JPH07273470A - Multilayer-wiring structure - Google Patents

Multilayer-wiring structure

Info

Publication number
JPH07273470A
JPH07273470A JP6502894A JP6502894A JPH07273470A JP H07273470 A JPH07273470 A JP H07273470A JP 6502894 A JP6502894 A JP 6502894A JP 6502894 A JP6502894 A JP 6502894A JP H07273470 A JPH07273470 A JP H07273470A
Authority
JP
Japan
Prior art keywords
layer
substrate
insulating film
wiring structure
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6502894A
Other languages
Japanese (ja)
Inventor
Katsuhiro Niwa
勝弘 丹羽
Yasuo Miura
康男 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6502894A priority Critical patent/JPH07273470A/en
Publication of JPH07273470A publication Critical patent/JPH07273470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To stably manufacture the title high reliable multilayer-wiring structure capable of avoiding the release of a polyimide base insulating film from the substrate by covering the end of the substrate with the polyimide base insulating film. CONSTITUTION:Within the title multilayer-wiring structure provided with the first layer metallic wiring 3a formed on a substrate 1, the first layer insulating film 2a covering the first layer metallic wiring 3a as well as the second layer metallic wiring 3b connecting to the first layer metallic wiring 3a through the intermediary of an aperture part formed in the first layer insulating film 2a as the minimum components, at least one part of the upper end of the substrate 1 is covered with the first layer insulating film 2a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層配線構成体に関す
るものであり、さらに詳しくは、ポリイミド系樹脂等を
層間絶縁膜として用いた高密度実装用多層配線構成体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layer wiring structure, and more particularly to a multi-layer wiring structure for high density mounting using a polyimide resin or the like as an interlayer insulating film.

【0002】[0002]

【従来の技術】ポリイミド系樹脂等を層間絶縁膜として
用いた高密度実装用多層配線構成体としては、図3に示
した構造の多層配線構成体が知られている(例えば「日
経エレクトロニクス」149頁、1984年8月27日
号あるいはTAKASHI INOUE 他、Micro Carrier for LSI
Chip Used in the HITAC M-880 Processor Group、IEE
E,704, 1991)。図3において1は基板、2a、2b、
2cはそれぞれ第1層、第2層、第3層の絶縁膜、3
a、3b、3cはそれぞれ第1層、第2層、第3層の金
属配線、4は上部配線と開口(接続孔)部を表す。
2. Description of the Related Art A multilayer wiring structure having a structure shown in FIG. 3 is known as a high-density mounting multilayer wiring structure using a polyimide resin or the like as an interlayer insulating film (for example, "Nikkei Electronics" 149). Page, August 27, 1984 issue or TAKASHI INOUE et al., Micro Carrier for LSI
Chip Used in the HITAC M-880 Processor Group, IEE
E, 704, 1991). In FIG. 3, 1 is a substrate, 2a, 2b,
2c are insulating films of the first layer, the second layer, and the third layer, and 3c.
Reference numerals a, 3b, and 3c denote metal wirings of the first layer, the second layer, and the third layer, respectively, and 4 denotes an upper wiring and an opening (connection hole) portion.

【0003】[0003]

【発明が解決しようとする課題】このような多層配線構
成体において、ポリイミド系樹脂等からなる層間絶縁膜
は1層づつ400℃前後で熱処理して形成する必要があ
る。また、金属配線をスパッタ法で形成する場合にはス
パッタ中に基板は高温になる。したがって、下層の絶縁
膜(特に第1層の絶縁膜)は配線総数に相当する回数の
熱履歴を受けることとなる。このため配線総数が増える
に伴ない、熱処理は通常窒素雰囲気中で実施されるとは
いえ、ポリイミド系樹脂等からなる絶縁膜は微量の酸素
により劣化が促進される。また、基板とポリイミド系樹
脂等との熱膨張係数の違いにより界面に熱応力が蓄積さ
れる。
In such a multilayer wiring structure, the interlayer insulating film made of polyimide resin or the like must be formed by heat-treating each layer at about 400.degree. Further, when the metal wiring is formed by the sputtering method, the temperature of the substrate becomes high during the sputtering. Therefore, the lower insulating film (especially the first insulating film) is subjected to the thermal history of the number of times corresponding to the total number of wirings. Therefore, although the heat treatment is usually performed in a nitrogen atmosphere as the total number of wirings increases, deterioration of the insulating film made of polyimide resin or the like is promoted by a slight amount of oxygen. Further, thermal stress is accumulated at the interface due to the difference in thermal expansion coefficient between the substrate and the polyimide resin or the like.

【0004】しかしながら、従来は基板の端面の構造に
ついて何ら考慮されていなかったため、基板と絶縁膜の
界面での接着力が低下し、下層の絶縁膜が基板から剥離
するという問題が生じ、多層配線構成体の信頼性が低い
ものであった。
However, since no consideration has been given to the structure of the end face of the substrate in the past, the adhesive force at the interface between the substrate and the insulating film is reduced, and the problem that the lower insulating film is peeled off from the substrate occurs, resulting in a multilayer wiring. The reliability of the construct was low.

【0005】本発明は、かかる従来技術の諸欠点に鑑み
創案されたもので、その目的とするところは、従来の多
層配線構成体にみられるような基板と絶縁膜の間で発生
する剥離を確実に防止し、信頼性が高い多層配線構成体
を得ることにある。
The present invention was devised in view of the above-mentioned drawbacks of the prior art. The object of the present invention is to prevent the peeling between the substrate and the insulating film as seen in the conventional multilayer wiring structure. It is to obtain a multilayer wiring structure that is reliably prevented and has high reliability.

【0006】[0006]

【課題を解決するための手段】かかる本発明の目的は、
基板上に形成した第1層の金属配線と該第1層の金属配
線を覆う第1層の絶縁膜と、該第1層の絶縁膜に形成さ
れた開口を介して前記第1層の金属配線に接続された第
2層の金属配線とを最小構成単位として具備した多層配
線構成体において、該基板の端面の上端の少なくとも一
部が絶縁膜で覆われていることを特徴とする多層配線構
成体により達成される。
The object of the present invention is as follows.
The first layer metal wiring formed on the substrate, the first layer insulating film covering the first layer metal wiring, and the first layer metal through the opening formed in the first layer insulating film A multilayer wiring structure including a second-layer metal wiring connected to a wiring as a minimum structural unit, wherein at least a part of an upper end of an end face of the substrate is covered with an insulating film. Achieved by the construct.

【0007】本発明の多層配構成体の概略断面図の一例
を図1および2に示す。図1および2は3層配線構成体
を示すものであり、1は基板、2a、2b、2cはそれ
ぞれ第1層、第2層、第3層の絶縁膜、3a、3b、3
cはそれぞれ第1層、第2層、第3層の金属配線、4は
上部配線との開口(接続孔)部、5は基板の端面を表
す。基板1上に第1層の金属配線3a、該第1層の金属
配線3aを覆う第1層の絶縁膜2a、該第1層の絶縁膜
上に第2層の金属配線3b、該第2層の金属配線3bを
覆う第2層の絶縁膜2b、該第2層の絶縁膜上に第3層
の金属配線2c、該第3層の金属配線3cを覆う第3層
の絶縁膜2cが形成されている。基板の端面5の上端
は、図1においては第1層の絶縁膜2aにより、図2に
おいては第2層の絶縁膜2bにより覆われている。本発
明はこれらの態様に限定されず、第3層以上の絶縁膜に
よって覆われていてもよいし、複数層の絶縁膜によって
覆われていてもよい。あるいは、積層する上層の絶縁膜
とは別に、基板の端面を覆う目的で別に形成した絶縁膜
によって覆われていてもよい。
An example of a schematic sectional view of the multi-layer structure of the present invention is shown in FIGS. FIGS. 1 and 2 show a three-layer wiring structure, in which 1 is a substrate, 2a, 2b, and 2c are first-layer, second-layer, and third-layer insulating films, 3a, 3b, and 3, respectively.
Reference numeral c denotes metal wirings of the first layer, the second layer, and the third layer, 4 denotes an opening (connection hole) portion with respect to the upper wiring, and 5 denotes an end face of the substrate. The first layer metal wiring 3a on the substrate 1, the first layer insulating film 2a covering the first layer metal wiring 3a, the second layer metal wiring 3b on the first layer insulating film, the second layer A second-layer insulating film 2b covering the first-layer metal wiring 3b, a third-layer metal wiring 2c on the second-layer insulating film, and a third-layer insulating film 2c covering the third-layer metal wiring 3c. Has been formed. The upper end of the end surface 5 of the substrate is covered with the first-layer insulating film 2a in FIG. 1 and the second-layer insulating film 2b in FIG. The present invention is not limited to these aspects, and may be covered with an insulating film having a third layer or more, or may be covered with an insulating film having a plurality of layers. Alternatively, it may be covered with an insulating film formed separately for the purpose of covering the end face of the substrate, separately from the upper insulating film to be laminated.

【0008】基板の端面の上端の少なくとも一部が絶縁
膜で覆われた構成とすることにより、基板の端面の絶縁
膜は、基板上面の絶縁膜と一部はつながることとなるの
で、多層とする場合にも基板と絶縁膜の間で剥離は起こ
らず、信頼性の高い多層配線構成体を得ることができ
る。
With the structure in which at least a part of the upper end of the end surface of the substrate is covered with the insulating film, the insulating film on the end surface of the substrate is partially connected to the insulating film on the upper surface of the substrate. Also in this case, peeling does not occur between the substrate and the insulating film, and a highly reliable multilayer wiring structure can be obtained.

【0009】本発明における基板としては、シリコン、
アルミニウム、窒化アルミニウム、アルミナセラミック
ス、ガラスセラミックス、サファイヤ、ガラスなどが用
いられるが、これらに限定されない。また本発明におけ
る基板としては、これらの基板上に予め無機化合物系ま
たは有機化合物系の薄層が形成された基板をも使用する
ことができる。そのような基板の例として酸化シリコン
層が形成されたシリコン基板を挙げることができる。こ
こで予め形成された薄層は、パターン加工されていても
よい。
As the substrate in the present invention, silicon,
Aluminum, aluminum nitride, alumina ceramics, glass ceramics, sapphire, glass and the like are used, but not limited thereto. Further, as the substrate in the present invention, a substrate in which a thin layer of an inorganic compound type or an organic compound type is previously formed on these substrates can also be used. An example of such a substrate is a silicon substrate on which a silicon oxide layer is formed. The thin layer previously formed here may be patterned.

【0010】本発明における金属配線としては、金、
銅、ニッケル、クロムおよび/または、銅合金、ニッケ
ル合金が、単独あるいはアルミニウム、金、クロム、白
金、銀などの電気伝導性の材料との複層で、所望の機能
を果たすように、パターン状または全面に形成された層
などが用いられるが、これらに限定されない。これらの
金属配線は、通常、真空蒸着、スパッタリング、メッキ
などの方法により形成される。
As the metal wiring in the present invention, gold,
Patterned so that copper, nickel, chromium and / or copper alloys, nickel alloys, alone or in multiple layers with electrically conductive materials such as aluminum, gold, chromium, platinum, silver, perform the desired function. Alternatively, a layer formed over the entire surface or the like is used, but the layer is not limited to these. These metal wirings are usually formed by a method such as vacuum deposition, sputtering and plating.

【0011】本発明における絶縁膜としては、ポリイミ
ド系樹脂、エポキシ樹脂、ベンゾシクロブテン系樹脂等
からなる絶縁膜があげられるが、ポリイミド系絶縁膜が
一般的である。ポリイミド系絶縁膜は、テトラカルボン
酸二無水物とジアミンを選択的に組み合わせ、これらを
N−メチル−2−ピロリドン、N,N−ジメチルアセト
アミドなどの極性溶媒中で反応させて、ポリイミド前駆
体のワニスとした後、このポリイミド前駆体のワニスを
基板上に塗布して200〜400℃の範囲で熱処理を行
ない脱水縮合することにより得ることができ、公知のも
のが使用しうる。具体的な例として、ピロメリット酸二
無水物と4,4´−ジアミノジフェニルエーテル、3,
3´,4,4´−ベンゾフェノンテトラカルボン酸二無
水物と4,4´−ジアミノジフェニルエーテル、3,3
´,4,4´−ビフェニルテトラカルボン酸二無水物と
4,4´−ジアミノジフェニルエーテル、ピロメリット
酸二無水物と3,3´(または4,4´)−ジアミノジ
フェニルスルホン、ピロメリット酸二無水物および3,
3´,4,4´−ベンゾフェノンテトラカルボン酸二無
水物と3,3´(または4,4´)−ジアミノジフェニ
ルスルホン、3,3´,4,4´−ベンゾフェノンテト
ラカルボン酸二無水物と3,3´(または4,4´)−
ジアミノジフェニルスルホン、3,3´,4,4´−ビ
フェニルテトラカルボン酸二無水物と3,3´(または
4,4´)−ジアミノジフェニルスルホン、ピロメリッ
ト酸二無水物と4,4´−ジアミノジフェニルスルフィ
ド、3,3´,4,4´−ベンゾフェノンテトラカルボ
ン酸二無水物と4,4´−ジアミノジフェニルスルフィ
ド、3,3´,4,4´−ビフェニルテトラカルボン酸
二無水物と4,4´−ジアミノジフェニルスルフィド、
3,3´,4,4´−ベンゾフェノンテトラカルボン酸
二無水物とパラフェニレンジアミン、3,3´,4,4
´−ビフェニルテトラカルボン酸二無水物とパラフェニ
レンジアミン、ピロメリット酸二無水物および3,3
´,4,4´−ベンゾフェノンテトラカルボン酸二無水
物とパラフェニレンジアミン、ピロメリット酸二無水物
および3,3´,4,4´−ビフェニルテトラカルボン
酸二無水物とパラフェニレンジアミン、3,3´,4,
4´−ジフェニルエーテルテトラカルボン酸二無水物と
4,4´−ジアミノジフェニルエーテル、3,3´,
4,4´−ジフェニルエーテルテトラカルボン酸二無水
物とパラフェニレンジアミン、ピロメリット酸二無水物
と4,4´−ジアミノジフェニルエーテルおよびビス
(3−アミノプロピル)テトラメチルジシロキサン、な
どから合成されたポリイミド前駆体のワニスおよびこれ
らのポリイミド前駆体に感光性を付与した感光性ポリイ
ミド前駆体のワニスが好ましく用いられる。
The insulating film in the present invention includes an insulating film made of a polyimide resin, an epoxy resin, a benzocyclobutene resin, etc., but a polyimide insulating film is generally used. The polyimide-based insulating film is formed by selectively combining tetracarboxylic dianhydride and diamine, and reacting them in a polar solvent such as N-methyl-2-pyrrolidone or N, N-dimethylacetamide to prepare a polyimide precursor. A varnish can be obtained by applying this polyimide precursor varnish on a substrate and performing heat treatment in the range of 200 to 400 ° C. for dehydration condensation, and known ones can be used. As a specific example, pyromellitic dianhydride and 4,4′-diaminodiphenyl ether, 3,
3 ', 4,4'-benzophenone tetracarboxylic dianhydride and 4,4'-diaminodiphenyl ether, 3,3
′, 4,4′-Biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether, pyromellitic dianhydride and 3,3 ′ (or 4,4 ′)-diaminodiphenyl sulfone, pyromellitic dianhydride Anhydrous and 3,
3 ', 4,4'-benzophenone tetracarboxylic dianhydride and 3,3' (or 4,4 ')-diaminodiphenyl sulfone, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride 3,3 '(or 4,4')-
Diaminodiphenyl sulfone, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 3,3 ′ (or 4,4 ′)-diaminodiphenyl sulfone, pyromellitic dianhydride and 4,4′- Diaminodiphenyl sulfide, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride and 4,4'-diaminodiphenyl sulfide, 3,3', 4,4'-biphenyltetracarboxylic dianhydride and 4 , 4'-diaminodiphenyl sulfide,
3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride and paraphenylenediamine, 3,3 ′, 4,4
′ -Biphenyltetracarboxylic dianhydride and para-phenylenediamine, pyromellitic dianhydride and 3,3
′, 4,4′-Benzophenonetetracarboxylic dianhydride and paraphenylenediamine, pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine, 3, 3 ', 4,
4'-diphenyl ether tetracarboxylic acid dianhydride and 4,4'-diaminodiphenyl ether, 3,3 ',
Polyimide synthesized from 4,4′-diphenyl ether tetracarboxylic dianhydride and paraphenylenediamine, pyromellitic dianhydride and 4,4′-diaminodiphenyl ether and bis (3-aminopropyl) tetramethyldisiloxane A varnish of a precursor and a varnish of a photosensitive polyimide precursor obtained by imparting photosensitivity to these polyimide precursors are preferably used.

【0012】感光性ポリイミド前駆体としては、例え
ば、特公昭55−30207、特公昭59−5282
2、特開昭53−127723号公報などに記載された
ものを用いることができる。また、市販の感光性ポリイ
ミド前駆体も好ましく用いることができる。市販の感光
性ポリイミド前駆体としては、“フォトニ−ス”UR−
3140、UR−3180(いずれも東レ(株)製)、
“パイメル”G−6246A,TL(いずれも旭化成
(株)製)、“パイラリン”PD−2720、PD−2
740(いずれもデュポン(株)製)、“フォトパル”
PL−3000(日立化成(株)製)などが好ましく用
いられる。
As the photosensitive polyimide precursor, for example, Japanese Patent Publication No. 55-30207 and Japanese Patent Publication No. 59-5282.
2, those described in JP-A-53-127723 can be used. Further, a commercially available photosensitive polyimide precursor can also be preferably used. As a commercially available photosensitive polyimide precursor, "Photonice" UR-
3140, UR-3180 (all manufactured by Toray Industries, Inc.),
"Paimel" G-6246A, TL (all manufactured by Asahi Kasei Corporation), "Pyralin" PD-2720, PD-2
740 (all manufactured by DuPont), "Photopal"
PL-3000 (manufactured by Hitachi Chemical Co., Ltd.) and the like are preferably used.

【0013】次に、本発明の多層配線構成体の製造方法
の一例について説明するが、本発明はこれに限定されな
い。
Next, an example of the method for manufacturing the multilayer wiring structure of the present invention will be described, but the present invention is not limited to this.

【0014】シリコン基板上に第1層の金属配線を形成
する。例えば、シリコン基板上に銅をスパッタリングで
0.3 μm形成し、電解メッキでさらに10μm形成後、ク
ロムをスパッタリングで0.1 μm形成し、フォトエッチ
ングすることにより、所望の配線パターンを得る。
First-layer metal wiring is formed on a silicon substrate. For example, by sputtering copper on a silicon substrate
After forming 0.3 μm and further 10 μm by electrolytic plating, chromium is formed by sputtering to 0.1 μm and photoetching is performed to obtain a desired wiring pattern.

【0015】この基板上に第1層のポリイミド系絶縁膜
を形成する。通常、上部配線との開口(接続孔)を設け
るため、該ポリイミド系絶縁膜をパターン加工する。パ
ターン加工は公知の方法で行うことができる。
A first layer of polyimide-based insulating film is formed on this substrate. Usually, in order to provide an opening (connection hole) for the upper wiring, the polyimide insulating film is patterned. The pattern processing can be performed by a known method.

【0016】感光性を有するポリイミド前駆体を用いる
場合は、ポリイミド前駆体塗布、乾燥後、感光性ポリイ
ミド前駆体膜上に、マスクを置き紫外線を照射する。つ
いで、現像を行う。現像後、熱処理することによりポリ
イミド系絶縁膜で覆われた端面を持つ基板を得る。感光
性を有しないポリイミド前駆体を用いる場合は、ポリイ
ミド前駆体塗布塗布、乾燥、熱処理後、金属薄膜や酸化
珪素、フォトレジストなどをマスクにして、酸素プラズ
マ等でポリイミドをエッチングしパターンを形成する。
ポリイミド前駆体の乾燥は、60〜160℃の範囲で行
なうのが好ましい。熱処理は窒素雰囲気中で、室温から
460℃の温度を選び、段階的に昇温するかある温度範
囲を選び連続的に昇温しながら5分〜5時間実施する。
この熱処理の最高温度は、120〜460℃、好ましく
は、130〜450℃で行うのがよい。例えば、130
℃、200℃、400℃で各々30分熱処理する。ま
た、室温から400℃まで2時間かけて直線的に昇温し
てもよい。パターン形成後、上部配線との開口(接続
孔)部は接触抵抗を下げるため、過硫酸アンモニウム水
溶液で表面をエッチングするかプラズマ処理するのが望
ましい。
When a photosensitive polyimide precursor is used, after the polyimide precursor is applied and dried, a mask is placed on the photosensitive polyimide precursor film and ultraviolet rays are irradiated. Then, development is performed. After development, heat treatment is performed to obtain a substrate having an end face covered with a polyimide insulating film. When a polyimide precursor having no photosensitivity is used, the polyimide precursor is coated, dried, and heat treated, and then the polyimide is etched with oxygen plasma or the like to form a pattern using a metal thin film, silicon oxide, or a photoresist as a mask. .
Drying of the polyimide precursor is preferably performed in the range of 60 to 160 ° C. The heat treatment is carried out for 5 minutes to 5 hours in a nitrogen atmosphere by selecting a temperature from room temperature to 460 ° C. and gradually raising the temperature or selecting a certain temperature range and continuously raising the temperature.
The maximum temperature of this heat treatment is 120 to 460 ° C, preferably 130 to 450 ° C. For example, 130
Heat treatment is performed at 30 ° C., 200 ° C. and 400 ° C. for 30 minutes each. Alternatively, the temperature may be linearly raised from room temperature to 400 ° C. over 2 hours. After forming the pattern, it is desirable to etch the surface with an aqueous solution of ammonium persulfate or perform plasma treatment in order to reduce the contact resistance of the opening (connection hole) with the upper wiring.

【0017】第1層のポリイミド系絶縁膜によって基板
の端面の上端の少なくとも一部を覆う場合には、例え
ば、第1層のポリイミド前駆体を基板の端面を覆うよう
に塗布する。すなわち、スピナを用いポリイミド系絶縁
膜を塗布する場合においては、ポリイミド前駆体を所定
条件で塗布後、回転数を徐々に減少する方法、ポリイミ
ド前駆体を基板上面にスピナで塗布後、ポリイミド前駆
体を端面にロールコータまたはへらなどで塗布する等の
方法が挙げられる。このように基板の端面に塗布した場
合には、基板の端面にもパターンが残るようなマスクを
用いて、紫外線の照射を行わなければならない。また、
まず基板上面にポリイミド系絶縁膜をパターン形成した
後、端面にポリイミド前駆体を塗布し、再度基板を熱処
理し、端面のポリイミド前駆体をイミド化させてもよ
い。
When at least a part of the upper end of the end face of the substrate is covered with the first-layer polyimide insulating film, for example, the first layer polyimide precursor is applied so as to cover the end face of the substrate. That is, in the case of applying a polyimide-based insulating film using a spinner, after applying the polyimide precursor under predetermined conditions, a method of gradually reducing the number of rotations, after applying the polyimide precursor to the substrate upper surface with a spinner, the polyimide precursor Examples of the method include coating the end face with a roll coater or a spatula. When the coating is applied to the end face of the substrate as described above, it is necessary to irradiate the ultraviolet rays using a mask such that a pattern remains on the end face of the substrate. Also,
First, after patterning a polyimide-based insulating film on the upper surface of the substrate, the polyimide precursor may be applied to the end faces, and the substrate may be heat-treated again to imidize the polyimide precursor on the end faces.

【0018】次に、このようにして得た配線基板上に第
2層の金属配線を形成することにより2層配線構成体が
得られる。第2層の金属配線は第1層の金属配線と同様
に、例えば、基板上に銅をスパッタリングで0.3 μm形
成し、電解メッキでさらに10μm形成後、クロムをスパ
ッタリングで0.1 μm形成し、フォトエッチングするこ
とにより形成することができる。
Next, a two-layer wiring structure is obtained by forming a second layer of metal wiring on the wiring board thus obtained. Similar to the metal wiring of the first layer, the metal wiring of the second layer is, for example, 0.3 μm of copper is formed on the substrate by sputtering, 10 μm is further formed by electrolytic plating, and then chromium is formed by 0.1 μm by sputtering, and photoetching is performed. Can be formed.

【0019】同様に上記作業を繰り返すことによりさら
に高次の多層配線構成体が得られる。第2層以上のポリ
イミド系絶縁膜によって基板の上端の少なくとも一部を
覆う場合も、第1層のポリイミド系絶縁膜と同様にすれ
ばよい。
Similarly, by repeating the above operation, a higher-order multilayer wiring structure can be obtained. When at least a part of the upper end of the substrate is covered with the second or more layers of the polyimide-based insulating film, the same procedure as that of the first-layer polyimide-based insulating film may be performed.

【0020】また、ポリイミド系樹脂以外の絶縁膜を用
いる場合にも、同様の手法によればよい。
Also, when an insulating film other than the polyimide resin is used, the same method may be used.

【0021】[0021]

【実施例】以下、実施例に基づいて本発明を具体的に説
明するが、本発明はこれらに限定されない。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited thereto.

【0022】実施例1 99.5%アルミナ・セラミック基板(10×10×0.2 cm)上
に銅をスパッタリングで0.3 μm形成し、電解メッキで
さらに10μm形成後、クロムをスパッタリングで0.1 μ
m形成し、フォトエッチングすることにより、第1層の
金属配線パターンを形成した。
Example 1 Copper was formed on a 99.5% alumina / ceramic substrate (10 × 10 × 0.2 cm) by sputtering to a thickness of 0.3 μm, and electrolytic plating was further performed to form a thickness of 10 μm.
Then, the first layer metal wiring pattern was formed by photolithography.

【0023】この基板上に感光性ポリイミド前駆体“フ
ォトニース”UR−3180(東レ(株)製)をスピナ
で塗布した後、端面に同じ感光性ポリイミド前駆体をへ
らで塗布し、端面の上端を感光性ポリイミド前駆体で覆
った。80℃で120分窒素雰囲気中で乾燥し、膜厚40
μmの感光性ポリイミド前駆体被膜を形成した。該感光
性ポリイミド前駆体被膜に対し、キャノン(株)製紫外
線露光機PLA−501Fを用い、上記マスクを介して
600mJ/cm2 で露光した後、マスクを取り外し、
基板の端面を600mJ/cm2 で露光した。現像液D
V−605(東レ(株)製)中に超音波を印加しながら
浸漬現像し、2−プロパノールでリンス、窒素ブローし
て乾燥した。次に、130℃、200℃、400℃で各
々30分窒素雰囲気中で熱処理し、端面の上端が第1層
のポリイミド系絶縁膜で覆われた基板を形成した。
A photosensitive polyimide precursor "Photonice" UR-3180 (manufactured by Toray Industries, Inc.) was coated on this substrate with a spinner, and then the same photosensitive polyimide precursor was coated on the end face with a spatula, and the upper end of the end face was coated. Was covered with a photosensitive polyimide precursor. Dry at 80 ° C for 120 minutes in nitrogen atmosphere to a film thickness of 40
A μm photosensitive polyimide precursor coating was formed. The photosensitive polyimide precursor coating was exposed at 600 mJ / cm 2 through the mask using an ultraviolet light exposure device PLA-501F manufactured by Canon Inc., and then the mask was removed,
The end face of the substrate was exposed at 600 mJ / cm 2 . Developer D
Immersion development was performed while applying ultrasonic waves to V-605 (manufactured by Toray Industries, Inc.), rinsed with 2-propanol and blown with nitrogen to dry. Next, heat treatment was performed at 130 ° C., 200 ° C., and 400 ° C. for 30 minutes in a nitrogen atmosphere to form a substrate in which the upper end of the end face was covered with the first-layer polyimide insulating film.

【0024】次に、このようにして得た配線基板上に第
2層の金属配線を形成し、2層配線構成体を得た。第2
層の金属配線は第1層の金属配線と同様に、基板上に銅
をスパッタリングで0.3 μm形成し、電解メッキでさら
に10μm形成後、クロムをスパッタリングで0.1 μm形
成し、フォトエッチングすることにより形成した。以下
同様にこの工程を繰り返すことにより3層配線構成体を
得た。ただし第2層および第3層のポリイミド系絶縁膜
は、基板上面にのみ形成した。このようにして得られた
3層配線構成体の概略断面図を図1に示す。
Next, a second layer metal wiring was formed on the wiring board thus obtained to obtain a two-layer wiring structure. Second
Similar to the first layer metal wiring, the layer metal wiring is formed by forming 0.3 μm of copper on the substrate by sputtering, further forming 10 μm by electrolytic plating, and then forming 0.1 μm of chromium by sputtering and photoetching. did. Thereafter, this process was repeated in the same manner to obtain a three-layer wiring structure. However, the second- and third-layer polyimide insulating films were formed only on the upper surface of the substrate. A schematic cross-sectional view of the three-layer wiring structure obtained in this manner is shown in FIG.

【0025】この3層配線構成体を5%の水酸化カリウ
ム水溶液に40分間浸漬した後のポリイミド系絶縁膜と
基板との接着性を調べた。その結果、基板からの剥離は
見られなかった。
The three-layer wiring structure was dipped in a 5% potassium hydroxide aqueous solution for 40 minutes, and the adhesiveness between the polyimide insulating film and the substrate was examined. As a result, no peeling from the substrate was observed.

【0026】比較例1 実施例1において、第1層のポリイミド系絶縁膜で基板
の端面の上部を覆わずに3層配線構成体を得た。このよ
うにして得られた3層配線構成体の概略断面図を図3に
示す。
Comparative Example 1 In Example 1, a three-layer wiring structure was obtained without covering the upper part of the end face of the substrate with the first layer of polyimide insulating film. A schematic cross-sectional view of the three-layer wiring structure thus obtained is shown in FIG.

【0027】この3層配線構成体を5%の水酸化カリウ
ム水溶液に40分間浸漬した後のポリイミド系絶縁膜と
基板との接着性を調べた。その結果、基板から第1層の
ポリイミド系絶縁膜が剥離した。
The three-layer wiring structure was dipped in a 5% potassium hydroxide aqueous solution for 40 minutes, and the adhesiveness between the polyimide insulating film and the substrate was examined. As a result, the first-layer polyimide insulating film was peeled from the substrate.

【0028】実施例2 実施例1において、基板としてアルミナ・セラミックス
基板の代わりにパターン加工された酸化シリコン層が形
成されたシリコン基板を用いて3層配線構成体を得た。
Example 2 In Example 1, a three-layer wiring structure was obtained by using a silicon substrate on which a patterned silicon oxide layer was formed instead of the alumina / ceramic substrate as the substrate.

【0029】この3層配線構成体を5%の水酸化カリウ
ム水溶液に40分間浸漬した後のポリイミド系絶縁膜と
基板との接着性を調べた。その結果、基板からの剥離は
見られなかった。
The three-layer wiring structure was dipped in a 5% potassium hydroxide aqueous solution for 40 minutes, and the adhesiveness between the polyimide insulating film and the substrate was examined. As a result, no peeling from the substrate was observed.

【0030】比較例2 実施例2において、第1層のポリイミド系絶縁膜で基板
の端面の上部を覆わずに3層配線構成体を得た。
Comparative Example 2 In Example 2, a three-layer wiring structure was obtained without covering the upper part of the end face of the substrate with the first-layer polyimide insulating film.

【0031】この3層配線構成体を5%の水酸化カリウ
ム水溶液に40分間浸漬した後のポリイミド系絶縁膜と
基板との接着性を調べた。その結果、基板から第1層の
ポリイミド系絶縁膜が剥離した。
The three-layer wiring structure was dipped in a 5% potassium hydroxide aqueous solution for 40 minutes, and the adhesiveness between the polyimide insulating film and the substrate was examined. As a result, the first-layer polyimide insulating film was peeled from the substrate.

【0032】実施例3 実施例1において、基板の端面の上端を第1層のポリイ
ミド系絶縁膜で覆ったかわりに、第2層のポリイミド系
絶縁膜で覆って3層配線構成体を得た。このようにして
得られた3層配線構成体の概略断面図を図2に示す。
Example 3 In Example 1, instead of covering the upper end of the end face of the substrate with the polyimide insulating film of the first layer, it was covered with the polyimide insulating film of the second layer to obtain a three-layer wiring structure. . A schematic cross-sectional view of the three-layer wiring structure thus obtained is shown in FIG.

【0033】この3層配線構成体を5%の水酸化カリウ
ム水溶液に40分間浸漬した後のポリイミド系絶縁膜と
基板との接着性を調べた。その結果、基板からの剥離は
見られなかった。
The three-layer wiring structure was dipped in a 5% potassium hydroxide aqueous solution for 40 minutes, and the adhesion between the polyimide insulating film and the substrate was examined. As a result, no peeling from the substrate was observed.

【0034】[0034]

【発明の効果】本発明によると、基板の端面をポリイミ
ド系絶縁膜で覆うことにより、ポリイミド系絶縁膜と基
板との接着性低下による基板からの剥離を防止すること
ができるので信頼性が高い多層配線構成体を安定して製
造することができる。
According to the present invention, by covering the end surface of the substrate with the polyimide-based insulating film, it is possible to prevent the peeling from the substrate due to the decrease in the adhesiveness between the polyimide-based insulating film and the substrate. A multilayer wiring structure can be manufactured stably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる多層配線構成体の一例を表す概
略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a multilayer wiring structure according to the present invention.

【図2】本発明にかかる多層配線構成体の他の例を表す
概略断面図である。
FIG. 2 is a schematic sectional view showing another example of a multilayer wiring structure according to the present invention.

【図3】従来の多層配線構成体の一例を表す概略断面図
である。
FIG. 3 is a schematic cross-sectional view showing an example of a conventional multilayer wiring structure.

【符号の説明】[Explanation of symbols]

1 基板 2a 第1層の絶縁膜 2b 第2層の絶縁膜 2c 第3層の絶縁膜 3a 第1層の金属配線 3b 第2層の金属配線 3c 第3層の金属配線 4 上部配線との開口(接続孔)部 5 基板の端面 DESCRIPTION OF SYMBOLS 1 Substrate 2a First layer insulating film 2b Second layer insulating film 2c Third layer insulating film 3a First layer metal wiring 3b Second layer metal wiring 3c Third layer metal wiring 4 Opening with upper wiring (Connection hole) 5 End face of substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成した第1層の金属配線と該
第1層の金属配線を覆う第1層の絶縁膜と、該第1層の
絶縁膜に形成された開口を介して前記第1層の金属配線
に接続された第2層の金属配線とを最小構成単位として
具備した多層配線構成体において、該基板の端面の上端
の少なくとも一部が絶縁膜で覆われていることを特徴と
する多層配線構成体。
1. A first-layer metal wiring formed on a substrate, a first-layer insulating film covering the first-layer metal wiring, and an opening formed in the first-layer insulating film. In a multilayer wiring structure including, as a minimum structural unit, a second-layer metal wiring connected to a first-layer metal wiring, at least a part of an upper end of an end face of the substrate is covered with an insulating film. A characteristic multilayer wiring structure.
【請求項2】 基板の端面の少なくとも一部が第1層の
絶縁膜で覆われていることを特徴とする請求項1記載の
多層配線構成体。
2. The multilayer wiring structure according to claim 1, wherein at least a part of the end face of the substrate is covered with the insulating film of the first layer.
【請求項3】 基板がシリコン基板であり、該基板と第
1層の金属配線の間に酸化シリコン層が形成されている
ことを特徴とする請求項1記載の多層配線構成体。
3. The multilayer wiring structure according to claim 1, wherein the substrate is a silicon substrate, and a silicon oxide layer is formed between the substrate and the metal wiring of the first layer.
【請求項4】 絶縁膜がポリイミド系絶縁膜であること
を特徴とする請求項1記載の多層配線構成体。
4. The multilayer wiring structure according to claim 1, wherein the insulating film is a polyimide insulating film.
JP6502894A 1994-04-01 1994-04-01 Multilayer-wiring structure Pending JPH07273470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6502894A JPH07273470A (en) 1994-04-01 1994-04-01 Multilayer-wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6502894A JPH07273470A (en) 1994-04-01 1994-04-01 Multilayer-wiring structure

Publications (1)

Publication Number Publication Date
JPH07273470A true JPH07273470A (en) 1995-10-20

Family

ID=13275118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6502894A Pending JPH07273470A (en) 1994-04-01 1994-04-01 Multilayer-wiring structure

Country Status (1)

Country Link
JP (1) JPH07273470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019198A (en) * 2005-07-07 2007-01-25 Fujitsu Ltd Laminated substrate and electronic apparatus having the same
WO2020022109A1 (en) * 2018-07-25 2020-01-30 株式会社村田製作所 Composite substrate and method for manufacturing composite substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019198A (en) * 2005-07-07 2007-01-25 Fujitsu Ltd Laminated substrate and electronic apparatus having the same
JP4689375B2 (en) * 2005-07-07 2011-05-25 富士通株式会社 Laminated substrate and electronic device having the laminated substrate
WO2020022109A1 (en) * 2018-07-25 2020-01-30 株式会社村田製作所 Composite substrate and method for manufacturing composite substrate
JPWO2020022109A1 (en) * 2018-07-25 2021-06-24 株式会社村田製作所 Composite substrate and manufacturing method of composite substrate
US11596063B2 (en) 2018-07-25 2023-02-28 Murata Manufacturing Co., Ltd. Composite substrate and method for manufacturing composite substrate

Similar Documents

Publication Publication Date Title
US5830563A (en) Interconnection structures and method of making same
JP4029517B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE
EP0290222B1 (en) A multilayer interconnection system for multichip high performance semiconductor packaging
JP4609074B2 (en) Wiring board and method of manufacturing wiring board
JP2688446B2 (en) Multilayer wiring board and manufacturing method thereof
JP2002111174A (en) Method for manufacturing wiring circuit board
JP2006100631A (en) Wiring board and its manufacturing method
JPH07273470A (en) Multilayer-wiring structure
JPS6337694A (en) Manufacture of circuit board
JPH06120659A (en) Multilayer wiring structure
JP2002057465A (en) High-density mounting printed circuit board and its manufacturing method
JPH06244172A (en) Multilayered wiring structure
JPH06209165A (en) Multilayer wiring structure
JP2002151622A (en) Semiconductor circuit component and its manufacturing method
US6274291B1 (en) Method of reducing defects in I/C card and resulting card
JPH05267843A (en) Multilayer interconnection structure
JP2001313451A (en) Manufacturing method for flexible wiring board
JPH07273466A (en) Manufacturing method of multilayer-wiring board
JPH09270355A (en) Electronic part and manufacture thereof
JPH07283544A (en) Wiring structure and its manufacturing method
JPH0629662A (en) Multilayered wiring composition and pattern working method of polyimide based insulating film
JPH0621651A (en) Multilayer wiring circuit board and its manufacture
JPH0613754A (en) Manufacture of multilayer wiring board
JP2003013246A (en) Method for manufacturing electrode of semiconductor device
JPH0653650A (en) Multilayer wiring structure body