe for measuring shape
JPH02161332A (en) Device and method for measuring radius of curvature
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
JP3921004B2 (en) Displacement tilt measuring device
JP3120885B2 (en) Mirror surface measuring device
CN116086776A (en) Device and method for detecting divergence angle of collimated light beam
JPH0727544A (en) Lens inspecting device
JP4442843B2 (en) Refractive index measuring device for test lens
JP2001027527A (en) Inclination measuring device
JPH08261734A (en) Shape measuring apparatus
JPH10176927A (en) Inclination sensor
JP3876097B2 (en) 3D position and orientation detection sensor
JPH01304339A (en) Instrument for measuring angle of refraction
JPS60211304A (en) Measuring instrument for parallelism
JP4407433B2 (en) Tilt angle measuring device
JPH0344504A (en) Method and apparatus for measuring three-dimensional shape of surface
JPH0791915A (en) Distance measuring device
JPH10281721A (en) Displacement measuring device
JP2671479B2 (en) Surface shape measuring device
JPH06129840A (en) Surface measuring device
JP2992943B2 (en) Small tilt angle detector