JPH07273354A - Diode - Google Patents

Diode

Info

Publication number
JPH07273354A
JPH07273354A JP8800794A JP8800794A JPH07273354A JP H07273354 A JPH07273354 A JP H07273354A JP 8800794 A JP8800794 A JP 8800794A JP 8800794 A JP8800794 A JP 8800794A JP H07273354 A JPH07273354 A JP H07273354A
Authority
JP
Japan
Prior art keywords
impurity concentration
diode
region
layer
concentration region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8800794A
Other languages
Japanese (ja)
Inventor
Junichi Ishida
純一 石田
Masaru Wakatabe
勝 若田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP8800794A priority Critical patent/JPH07273354A/en
Publication of JPH07273354A publication Critical patent/JPH07273354A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To provide a pin diode having a soft-recovery characteristic, by reducing the peak value IRP of its backward current in the case of its reverse recovery especially, and by reducing di/dt in its T2 term without the lengthening of its reverse-recovery time Trr. CONSTITUTION:In a diode comprising a p-type region 4 of a high impurity concentration, an n-type region 1 of a high impurity concentration and a region 2 of a low impurity concentration which is interposed between the regions 1, 4, at least one region 3 of a high impurity concentration which has the identical conduction type with the region 2 is so provided in the region 2 of a low impurity concentration that a p-n junction J is made adjacent to the region 3 of a high impurity concentration which is present in the region 2 of a low impurity concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野の説明】本発明は整流用ダイオ−ド
特に高速ダイオ−ドの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rectifying diode, and more particularly to a structure of a high speed diode.

【0002】[0002]

【従来技術とその問題点】近年、電子機器の小型化、高
効率化のために、装置の高周波化が進んでおり、機器に組
み込まれる整流用のダイオ−ドに対しても高周波化の要
望が強い。高周波用のダイオ−ド(高速ダイオ−ド)に
必要な特性として、逆回復に要する時間が短いことが要
求される。これと共に近年問題となっているのが、ダイ
オ−ドの逆回復時の電流変化と、ダイオ−ドを組み込ん
だ回路に存在する浮遊インダクタンスとによる、スパイ
クノイズの問題である。
2. Description of the Related Art In recent years, the frequency of devices has been increasing in order to reduce the size and increase the efficiency of electronic devices, and it is desired to increase the frequency of rectifying diodes incorporated in the devices. Is strong. As a characteristic required for a high frequency diode (high speed diode), a short time required for reverse recovery is required. Along with this, a problem in recent years is a spike noise problem due to a current change at the time of reverse recovery of the diode and a stray inductance existing in a circuit incorporating the diode.

【0003】図3は従来構造図で図中1はN型シリコン
基体(高濃度不純物n層)、2は (2) 低濃度不純物n層(i領域)、4は高濃度不純物p層、
JはPN接合である。図4はその不純物濃度分布図、図
5は逆回復時の電流、電圧波形を示す。
FIG. 3 shows a conventional structure. In FIG. 3, 1 is an N-type silicon substrate (high concentration impurity n layer), 2 is (2) low concentration impurity n layer (i region), 4 is high concentration impurity p layer,
J is a PN junction. FIG. 4 shows the impurity concentration distribution diagram, and FIG. 5 shows current and voltage waveforms during reverse recovery.

【0004】ダイオ−ドの逆回復時間Trrは、大別し
て図示の様に2種類の期間からなりたっている。即ち
ダイオ−ドの電流が順方向のIFから0迄減少して逆方
向電流が流れ始めた時点から電流がその尖頭値IRPとな
るまでの期間T1 前記期間T1の後の、電流が減少して再び0になるま
での期間T2 ダイオ−ドの高速動作の為には逆回復時間Trrが短い
ことが望ましい。しかし、ダイオ−ドの逆電流IRがそ
の尖頭値IRPに達してから、電流が0になるまでの期間
T2があまりに短いと浮遊インダクタンス成分Lによる
L*di/dtなる誘起起電力が大きくなり、いわゆる
スパイクノイズ発生の原因となる。この様なスパイクノ
イズを低減するためには、T2の期間の電流減少率di
/dtを小さくしてやればよい。しかし、単にT2の期
間の電流減少率di/dtを小さくするとダイオ−ドの
逆回復時間Trrが長くなってしまう。ちなみに、電流
が順方向電流IFから減少して、逆方向電流の尖頭値IR
Pへ向う場合の−di/dtは、ほぼ、回路側の条件で
決まっている。
The reverse recovery time Trr of the diode is roughly divided into two types as shown in the figure. That is, the period T1 from the time when the current in the diode decreases from IF in the forward direction to 0 and the backward current starts to flow until the current reaches its peak value IRP, and the current decreases after the period T1. It is desirable that the reverse recovery time Trr is short for high-speed operation of the period T2 diode until it becomes 0 again. However, if the period T2 from when the reverse current IR of the diode reaches the peak value IRP to when the current becomes 0 is too short, the induced electromotive force L * di / dt due to the stray inductance component L becomes large. This causes so-called spike noise. In order to reduce such spike noise, the current decrease rate di during the period T2
It suffices to reduce / dt. However, if the current reduction rate di / dt in the period T2 is simply decreased, the reverse recovery time Trr of the diode becomes long. By the way, the current decreases from the forward current IF and the reverse current peak value IR
When going to P, -di / dt is almost determined by the conditions on the circuit side.

【0005】ここで、ダイオ−ドの内部のキャリア−の
動きから逆回復時の様子を見るとT1の期間はさらに、
順方向バイアス時に蓄積されていたキャリア−が減少
し、pn接合が回復して逆バイアス電圧を持ち始める迄
の期間Tjと、ひきつづいて接合近傍に空乏領域が広が
り、この領域に蓄積されていたキャリア−が吸い出され
る期間Tkとに分けられる。T2の期間は、逆バイアス
電圧の増加にともなう空乏領域のさらなる増大により、
この領域に蓄積されていたキャリア−が吸い出される期
間である。勿論、各期間を通じて再結合によるキャリア
−の減少は起こっている。一般に、Trrを短くするた
めには、重金属拡散等によりキャリア−のライフタイム
を短くする必要があるが、この場合、低濃度領域に蓄積
されたキャリア−量が減少すること、また、再結合によ
るキャリア−の減少速度が速くなる (3) 等によりT2も短くなりdi/dtが大きくなってしま
う。この様に、Trrを短くし、かつ、電流減少率di
/dtの小さい、いわゆるソフトリカバリ−特性のダイ
オ−ドを作るのは困難であった。
Looking at the state at the time of reverse recovery from the movement of the carrier inside the diode, the period of T1 is further
Carriers accumulated in the forward bias are reduced, a period Tj until the pn junction recovers and starts to have a reverse bias voltage, and a depletion region continuously spreads in the vicinity of the junction, and carriers accumulated in this region. -Is divided into a period Tk for being sucked out. During the period of T2, due to the further increase of the depletion region with the increase of the reverse bias voltage,
This is a period in which the carriers accumulated in this area are sucked out. Of course, the reduction of carriers due to recombination occurs during each period. In general, in order to shorten Trr, it is necessary to shorten the carrier lifetime by diffusion of heavy metals or the like. In this case, however, the amount of carriers accumulated in the low concentration region is reduced, and due to recombination. Due to the faster carrier reduction rate (3), T2 becomes shorter and di / dt becomes larger. In this way, Trr is shortened and the current decrease rate di
It was difficult to make a diode having a so-called soft recovery characteristic with a small / dt.

【0006】[0006]

【発明の目的】本発明の目的は、pinダイオ−ドに関
し、特に、逆回復時の逆方向電流の尖頭値IRPを小さ
くすることにより逆回復時間Trrを長くしないで、T
2の期間のdi/dtを小さくし、ソフトリカバリ−特
性のダイオ−ドを提供する事にある。
It is an object of the present invention to relate to a pin diode, and in particular, the reverse recovery time Trr is not increased by reducing the peak value IRP of the reverse current at the time of reverse recovery.
The purpose is to reduce the di / dt during the period of 2 and provide a diode with a soft recovery characteristic.

【0007】[0007]

【課題を解決するための本発明の手段】本発明では、p
inダイオ−ドにおいて、p層とn層との間に設けられ
た低不純物濃度領域内に、これと同導電型で、かつこれ
よりも高不純物濃度の領域を、pn接合に隣接して設け
たことを特徴としている。
According to the present invention, p
In the in-diode, a region of the same conductivity type and a higher impurity concentration than that is provided in the low impurity concentration region provided between the p layer and the n layer adjacent to the pn junction. It is characterized by that.

【0008】[0008]

【実施例】ここでの説明は、不純物濃度の低いi層とし
てn型低不純物濃度層を持つダイオ−ドについて行う。
この構造を単にpin(構造)とよぶ。図1は本発明の
一実施例を示す断面構造図、図2はその不純物濃度分布
図で従来例と同一符号は同等部分を示す。図において、
1はn層、2はi層、3はi層中に設けられたn層、4
はp層をそれぞれ示している。本実施例は、従来のpi
n構造ダイオ−ドのi層の中に、これと同じ導電型で、
かつ高不純物濃度の層をp型層に隣接して設けたことが
特徴となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The description here will be made on a diode having an n-type low impurity concentration layer as an i layer having a low impurity concentration.
This structure is simply called a pin (structure). FIG. 1 is a sectional structural view showing an embodiment of the present invention, and FIG. 2 is an impurity concentration distribution diagram thereof. In the figure,
1 is an n layer, 2 is an i layer, 3 is an n layer provided in the i layer, 4
Indicates p layers, respectively. In this embodiment, the conventional pi
In the i-layer of the n-structure diode, with the same conductivity type,
Moreover, it is characterized in that a layer having a high impurity concentration is provided adjacent to the p-type layer.

【0009】本発明構造では、接合が回復した直後の空
乏層は主に、p型層に隣接して設けたn型高不純物濃度
領域に広がるので従来のpinダイオ−ドのi層に広が
る空乏層に比較して幅が狭く、又、広がる速度も遅い。
従って、空乏層の広 (4) がりにより吸い出されるキャリア−の量が少なく電流は
あまり増加しない。このため、尖頭逆電流IRPの値が
小さくTkの期間も短くなり、空乏化していないi層部
分に多くのキャリア−が残っている。そしてその後のT
2の期間はi層に空乏層が広がるようになりここでは空
乏層が広がり易いため、電流の急激な減少が起こりにく
く、従来構造のダイオ−ドに較べてソフトリカバリ−特
性となる。
In the structure of the present invention, the depletion layer immediately after the junction is restored mainly spreads in the n-type high impurity concentration region provided adjacent to the p-type layer, so that the depletion spread in the i-layer of the conventional pin diode. It is narrower than the layers and spreads slowly.
Therefore, the amount of carriers absorbed by the wide (4) depletion layer is small and the current does not increase so much. For this reason, the value of the peak reverse current IRP is small, the period of Tk is also short, and many carriers remain in the i-layer portion which is not depleted. And then T
During the period of 2, the depletion layer spreads to the i layer, and the depletion layer easily spreads here, so that a rapid decrease in the current is less likely to occur and the soft recovery characteristic is obtained as compared with the diode having the conventional structure.

【0010】図6は従来のpin構造ダイオ−ドa及
び、本実施例の構造を持つダイオ−ド(b)の、逆回復
時の電流波形を示す。電流波形の時間変化は先ず時刻t
1では、両方のダイオ−ドとも、pn接合付近のキャリ
ア−はまだかなり残っている。時刻t2になるとpn接
合の空乏化が始まっている。時刻t3になると従来のダ
イオ−ド(a)では空乏層の広がり速度が速く、大量の
キャリア−が吸い出されるため、電流はまだ増加してい
る。一方、この時刻t3において、本実施例のダイオ−
ド(b)では空乏層の広がり速度が遅いため、電流が増
加し難く既にその尖頭値に達している。時刻t4におい
て、従来のダイオ−ド(a)においても電流がその尖頭
値に達している。一方、本実施例のダイオ−ド(b)で
は電流は徐々に減少し始めている。時刻t5になると、
従来のダイオ−ド(a)においては電流が急激に減少し
始める、これは空乏層の広がり速度は既に広がった空乏
層幅に反比例する関係にあり、キャリア−の吸いだし量
が急減するためである。一方、本実施例のダイオ−ド
(b)では空乏層幅が小さく電流は徐々に減少する。時
刻t6になると、従来のダイオ−ド(a)においては電
流がほとんど0になっている。一方、本実施例のダイオ
−ド(b)ではi層2内のキャリア−は未だ残っており
電流はゆるやかに減少する。以上のように、本実施例の
ダイオ−ドでは、従来のpin構造のダイオ−ド (5) に較べてソフトリカバリ−特性となる。
FIG. 6 shows current waveforms at the time of reverse recovery of the conventional pin structure diode a and the diode (b) having the structure of this embodiment. The time change of the current waveform is the time t
In 1, in both diodes, carriers near the pn junction still remain considerably. At time t2, depletion of the pn junction has started. At time t3, in the conventional diode (a), the depletion layer spreads at a high speed and a large amount of carriers are sucked out, so that the current is still increasing. On the other hand, at this time t3, the dio-
In (b), since the depletion layer spreads slowly, the current hardly increases and the peak value has already been reached. At time t4, the current reaches its peak value even in the conventional diode (a). On the other hand, in the diode (b) of this embodiment, the current is gradually decreasing. At time t5,
In the conventional diode (a), the current starts to decrease sharply because the speed of depletion layer spreading is inversely proportional to the already widened depletion layer width, and the amount of carrier drained sharply decreases. is there. On the other hand, in the diode (b) of this embodiment, the width of the depletion layer is small and the current gradually decreases. At time t6, the current is almost zero in the conventional diode (a). On the other hand, in the diode (b) of this embodiment, the carriers in the i layer 2 still remain, and the current gradually decreases. As described above, the diode of this embodiment has a soft recovery characteristic as compared with the conventional diode (5) of the pin structure.

【0011】ダイオ−ドの諸特性のうち、この他の重要
な特性として逆方向耐圧が有る。一般にi層の不純物濃
度が高いとpn接合の電界強度が高くなり易く耐圧が低
くなってしまう。しかし、本実施例においては、p型層
に接した高不純物濃度領域の先に低不純物濃度のi層が
存在しており、この両領域の厚さ、不純物濃度を調節す
ることにより充分、必要な逆耐電圧を得ることが出来
る。このダイオ−ドの製造法は先ず、ウェファ−径10
0mm、厚さ400μm、抵抗率0.003Ω・cm、面
方位(111)のn型シリコン基板ウェファ−1を用意
する。この基板ウェファ−1の主表面にn型高抵抗層、
すなわちi層2(20Ω・cm)を、厚さ50μmだけ
エピタキシャル成長させる。次にエピタキシャル成長中
のド−バントの量を増加してn型の低抵抗層3(4.5
Ω・cm)を10μm成長させる。次に、ウェファ−表
面に酸化膜を500Å形成する、続いてp型層4を形成
するため、ボロンをイオン注入により打ち込む。その
後、1150℃で900分間、窒素中でアニ−ル拡散を
行なう事により、表面濃度約8E18/cm∧3、深さ
約7μmのp型層4が形成される。この様にして接合形
成されたウェファ−にPt、Au等の重金属を拡散して、
ライフタイムを短くした後、周知のフォトエッチング技
術を用いて、シリコンをメサ型に加工し、表面に保護膜
5を形成する。その後、電極金属A1を表面に、Cr−
Niを裏面に形成し、ウェファ−を2mm□四方のチッ
プに分割して本実施例素子を完成した。
Of the various characteristics of the diode, the reverse breakdown voltage is another important characteristic. Generally, when the impurity concentration of the i layer is high, the electric field strength of the pn junction is likely to be high, and the breakdown voltage is low. However, in this embodiment, the i-layer having a low impurity concentration exists ahead of the high impurity-concentration region in contact with the p-type layer, and it is sufficient to adjust the thickness and impurity concentration of both regions. It is possible to obtain a high reverse withstand voltage. The manufacturing method of this diode is as follows.
An n-type silicon substrate wafer-1 having a thickness of 0 mm, a thickness of 400 μm, a resistivity of 0.003 Ω · cm, and a plane orientation (111) is prepared. An n-type high resistance layer is formed on the main surface of the substrate wafer-1,
That is, the i layer 2 (20 Ω · cm) is epitaxially grown to a thickness of 50 μm. Next, the amount of dopant during epitaxial growth is increased to increase the n-type low resistance layer 3 (4.5).
Ω · cm) is grown to 10 μm. Next, an oxide film of 500 Å is formed on the surface of the wafer, and subsequently boron is implanted by ion implantation to form the p-type layer 4. After that, annealing is performed in nitrogen at 1150 ° C. for 900 minutes to form a p-type layer 4 having a surface concentration of about 8E18 / cm 3 and a depth of about 7 μm. Diffusion of heavy metals such as Pt and Au into the wafer thus formed by bonding,
After shortening the life time, silicon is processed into a mesa type by using a well-known photoetching technique to form a protective film 5 on the surface. Then, with the electrode metal A1 on the surface, Cr-
Ni was formed on the back surface, and the wafer was divided into 2 mm square chips to complete the device of this example.

【0012】図7は、本発明の他の実施例の不純物濃度
分布を示す図である。本構造は、i層の不純物濃度分布
をpn接合に接した側を高く、n型高不純物濃度層側を
低くなるように連続的に変化させたものである。これ
は、i層のエピタキシャル成長中のド−パントの量を連
続的に変化させることで容易に実現できる。 (6) 図8は、本発明の他の実施例の断面構造を示す。これ
は、i層中の高不純物濃度領域ならびにp型層領域を、
選択拡散技術を用いて作成した例である。図9は、本発
明の他の実施例の断面構造を示す。i層中の高不純物濃
度領域を複数に分割して設けたものである。この様にi
層中の高不純物濃度領域は必ずしもダイオ−ドの断面全
体にある必要はなく断面の一部に設けた場合でも、本実
施例の原理からして同様の効果が得られる。図10は、
本発明の他の実施例の断面構造を示す。これは、同一主
表面にp、n高不純物濃度領域が存在する場合を示す。
以上の説明は低不純物濃度領域i層がn型低不純物濃度
領域の場合について説明したが、低不純物濃度領域i層
p型低不純物濃度領域の場合でも同様の効果が得られる
ことは明らかである。
FIG. 7 is a diagram showing the impurity concentration distribution of another embodiment of the present invention. In this structure, the impurity concentration distribution of the i layer is continuously changed so that it is higher on the side in contact with the pn junction and lower on the side of the n-type high impurity concentration layer. This can be easily achieved by continuously changing the amount of dopant during epitaxial growth of the i layer. (6) FIG. 8 shows a sectional structure of another embodiment of the present invention. This is because the high impurity concentration region in the i layer and the p-type layer region are
This is an example created using the selective diffusion technique. FIG. 9 shows a sectional structure of another embodiment of the present invention. The high impurity concentration region in the i layer is divided into a plurality of regions. I like this
The high impurity concentration region in the layer does not necessarily have to be in the entire cross section of the diode, and even if it is provided in a part of the cross section, the same effect can be obtained from the principle of this embodiment. Figure 10
5 shows a cross-sectional structure of another embodiment of the present invention. This shows the case where p and n high impurity concentration regions are present on the same main surface.
In the above description, the case where the low impurity concentration region i layer is the n-type low impurity concentration region is described, but it is clear that the same effect can be obtained even when the low impurity concentration region i layer is the p-type low impurity concentration region. .

【0013】[0013]

【発明の効果】以上の説明から明らかなように本発明に
よればpinダイオ−ドに関し、特に、逆回復時の逆方
向電流の尖頭値IRPを小さくすることにより逆回復時
Trrを長くしないで、T2の期間のdi/dtを小さ
くし、ソフトリカバリ−特性のダイオ−ドを提供できる
ので電源装置等に適用して装置の小型化、高効率化、高
周波化に好適である等実用上の効果は大きい。
As is apparent from the above description, the present invention relates to a pin diode, and particularly, by reducing the peak value IRP of the reverse current at the time of reverse recovery, the Trr at reverse recovery is not lengthened. Therefore, since di / dt during the period of T2 can be reduced and a diode with a soft recovery characteristic can be provided, it can be applied to a power supply device and the like, which is suitable for downsizing, high efficiency, and high frequency of the device. Has a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構造図FIG. 1 is a structural diagram of an embodiment of the present invention

【図2】本発明実施例の不純物濃度分布図FIG. 2 is an impurity concentration distribution diagram of an example of the present invention.

【図3】従来構造図[Fig. 3] Conventional structure diagram

【図4】従来構造の不純物濃度分布図FIG. 4 is an impurity concentration distribution map of a conventional structure.

【図5】従来構造の動作説明用の電流、電圧波形図 (7)FIG. 5 is a current and voltage waveform diagram for explaining the operation of the conventional structure (7)

【図6】従来構造及び本発明実施例を比較した電流波形
FIG. 6 is a current waveform diagram comparing a conventional structure and an example of the present invention.

【図7】本発明の他の実施例の不純物濃度分布図FIG. 7 is an impurity concentration distribution chart of another embodiment of the present invention.

【図8】本発明の他の実施例構造図FIG. 8 is a structural diagram of another embodiment of the present invention.

【図9】本発明の他の実施例構造図FIG. 9 is a structural diagram of another embodiment of the present invention.

【図10】本発明の他の実施例構造図FIG. 10 is a structural diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 N型半導体基体(高濃度n型領域) 2 低不純物濃度領域(真正領域) 3 高不純物濃度領域 4 P型高濃度領域 5 保護膜 J PN接合 1 N-type semiconductor substrate (high concentration n-type region) 2 Low impurity concentration region (authentic region) 3 High impurity concentration region 4 P-type high concentration region 5 Protective film J PN junction

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 p型高不純物濃度領域とn型高不純物濃
度領域及び、前記両領域の間に介在する低不純物濃度領
域よりなるダイオ−ドにおいて、低不純物濃度領域内
に、これと同導電型で、かつ高不純物濃度領域が少なく
とも一つ存在し、この低不純物濃度領域中の高不純物濃
度領域とpn接合が隣接するように形成されたことを特
徴とするダイオ−ド。
1. A diode comprising a p-type high impurity concentration region, an n-type high impurity concentration region, and a low impurity concentration region interposed between the both regions, and has the same conductivity in the low impurity concentration region. A diode characterized in that at least one high-impurity-concentration region exists, and the high-impurity-concentration region in the low-impurity-concentration region is formed to be adjacent to the pn junction.
【請求項2】 低不純物濃度領域中の高不純物濃度領域
の不純物濃度を、pn接合に近い側ほど高くした事を特
徴とする請求項1のダイオ−ド。
2. The diode according to claim 1, wherein the impurity concentration of the high impurity concentration region in the low impurity concentration region is increased toward the side closer to the pn junction.
【請求項3】 p型高不純物濃度領域とn型高不純物濃
度領域及び、前記両領域の間に介在する低不純物濃度領
域よりなるダイオ−ドにおいて、低不純物濃度領域の不
純物濃度をpn接合に近い側ほど高くした事を特徴とす
るダイオ−ド。
3. A diode comprising a p-type high impurity concentration region, an n-type high impurity concentration region, and a low impurity concentration region interposed between the both regions, wherein the impurity concentration of the low impurity concentration region is a pn junction. A diode characterized in that the closer it is, the higher it is.
JP8800794A 1994-03-31 1994-03-31 Diode Pending JPH07273354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8800794A JPH07273354A (en) 1994-03-31 1994-03-31 Diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8800794A JPH07273354A (en) 1994-03-31 1994-03-31 Diode

Publications (1)

Publication Number Publication Date
JPH07273354A true JPH07273354A (en) 1995-10-20

Family

ID=13930756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8800794A Pending JPH07273354A (en) 1994-03-31 1994-03-31 Diode

Country Status (1)

Country Link
JP (1) JPH07273354A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318412A (en) * 2002-02-20 2003-11-07 Fuji Electric Co Ltd Semiconductor device and manufacturing method therefor
US7102207B2 (en) 2002-12-03 2006-09-05 Kabushiki Kaisha Toshiba Semiconductor device having rectifying action
KR100695306B1 (en) * 2001-06-21 2007-03-14 삼성전자주식회사 manufacturing method of PIN diode
JP2007123932A (en) * 2001-02-23 2007-05-17 Fuji Electric Device Technology Co Ltd Semiconductor device
WO2009022592A1 (en) * 2007-08-13 2009-02-19 The Kansai Electric Power Co., Inc. Soft recovery diode
WO2010026653A1 (en) * 2008-09-05 2010-03-11 株式会社 東芝 Memory device
US8829519B2 (en) 2007-09-20 2014-09-09 Mitsubishi Electric Corporation Semiconductor device
JP2016009871A (en) * 2014-06-26 2016-01-18 アーベーベー・テクノロジー・アーゲー Reverse conducting power semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123932A (en) * 2001-02-23 2007-05-17 Fuji Electric Device Technology Co Ltd Semiconductor device
KR100695306B1 (en) * 2001-06-21 2007-03-14 삼성전자주식회사 manufacturing method of PIN diode
JP2003318412A (en) * 2002-02-20 2003-11-07 Fuji Electric Co Ltd Semiconductor device and manufacturing method therefor
JP4539011B2 (en) * 2002-02-20 2010-09-08 富士電機システムズ株式会社 Semiconductor device
US7102207B2 (en) 2002-12-03 2006-09-05 Kabushiki Kaisha Toshiba Semiconductor device having rectifying action
US7781869B2 (en) 2002-12-03 2010-08-24 Kabushiki Kaisha Toshiba Semiconductor device having rectifying action
WO2009022592A1 (en) * 2007-08-13 2009-02-19 The Kansai Electric Power Co., Inc. Soft recovery diode
JP2009049045A (en) * 2007-08-13 2009-03-05 Kansai Electric Power Co Inc:The Soft recovery diode
US8829519B2 (en) 2007-09-20 2014-09-09 Mitsubishi Electric Corporation Semiconductor device
WO2010026653A1 (en) * 2008-09-05 2010-03-11 株式会社 東芝 Memory device
JP2016009871A (en) * 2014-06-26 2016-01-18 アーベーベー・テクノロジー・アーゲー Reverse conducting power semiconductor device

Similar Documents

Publication Publication Date Title
JP4843253B2 (en) Power semiconductor device
CN102593168B (en) Semiconductor device and a reverse conducting IGBT
US7696598B2 (en) Ultrafast recovery diode
JP6356689B2 (en) Schottky diode and manufacturing method thereof
US7473965B2 (en) Structure of a high breakdown voltage element for use in high power applications
US8476712B2 (en) Surge-current-resistant semiconductor diode with soft recovery behavior and methods for producing a semiconductor diode
JPH08316500A (en) Diode and manufacture thereof
EP0074642B1 (en) Low-loss and high-speed diodes
JPWO2011024214A1 (en) Fast recovery diode
JP4119148B2 (en) diode
EP2256813A2 (en) Electric power conversion device
CN114551601B (en) Silicon carbide MOSFET (Metal-oxide-semiconductor field Effect transistor) of integrated grid-controlled diode with high surge current resistance
US7838970B2 (en) Semiconductor component with high concentration doped zone embedded in emitter region
US8592903B2 (en) Bipolar semiconductor device and manufacturing method
JPH07273354A (en) Diode
JP2006245475A (en) Semiconductor device and its manufacturing method
JPH033954B2 (en)
JP3468571B2 (en) Semiconductor device
JP2934606B2 (en) Semiconductor device
CN110534582B (en) Fast recovery diode with composite structure and manufacturing method thereof
CN110504324B (en) High-voltage transient voltage suppression diode
JPH0286173A (en) Semiconductor diode
JP2003124478A (en) Semiconductor device
JPS62115880A (en) P-n junction element
JP2000058867A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040520

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A02 Decision of refusal

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A02