JPH07268635A - Pressure control method and reaction treatment device - Google Patents

Pressure control method and reaction treatment device

Info

Publication number
JPH07268635A
JPH07268635A JP5748494A JP5748494A JPH07268635A JP H07268635 A JPH07268635 A JP H07268635A JP 5748494 A JP5748494 A JP 5748494A JP 5748494 A JP5748494 A JP 5748494A JP H07268635 A JPH07268635 A JP H07268635A
Authority
JP
Japan
Prior art keywords
pressure
chamber
reaction
passage
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5748494A
Other languages
Japanese (ja)
Other versions
JP3477236B2 (en
Inventor
Noboru Nakao
昇 中尾
Takeshi Kanda
神田  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP05748494A priority Critical patent/JP3477236B2/en
Publication of JPH07268635A publication Critical patent/JPH07268635A/en
Application granted granted Critical
Publication of JP3477236B2 publication Critical patent/JP3477236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the failure of partition walls by receiving the influence of pressure with the device executing a chemical vapor deposition method by delineating a reaction chamber by these partition walls in a high-pressure vessel and maintaining a high pressure in this reaction chamber. CONSTITUTION:This reaction treatment device is provided with a pilot operated pressure control valve 43 between a gas supply pipeline 47 connected to a furnace chamber 14 between the high-pressure vessel 1 and the reaction chamber 12 and a gas conduit 40 connected to the reaction chamber 12. The internal pressures of the reaction chamber 12 and the furnace chamber 14 are compared at all times by the valve. The gas in a cylinder 48 is supplied into the furnace chamber 14 to increase the internal pressure of the furnace chamber 14 when the internal pressure of the reaction chamber 12 is higher. A release state is generated in the furnace chamber 14 to drop the internal pressure thereof when the internal pressure of the furnace chamber 14 is higher. As a result, the generation of the pressure difference between both chambers is obviated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として、気相化学蒸
着法等を高温高圧下で行うようにした反応処理装置等に
おいて実施される圧力制御方法及びその反応処理装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a pressure control method and its reaction processing apparatus which are carried out in a reaction processing apparatus or the like in which a vapor phase chemical vapor deposition method or the like is performed under high temperature and high pressure.

【0002】[0002]

【従来の技術】気相化学蒸着法は、例えばメタン、プロ
パン等の炭化水素系のガスを原料ガスとして高温下で分
解させ、被処理物上に炭化膜(熱分解炭素膜)を形成さ
せるものである。このような蒸着法を実施する装置とし
てはホットウォール型が多用されている。この装置は、
被処理物を設置する反応室の外部に、原料ガスとは隔絶
する形で熱源をおき、被処理物を間接的に加熱するよう
にしたものである。この場合、被処理物は常圧下で処理
されるのが一般的である。
2. Description of the Related Art In the vapor phase chemical vapor deposition method, a hydrocarbon gas such as methane or propane is decomposed at a high temperature as a raw material gas to form a carbonized film (pyrolytic carbon film) on an object to be processed. Is. A hot wall type is often used as an apparatus for performing such a vapor deposition method. This device
A heat source is provided outside the reaction chamber in which the material to be processed is installed so as to be isolated from the source gas, and the material to be processed is indirectly heated. In this case, the object to be treated is generally treated under normal pressure.

【0003】一方、近時においては処理速度の高速化等
を目的として、この種蒸着法を高圧下において実施する
ことが試みられるようになってきた。
On the other hand, recently, it has been attempted to carry out this kind of vapor deposition method under high pressure for the purpose of increasing the processing speed.

【0004】[0004]

【発明が解決しようとする課題】反応室内を高圧にする
ことに伴い、該反応室を画成する隔壁を破損から防止す
る必要が生じ、そのため従来は、反応室全体を高圧容器
内へ設けて反応室の室内とその室外(炉室となる)とで
圧力均衡を図る構成とすることが考えられている。
With increasing the pressure in the reaction chamber, it is necessary to prevent the partition walls that define the reaction chamber from being damaged. Therefore, conventionally, the entire reaction chamber has been provided in a high-pressure container. It is considered that the pressure is balanced between the inside of the reaction chamber and the outside thereof (which becomes the furnace chamber).

【0005】そしてこの構成を実現させるうえで制御の
正確さ(隔壁破損の徹底した防止)及び構造の簡潔化が
希求されるようになっている。本発明は上記事情に鑑み
てなされたものであって、反応室内外の圧力均衡を構造
簡潔にして、しかも正確に制御できるようにした圧力制
御方法及び反応処理装置を提供することを目的とする。
In order to realize this structure, accuracy of control (complete prevention of breakage of partition walls) and simplification of structure are demanded. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a pressure control method and a reaction processing apparatus that enable the pressure balance inside and outside the reaction chamber to be structurally simplified and accurately controlled. .

【0006】[0006]

【課題を解決するための手段】本発明では、上記目的を
達成するために、次の技術的手段を講じた。即ち、請求
項1に係る本発明の圧力制御方法は、加圧流体源に接続
された圧力室とこれに付属する付属室との圧力制御方法
において、互いの室の内圧を比較して付属室の内圧が高
い場合には加圧流体源と圧力室とを連通させ、一方圧力
室の内圧が高い場合には当該圧力室の内圧を大気解放さ
せることで圧力室と付属室とを圧力均衡させることを特
徴としている。
In order to achieve the above object, the present invention takes the following technical means. That is, in the pressure control method of the present invention according to claim 1, in the pressure control method of the pressure chamber connected to the pressurized fluid source and the auxiliary chamber attached to the pressure chamber, the internal pressures of the chambers are compared to each other and the auxiliary chamber is compared. When the internal pressure of the pressure chamber is high, the pressurized fluid source is communicated with the pressure chamber, while when the internal pressure of the pressure chamber is high, the internal pressure of the pressure chamber is released to the atmosphere to balance the pressure between the pressure chamber and the auxiliary chamber. It is characterized by that.

【0007】前記圧力室又は付属室のいずれか一方の内
圧を、昇圧手段又は減圧手段を介して比例変化させた
後、内圧比較を行い、両室間に圧力差を生じさせるよう
にすることもできる。請求項3に係る本発明の反応処理
装置は、高圧容器内に倒立コップ形状の断熱層を設ける
と共に該断熱層の内側に隔壁を設け、断熱層と隔壁との
間に加熱体を設けてこれを炉室とすると共に隔壁内部を
被処理物の反応室とし、炉室に対しては非反応性ガスの
供給路を設け、反応室に対しては原料ガスの導入路及び
経路中に反応圧力調整弁を具備した排出路を設けて成
り、前記供給路の一次端には前記反応圧力調整弁により
設定される反応室の上限圧よりも高い圧力を有する非反
応性ガス源が設けられ、供給路の経路中にはパイロット
型圧力制御弁が介設され、該圧力制御弁は反応室の内圧
が炉室の内圧より高い場合にのみ供給路を連通させ、反
応室の内圧が炉室の内圧より低くなった場合には当該炉
室を大気解放させるように構成されていることを特徴と
している。
It is also possible to proportionally change the internal pressure of either the pressure chamber or the auxiliary chamber via the pressure increasing means or the pressure reducing means and then compare the internal pressures to generate a pressure difference between the two chambers. it can. In the reaction treatment apparatus of the present invention according to claim 3, an inverted cup-shaped heat insulating layer is provided in the high-pressure container, a partition is provided inside the heat insulating layer, and a heating element is provided between the heat insulating layer and the partition. And the inside of the partition wall as the reaction chamber of the object to be treated, the reactor chamber is provided with a non-reactive gas supply passage, and the reaction chamber is provided with a reaction pressure in the introduction passage and the passage of the raw material gas. A discharge passage provided with a regulating valve is provided, and a non-reactive gas source having a pressure higher than the upper limit pressure of the reaction chamber set by the reaction pressure regulating valve is provided at the primary end of the supply passage to supply the gas. A pilot type pressure control valve is provided in the path, and the pressure control valve connects the supply path only when the internal pressure of the reaction chamber is higher than the internal pressure of the furnace chamber. It is configured to release the furnace chamber to the atmosphere when it becomes lower It is characterized by a door.

【0008】前記パイロット型圧力制御弁と反応室と
は、原料ガスの導入路および排出路とは独立した動力ガ
ス導路により接続しておくのが好ましい。また、請求項
5に係る本発明の反応処理装置は、高圧容器内に倒立コ
ップ形状の断熱層を設けると共に該断熱層の内側に隔壁
を設け、断熱層と隔壁との間に加熱体を設けてこれを炉
室とすると共に隔壁内部を被処理物の反応室とし、炉室
に対しては経路中に圧力調整弁を具備した非反応性ガス
の供給路を設け、反応室に対しては原料ガスの導入路及
び経路中に反応圧力調整弁を具備した排出路を設けて成
り、前記隔壁は気体浸透性を有しており、前記圧力調整
弁を反応圧力調整弁よりも高い圧力に設定して炉室内の
非反応性ガスが隔壁を介して反応室内へ浸入する状態が
常に保持されるようにすると共に、前記供給路を流れる
非反応性ガスが流量調整器を介して導入路内の原料ガス
と混合可能になされていることを特徴としている。
It is preferable that the pilot type pressure control valve and the reaction chamber are connected to each other through a power gas conduit which is independent of the raw gas introducing passage and the discharge passage. Further, in the reaction treatment apparatus of the present invention according to claim 5, an inverted cup-shaped heat insulating layer is provided in the high-pressure container, a partition is provided inside the heat insulating layer, and a heating element is provided between the heat insulating layer and the partition. And the inside of the partition wall as a reaction chamber for the object to be treated, a furnace chamber is provided with a non-reactive gas supply path equipped with a pressure control valve, and a reaction chamber is provided with A discharge path provided with a reaction pressure adjusting valve is provided in the raw material gas introducing path and the path, the partition wall has gas permeability, and the pressure adjusting valve is set to a pressure higher than that of the reaction pressure adjusting valve. The state in which the non-reactive gas in the furnace chamber intrudes into the reaction chamber through the partition wall is always maintained, and the non-reactive gas flowing in the supply channel is introduced in the introduction channel via the flow rate controller. It is characterized in that it can be mixed with the raw material gas.

【0009】前記供給路に非反応性ガス用の流量検出器
を設け、該流量検出器からの信号によって前記流量調整
器を制御するように構成するのが好ましい。前記供給路
と導入路とを、高圧容器外で開閉弁を介して連通可能に
しておくのが好ましい。
It is preferable that a flow rate detector for non-reactive gas is provided in the supply passage and the flow rate regulator is controlled by a signal from the flow rate detector. It is preferable that the supply passage and the introduction passage can be communicated with each other outside the high-pressure container via an on-off valve.

【0010】[0010]

【作用】請求項1乃至請求項4の本発明によれば、付属
室(例えば反応室とする)の内圧が圧力室(例えば炉室
とする)の内圧よりも高い場合には、加圧流体源(例え
ば非反応性ガスのボンベ)から圧力室へと加圧流体が供
給される状態にし、圧力室の内圧を昇圧させる。一方、
圧力室の内圧が付属室の内圧より高い場合には、圧力室
を解放することでその内圧を減圧させる。このようにし
て付属室の内圧に対し、常に圧力室の内圧を均衡させる
ようにする。
According to the present invention of claims 1 to 4, when the internal pressure of the auxiliary chamber (for example, reaction chamber) is higher than the internal pressure of the pressure chamber (for example, furnace chamber), the pressurized fluid is used. The pressurized fluid is supplied from the source (for example, a cylinder of non-reactive gas) to the pressure chamber to increase the internal pressure of the pressure chamber. on the other hand,
When the internal pressure of the pressure chamber is higher than the internal pressure of the accessory chamber, the internal pressure is reduced by releasing the pressure chamber. In this way, the internal pressure of the pressure chamber is always balanced with the internal pressure of the accessory chamber.

【0011】付属室と圧力室との内圧比較を行うに際
し、いずれか一方を、比較前の時点で昇圧手段又は減圧
手段により比例変化させておくことで、両室間に圧力差
を生じさせることが可能である。パイロット型圧力制御
弁と付属室(反応室)とを、独立した動力ガス導路によ
って接続しておけば、当該圧力制御弁の作動に外乱が影
響し難くなる。
When comparing the internal pressures of the auxiliary chamber and the pressure chamber, a pressure difference is generated between the two chambers by proportionally changing one of them by the pressure increasing means or the pressure reducing means before the comparison. Is possible. If the pilot type pressure control valve and the auxiliary chamber (reaction chamber) are connected to each other by an independent power gas conduit, disturbance is unlikely to affect the operation of the pressure control valve.

【0012】請求項5乃至請求項7の本発明によれば、
反応室の隔壁を気体浸透性のものとしたり、供給路と導
入路とを接続したりすることで、反応室内の原料ガスに
非反応性ガスを混合させ、これにより炉室の内圧と反応
室の内圧との圧力均衡を図ることができる。
According to the present invention of claims 5 to 7,
By making the partition wall of the reaction chamber gas permeable or connecting the supply passage and the introduction passage, the raw material gas in the reaction chamber is mixed with the non-reactive gas, whereby the internal pressure of the furnace chamber and the reaction chamber The pressure can be balanced with the internal pressure of.

【0013】[0013]

【実施例】以下、図を参照して本発明方法及び装置の実
施例を詳説する。本発明に係る反応処理装置の第1実施
例を示す図1において、円筒状に形成された高圧容器1
の上下開口部には上蓋2及び下蓋3が嵌合され、シール
部材4,5によって気密を保持することにより高圧室6
が形成してある。なお、上下蓋2,3に作用する軸力
は、図示していないが上下蓋2,3に係脱自在に係合す
る旋回形もしくは走行台車形のプレスフレームで担持す
るようになっている。
Embodiments of the method and apparatus of the present invention will be described below in detail with reference to the drawings. In FIG. 1 showing a first embodiment of a reaction processing apparatus according to the present invention, a high pressure container 1 formed in a cylindrical shape.
The upper lid 2 and the lower lid 3 are fitted in the upper and lower openings of the high pressure chamber 6 by keeping airtightness by the seal members 4 and 5.
Is formed. Although not shown, the axial force acting on the upper and lower lids 2 and 3 is carried by a swivel type or traveling trolley type press frame which is detachably engaged with the upper and lower lids 2 and 3.

【0014】高圧室6内には倒立コップ形状の断熱層7
が設置され、該断熱層7の更に内側には倒立コップ形状
の隔壁8が設置されている。図示例では隔壁8が下蓋3
上にシール部材9を介して固設され、その内部に被処理
物10を設置する試料台11が設けられることで、隔壁
8の内部が反応室12として画成されている。また高圧
室6内において断熱層7と隔壁8との間には加熱体13
が設置されており、この部分が炉室14とされている。
In the high-pressure chamber 6, an inverted cup-shaped heat insulating layer 7 is provided.
Is installed, and an inverted cup-shaped partition wall 8 is installed further inside the heat insulating layer 7. In the illustrated example, the partition wall 8 is the lower lid 3.
The inside of the partition wall 8 is defined as a reaction chamber 12 by being fixedly provided on the upper side with a seal member 9 and provided with a sample table 11 on which an object to be treated 10 is placed. Further, in the high pressure chamber 6, a heating body 13 is provided between the heat insulating layer 7 and the partition wall 8.
Is installed, and this part is the furnace chamber 14.

【0015】下蓋3には、反応室12の内外に連通する
通路18と、この通路18の室内側に接続された内部管
19と、通路18の室外側に接続された外部管20とよ
り成る導入路21が設けられている。この導入路21の
一次端21aには原料ガス(メタンガス等)を充填した
ボンベ等の加圧流体源22が接続されていると共に、そ
の経路中には開閉弁25、圧力調整弁26、流量調整器
27が介設されている。
The lower lid 3 has a passage 18 communicating with the inside and outside of the reaction chamber 12, an inner pipe 19 connected to the inside of the passage 18 and an outer pipe 20 connected to the outside of the passage 18. Is provided. A pressurized fluid source 22 such as a cylinder filled with a raw material gas (such as methane gas) is connected to a primary end 21a of the introduction path 21, and an opening / closing valve 25, a pressure adjusting valve 26, and a flow rate adjusting are provided in the path. The container 27 is provided.

【0016】また下蓋3には、上記導入路21とは別
に、反応室12の内外に連通する通路30とこの通路3
0の室外側に接続された外部管31とより成る排出路3
2が設けられている。この排出路32の経路中には開閉
弁33及び反応圧力調整弁34が介設され、二次端32
aは解放されている。この反応圧力調整弁34よりも、
導入路21に設けられた圧力調整弁26の方が設定圧力
を高くされていることは言うまでもない。
In addition to the introduction passage 21, the lower lid 3 has a passage 30 communicating with the inside and outside of the reaction chamber 12, and the passage 30.
Discharge path 3 consisting of an outer pipe 31 connected to the outdoor side of 0
Two are provided. An on-off valve 33 and a reaction pressure adjusting valve 34 are provided in the discharge passage 32, and the secondary end 32
a is released. Than the reaction pressure control valve 34
It goes without saying that the pressure adjustment valve 26 provided in the introduction passage 21 has a higher set pressure.

【0017】更に下蓋3には、導入路21、排出路32
とは更に別個独立して、反応室12の内外に連通する通
路38とこの通路38の室外側に接続された外部管39
とより成る動力ガス導路40が設けられている。この動
力ガス導管40は、後述するパイロット型圧力制御弁4
3に接続されている。なお、動力ガス導管40は、特に
その通路38において、他の通路18又は30等との兼
用構成とすることも可能であるが、このようにすると原
料ガスにより生成される熱分解炭素等の蒸着物で管路閉
塞が発生した場合に、圧力制御弁43の動作に外乱が及
ぶことになるので、上記のように動力ガス導路40は独
立構成とすることが望ましい。
Further, the lower lid 3 has an introduction passage 21 and a discharge passage 32.
Separately and independently of the above, a passage 38 communicating with the inside and outside of the reaction chamber 12 and an external pipe 39 connected to the outside of the passage 38.
Is provided with a power gas conduit 40. This power gas conduit 40 is used for the pilot type pressure control valve 4 described later.
Connected to 3. It should be noted that the power gas conduit 40 may be configured to serve as the other passage 18 or 30, especially in the passage 38, but in this case, vapor deposition of pyrolytic carbon or the like generated by the raw material gas is performed. When the pipe path is blocked by an object, the operation of the pressure control valve 43 is disturbed, so that it is desirable that the power gas guide path 40 has an independent structure as described above.

【0018】上蓋2には、高圧室6(炉室14)の内外
に連通する通路45とこの通路45の室外側に接続され
た外部管46とより成る供給路47が設けられている。
この供給路47の一次端47aには非反応性ガスを充填
したボンベ等の加圧流体源48が接続されていると共
に、その経路中には開閉弁49とパイロット型圧力制御
弁43とが介設されている。非反応性ガスとしては、ア
ルゴンガス等の希ガス又は窒素ガス等を用いることがで
きる。
The upper lid 2 is provided with a supply passage 47 consisting of a passage 45 communicating with the inside and outside of the high pressure chamber 6 (furnace chamber 14) and an external pipe 46 connected to the outside of the passage 45.
A pressurized fluid source 48 such as a cylinder filled with a non-reactive gas is connected to the primary end 47a of the supply path 47, and an opening / closing valve 49 and a pilot type pressure control valve 43 are interposed in the path. It is set up. As the non-reactive gas, a rare gas such as argon gas or a nitrogen gas can be used.

【0019】上記パイロット型圧力制御弁43は、図2
に示すように弁部50と比較部51とが互いに連結され
て成る。弁部50には、供給路47における加圧流体源
48側との接続に供される一次口部52及び炉室14側
との接続に供される二次口部53が設けられ、比較部5
1には、動力ガス導管40により反応室12側との接続
に供されるパイロット口部55及びバイパス管56によ
り炉室14側との接続に供されるパイロット口部57が
設けられている。そして、反応室12の内圧と炉室14
の内圧とを比較部51において常時比較して、反応室1
2の内圧が炉室14の内圧よりも高い場合には、加圧流
体源48(一次口部52側)と炉室14(二次口部53
側)とを連通状態にして炉室14の内圧を高めるように
し、また反対に炉室14の内圧が反応室12の内圧より
も高い場合には、解放口部50aを介して反応室12を
解放することでその内圧を減圧させるように構成されて
いる。そのため、炉室14の内圧に対し、反応室12の
内圧が常に均衡されるようになっている。
The pilot type pressure control valve 43 is shown in FIG.
As shown in, the valve section 50 and the comparison section 51 are connected to each other. The valve part 50 is provided with a primary port part 52 used for connection with the pressurized fluid source 48 side in the supply path 47 and a secondary port part 53 used for connection with the furnace chamber 14 side. 5
1 is provided with a pilot port 55 provided for connection to the reaction chamber 12 side by the power gas conduit 40 and a pilot port 57 provided for connection with the furnace chamber 14 side by the bypass pipe 56. Then, the internal pressure of the reaction chamber 12 and the furnace chamber 14
The internal pressure of the reaction chamber 1 is constantly compared with that of the reaction chamber 1
When the internal pressure of 2 is higher than the internal pressure of the furnace chamber 14, the pressurized fluid source 48 (on the side of the primary opening 52) and the furnace chamber 14 (the secondary opening 53).
Side) to increase the internal pressure of the furnace chamber 14, and conversely, when the internal pressure of the furnace chamber 14 is higher than the internal pressure of the reaction chamber 12, the reaction chamber 12 is opened via the release port 50a. When released, the internal pressure is reduced. Therefore, the internal pressure of the reaction chamber 12 is always balanced with the internal pressure of the furnace chamber 14.

【0020】この反応処理装置の使用状況を説明する。
まず、反応室12内を、排出路32を介して図示しない
真空ポンプにより真空引きした後、加圧流体源22から
導入路21を介して原料ガスを反応室12内へ供給す
る。このとき、原料ガスは流量調整器27によって流量
が所定に制御されると共に、反応圧力調整弁34により
反応室12の内圧が一定に保持されるようになってい
る。更にこの反応室12の内圧は、上記圧力制御弁43
によって炉室14の内圧と均衡される。このような状態
で加熱体13により隔壁8を介して被処理物10を所定
温度に間接加熱することで、気相化学蒸着反応により被
処理物10上に蒸着膜が形成又は反応されるようにな
る。処理終了後は、加熱体13の加熱を停止させると共
に開閉弁25を閉止して原料ガスの供給を停止し、反応
室12内のガスを排出路32を介して排気させる。
The usage status of this reaction processing apparatus will be described.
First, the inside of the reaction chamber 12 is evacuated by a vacuum pump (not shown) through the discharge passage 32, and then the source gas is supplied from the pressurized fluid source 22 into the reaction chamber 12 through the introduction passage 21. At this time, the flow rate of the raw material gas is controlled to a predetermined value by the flow rate regulator 27, and the internal pressure of the reaction chamber 12 is kept constant by the reaction pressure regulating valve 34. Furthermore, the internal pressure of the reaction chamber 12 is the pressure control valve 43.
Is balanced with the internal pressure of the furnace chamber 14. In such a state, the object to be processed 10 is indirectly heated to a predetermined temperature through the partition wall 8 by the heating body 13 so that a vapor deposition film is formed or reacted on the object to be processed 10 by the vapor phase chemical vapor deposition reaction. Become. After the processing is finished, the heating of the heating element 13 is stopped, the on-off valve 25 is closed to stop the supply of the raw material gas, and the gas in the reaction chamber 12 is exhausted through the exhaust passage 32.

【0021】このような一連の過程では、反応室12内
の温度変化に伴い、ガスの膨張又は収縮が起こるが、上
記したように圧力制御弁43が常に圧力均衡を行ってい
るため、反応室12の内圧と炉室14の内圧とは自動的
に同圧とされ、従って隔壁8が圧力差を原因として破損
することはない。本発明に係る圧力制御方法は、反応処
理装置への実施が限定されるものではなく、図3に模式
図で示すように圧力室Aと付属室Bとの二室の圧力均衡
を図るための技術として広く汎用可能である。なお、同
図において圧力室Aを前記実施例の炉室14に対応さ
せ、付属室Bを反応室12に対応させるならば、圧力室
Aに接続されている加圧流体源Cは非反応性ガスのボン
ベ(符号48参照)に対応するものとなるが、これとは
逆に、圧力室Aを反応室12に、付属室Bを炉室14に
対応させることも可能であり、この場合加圧流体源Cは
原料ガスのボンベ(符号22参照)に対応したものとな
る。このような構成の変更に伴い、圧力室Aと加圧流体
源Cとを接続する配管が供給路47とされたり又は導入
路21とされたりするものであり、また動力ガス導管4
0の接続対象も異なるようになることは言うまでもな
い。
In such a series of processes, the gas expands or contracts in accordance with the temperature change in the reaction chamber 12, but since the pressure control valve 43 constantly carries out pressure balance as described above, The internal pressure of 12 and the internal pressure of the furnace chamber 14 are automatically made equal, and therefore the partition wall 8 is not damaged due to the pressure difference. The pressure control method according to the present invention is not limited to the implementation in the reaction processing apparatus, and is used for achieving the pressure balance between the two chambers of the pressure chamber A and the auxiliary chamber B as shown in the schematic view of FIG. It can be widely used as a technology. In the figure, if the pressure chamber A corresponds to the furnace chamber 14 of the above-described embodiment and the auxiliary chamber B corresponds to the reaction chamber 12, the pressurized fluid source C connected to the pressure chamber A is non-reactive. Although it corresponds to a gas cylinder (see reference numeral 48), it is also possible to correspond the pressure chamber A to the reaction chamber 12 and the auxiliary chamber B to the furnace chamber 14 on the contrary. The pressure fluid source C corresponds to a cylinder of the source gas (see reference numeral 22). With such a configuration change, the pipe connecting the pressure chamber A and the pressurized fluid source C is used as the supply passage 47 or the introduction passage 21, and the power gas conduit 4 is also used.
It goes without saying that the connection target of 0 will also be different.

【0022】図4は、動力ガス導管40に昇圧手段60
を介設した例を示したものであって、この昇圧手段60
は、付属室Bの内圧を受ける受圧面積が、圧力制御弁4
3側、即ち圧力室Aの内圧を受ける受圧面積に比して大
きく形成されたピストン構造を有して成る。そのため、
圧力制御弁43は必然的に、圧力室Aよりも付属室Bの
内圧の影響を強く受けるようになり、両室間に圧力差を
生じさせたまま、圧力均衡を行うようになる。なお、昇
圧手段60は供給路47(又は導入路21)に対して設
けるようにすることも可能であり、また図示は省略する
が、昇圧手段60を逆向きに接続することでこれを減圧
手段として用いることもできる。
FIG. 4 shows a boosting means 60 for the power gas conduit 40.
This is an example in which the booster means 60 is provided.
Is the pressure receiving area that receives the internal pressure of the auxiliary chamber B,
On the third side, that is, the piston structure is formed larger than the pressure receiving area for receiving the internal pressure of the pressure chamber A. for that reason,
The pressure control valve 43 inevitably becomes more affected by the internal pressure of the auxiliary chamber B than that of the pressure chamber A, and the pressure is balanced while the pressure difference between the two chambers is generated. The boosting means 60 may be provided on the supply path 47 (or the introduction path 21), and although not shown in the drawing, the boosting means 60 is connected in the opposite direction to reduce the pressure. Can also be used as

【0023】図5は、本発明に係る反応処理装置の第2
実施例を示したもので、前記パイロット型圧力制御弁4
3を用いない代わりに以下の構成を具備している。すな
わち、反応室12を画成する隔壁62が気体浸透性を有
した構成、例えば炭素材料によって形成され、供給路4
7の経路中には、排出路32に設けられた反応圧力調整
弁34より設定圧力を若干高くなされた圧力調整弁63
が介設されている。
FIG. 5 shows a second embodiment of the reaction processing apparatus according to the present invention.
The embodiment shows an example of the pilot type pressure control valve 4
Instead of using No. 3, the following configuration is provided. That is, the partition wall 62 that defines the reaction chamber 12 is formed of a gas permeable structure, for example, a carbon material, and the supply passage 4
In the passage of No. 7, the pressure adjusting valve 63 whose set pressure is slightly higher than that of the reaction pressure adjusting valve 34 provided in the discharge passage 32
Is installed.

【0024】そのため、加圧流体源48から圧力調整弁
63を介して炉室14内へ供給された非反応性ガスは、
常に、隔壁62を介して反応室12内へ僅かづつ浸入す
るようになされており、そもそも隔壁62に対して反応
室12の内外から無理な圧力が作用することはない。勿
論、反応室12内の原料ガスが炉室14へ漏れだすこと
もない。このような非反応性ガスの浸入はまた、加熱体
13から被処理物10への熱伝達を促進させると共に、
隔壁62の内面での無用な蒸着反応生成を抑える利点を
も有する。
Therefore, the non-reactive gas supplied from the pressurized fluid source 48 into the furnace chamber 14 via the pressure regulating valve 63 is
At all times, the gas slightly invades into the reaction chamber 12 via the partition wall 62, and in the first place, no unreasonable pressure acts on the partition wall 62 from inside and outside the reaction chamber 12. Of course, the raw material gas in the reaction chamber 12 does not leak into the furnace chamber 14. Infiltration of such a non-reactive gas also promotes heat transfer from the heating body 13 to the object to be processed 10, and
It also has an advantage of suppressing unnecessary vapor deposition reaction generation on the inner surface of the partition wall 62.

【0025】供給路47には、圧力計64からの信号を
受けて制御器65により開閉制御される解放弁66が設
けられており、炉室14の内圧が所定値を超えて昇圧し
ないようになっている。なお、加熱体13についても隔
壁62と同じ炭素材料製とすることで、炭化水素系ガス
による炭化膜合成に対する高温下での耐熱性及び隔壁に
ついては耐反応性も得られる。この他、隔壁62には多
孔質の酸化セラミックスを用いることも可能であり、こ
の場合には高温下での酸化耐性が得られる。また隔壁6
2として、微小分散開口部を備えた構成のもの(形成材
料自体としては、気密性を有したもの(例えば金属材
料)でもよい)を用いることもできる。
The supply passage 47 is provided with a release valve 66 which is opened / closed by a controller 65 in response to a signal from the pressure gauge 64 so that the internal pressure of the furnace chamber 14 does not exceed a predetermined value. Has become. By using the same carbon material as the partition wall 62 for the heating body 13, heat resistance at high temperature against the synthesis of the carbonized film by the hydrocarbon-based gas and reaction resistance of the partition wall can also be obtained. Besides, it is also possible to use porous oxide ceramics for the partition wall 62, and in this case, oxidation resistance at high temperature can be obtained. Also, the partition wall 6
As the material 2, a material having a minute dispersion opening may be used (the forming material itself may be airtight (for example, a metal material)).

【0026】また、供給路47における上記圧力調整弁
63の一次側と、導入路21における流量調整器27の
二次側との間が第1バイパス路67で接続されており、
この第1バイパス路67には開閉弁68、圧力調整器6
9、流量調整器70が介設されている。そのため、必要
に応じて非反応性ガスを積極的に原料ガスと混合させる
ようなことも可能となっており、例えば、隔壁62を浸
入する非反応性ガス量が少ない場合等の対処が可能とな
る。
A first bypass passage 67 connects the primary side of the pressure regulating valve 63 in the supply passage 47 and the secondary side of the flow rate regulator 27 in the introduction passage 21.
An opening / closing valve 68 and a pressure regulator 6 are provided in the first bypass passage 67.
9. A flow rate regulator 70 is provided. Therefore, it is possible to positively mix the non-reactive gas with the raw material gas as necessary, and for example, it is possible to deal with the case where the amount of the non-reactive gas that enters the partition wall 62 is small. Become.

【0027】上記流量調整器70は遠隔制御可能な構成
とされており、供給路47に介設された流量検出器71
からの信号で動作する指示器72により、流量制御が可
能となっている。そのため、非反応性ガスの総合的ガス
量を所定且つ一定に保てるようになり、反応制御のうえ
で有益となっている。また導入路21における通路18
の一次側、及び供給路47における通路45の一次側
に、それぞれ開閉弁75,76が介設されていると共
に、これら開閉弁75,76の二次側相互間が、開閉弁
77を具備した第2バイパス路78によって接続されて
いる。
The flow rate regulator 70 is constructed so as to be remotely controllable, and the flow rate detector 71 is provided in the supply path 47.
The flow rate can be controlled by the indicator 72 which is operated by the signal from. Therefore, the total gas amount of the non-reactive gas can be maintained at a predetermined and constant value, which is useful for reaction control. In addition, the passage 18 in the introduction passage 21
On-off valves 75 and 76 are provided on the primary side of the supply path 47 and on the primary side of the passage 45, respectively, and an on-off valve 77 is provided between the secondary sides of these on-off valves 75 and 76. It is connected by the second bypass passage 78.

【0028】そのため、この反応処理装置の運転開始時
には、開閉弁49,76,77を開状態にし、開閉弁2
5,68,75及び33を閉状態にして、加圧流体源4
8からの非反応性ガスを、反応室12内及び炉室14内
が同圧となるように充満させることができる。このよう
にすれば、加熱体13による加熱を開始させて所定温度
に達した後、開閉弁77を閉状態に、開閉弁75,33
を開状態に切り換えることで、原料ガスの導入を圧力差
を生じさせることなく開始することができる。この場
合、反応室12の内圧は反応圧力調整弁34によって調
整され、炉室14の内圧は圧力調整弁63によって調整
される。
Therefore, at the start of the operation of this reaction processing apparatus, the on-off valves 49, 76 and 77 are opened and the on-off valve 2 is opened.
5, 68, 75 and 33 are closed and the pressurized fluid source 4
The reaction chamber 12 and the furnace chamber 14 can be filled with the non-reactive gas from the chamber 8 so as to have the same pressure. In this way, after the heating by the heating element 13 is started and the predetermined temperature is reached, the on-off valve 77 is closed and the on-off valves 75 and 33 are closed.
By switching to the open state, the introduction of the raw material gas can be started without causing a pressure difference. In this case, the internal pressure of the reaction chamber 12 is adjusted by the reaction pressure adjusting valve 34, and the internal pressure of the furnace chamber 14 is adjusted by the pressure adjusting valve 63.

【0029】またこの反応処理装置の停止時には、まず
開閉弁25を閉状態にして反応室12内が非反応性ガス
に置換されるのを待ち、開閉弁33,49を閉状態に、
開閉弁77を開状態にすることで反応室12と炉室14
との圧力均衡を保持しつつ、最終的な停止に至らせるよ
うにする。その他の構成及び作用については第1実施例
と同じであり、同一符号を付することでその詳説は省略
する。
When the reaction processing apparatus is stopped, the on-off valve 25 is first closed to wait for the inside of the reaction chamber 12 to be replaced with the non-reactive gas, and the on-off valves 33 and 49 are closed.
By opening the open / close valve 77, the reaction chamber 12 and the furnace chamber 14 are opened.
We will try to reach the final stop while maintaining a pressure balance with. Other configurations and operations are the same as those in the first embodiment, and the detailed description thereof will be omitted by giving the same reference numerals.

【0030】なお、本発明は高圧下のみに限定されるも
のではなく、減圧下においても実施可能である。
The present invention is not limited to high pressure, but can be carried out under reduced pressure.

【0031】[0031]

【発明の効果】以上詳説した通り、本発明の方法及び装
置によれば、反応室内外の圧力均衡を構造簡潔にして、
しかも正確に制御できるようになり、反応室を画成する
隔壁が圧力差を原因として破損することは決してなく、
従って原料ガスの漏洩による電気絶縁破壊等の事故、故
障を徹底して防止することができる。
As described in detail above, according to the method and apparatus of the present invention, the pressure balance inside and outside the reaction chamber is simplified and the structure is simplified.
Moreover, it becomes possible to control accurately, and the partition wall that defines the reaction chamber is never damaged due to the pressure difference,
Therefore, it is possible to thoroughly prevent accidents and failures such as electric insulation breakdown due to leakage of the raw material gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例を示す全体構成断面図
である。
FIG. 1 is a sectional view of the overall configuration showing a first embodiment according to the present invention.

【図2】パイロット型圧力制御弁を拡大して示す動作説
明図である。
FIG. 2 is an operation explanatory view showing an enlarged pilot type pressure control valve.

【図3】本発明方法の原理を説明する模式図である。FIG. 3 is a schematic diagram illustrating the principle of the method of the present invention.

【図4】本発明方法において昇圧手段を用いた場合の模
式図である。
FIG. 4 is a schematic diagram when a boosting means is used in the method of the present invention.

【図5】本発明に係る第2実施例を示す全体構成断面図
である。
FIG. 5 is a sectional view showing the overall structure of a second embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1 高圧容器 7 断熱層 8 隔壁 10 被処理物 12 反応室 13 加熱体 14 炉室 21 導入路 32 排出路 34 反応圧力調整弁 40 動力ガス導路 43 パイロット型圧力制御弁 47 供給路 48 加圧流体源 60 昇圧手段 62 隔壁(気体浸透性を有したもの) 70 流量調整器 71 流量検出器 77 開閉弁 DESCRIPTION OF SYMBOLS 1 High-pressure container 7 Thermal insulation layer 8 Partition wall 10 Processed object 12 Reaction chamber 13 Heating body 14 Furnace chamber 21 Introducing path 32 Discharging path 34 Reaction pressure adjusting valve 40 Power gas guiding path 43 Pilot type pressure control valve 47 Supply path 48 Pressurized fluid Source 60 Pressure rising means 62 Partition wall (having gas permeability) 70 Flow rate regulator 71 Flow rate detector 77 Open / close valve

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 加圧流体源(48)に接続された圧力室
(炉室14参照)とこれに付属する付属室(反応室12
参照)との圧力制御方法において、互いの室の内圧を比
較して付属室(反応室12参照)の内圧が高い場合には
加圧流体源(48)と圧力室(炉室14参照)とを連通
させ、圧力室(炉室14参照)の内圧が高い場合には当
該圧力室(炉室14参照)を解放させることで圧力室
(炉室14参照)と付属室(反応室12参照)とを圧力
均衡させることを特徴とする圧力制御方法。
1. A pressure chamber (see furnace chamber 14) connected to a pressurized fluid source (48) and an auxiliary chamber (reaction chamber 12) attached thereto.
In the pressure control method of (1), the internal pressures of the chambers are compared with each other, and when the internal pressure of the auxiliary chamber (see the reaction chamber 12) is high, the pressurized fluid source (48) and the pressure chamber (see the furnace chamber 14) are used. And the internal pressure of the pressure chamber (see furnace chamber 14) is high, the pressure chamber (see furnace chamber 14) and the auxiliary chamber (see reaction chamber 12) are released by releasing the pressure chamber (see furnace chamber 14). A pressure control method comprising:
【請求項2】 前記圧力室(炉室14参照)又は付属室
(反応室12参照)のいずれか一方の内圧を、昇圧手段
又は減圧手段を介して比例変化させた後、内圧比較を行
い、両室間に圧力差を生じさせることを特徴とする請求
項1記載の圧力制御方法。
2. The internal pressure of any one of the pressure chamber (see the furnace chamber 14) and the auxiliary chamber (see the reaction chamber 12) is proportionally changed via the pressure increasing means or the pressure reducing means, and then the internal pressures are compared, The pressure control method according to claim 1, wherein a pressure difference is generated between both chambers.
【請求項3】 高圧容器(1)内に倒立コップ形状の断
熱層(7)を設けると共に該断熱層(7)の内側に隔壁
(8)を設け、断熱層(7)と隔壁(8)との間に加熱
体(13)を設けてこれを炉室(14)とすると共に隔
壁(8)内部を被処理物(10)の反応室(12)と
し、炉室(14)に対しては非反応性ガスの供給路(4
7)を設け、反応室(12)に対しては原料ガスの導入
路(21)及び経路中に反応圧力調整弁(34)を具備
した排出路(32)を設けて成り、前記供給路(47)
の一次端(47a)には前記反応圧力調整弁(34)に
より設定される反応室(12)の上限圧よりも高い圧力
を有する非反応性ガスの加圧流体源(48)が設けら
れ、供給路(47)の経路中にはパイロット型圧力制御
弁(43)が介設され、該圧力制御弁(43)は反応室
(12)の内圧が炉室(14)の内圧より高い場合にの
み供給路(47)を連通させ、反応室(12)の内圧が
炉室(14)の内圧より低くなった場合には当該炉室
(14)を解放させるように構成されていることを特徴
とする反応処理装置。
3. An insulating cup-shaped heat insulating layer (7) is provided in the high-pressure vessel (1), and a partition (8) is provided inside the heat insulating layer (7), and the heat insulating layer (7) and the partition (8). A heating element (13) is provided between the heating chamber and the heating chamber to form a furnace chamber (14), and the inside of the partition wall (8) serves as a reaction chamber (12) for the object to be treated (10). Is a non-reactive gas supply path (4
7) is provided, and an inlet passage (21) for the raw material gas and an outlet passage (32) provided with a reaction pressure adjusting valve (34) in the passage are provided to the reaction chamber (12), and the supply passage ( 47)
The primary end (47a) is provided with a pressurized fluid source (48) of non-reactive gas having a pressure higher than the upper limit pressure of the reaction chamber (12) set by the reaction pressure control valve (34), A pilot type pressure control valve (43) is provided in the supply path (47), and the pressure control valve (43) is provided when the internal pressure of the reaction chamber (12) is higher than the internal pressure of the furnace chamber (14). Only the supply path (47) is communicated, and when the internal pressure of the reaction chamber (12) becomes lower than the internal pressure of the furnace chamber (14), the furnace chamber (14) is released. And a reaction processing device.
【請求項4】 前記パイロット型圧力制御弁(43)と
反応室(12)とが原料ガスの導入路(21)および排
出路(32)とは独立した動力ガス導路(40)により
接続されていることを特徴とする請求項3記載の反応処
理装置。
4. The pilot type pressure control valve (43) and the reaction chamber (12) are connected to each other through a power gas conduit (40) independent of a feed gas introduction passage (21) and a discharge passage (32). The reaction processing apparatus according to claim 3, wherein
【請求項5】 高圧容器(1)内に倒立コップ形状の断
熱層(7)を設けると共に該断熱層(7)の内側に隔壁
(8)を設け、断熱層(7)と隔壁(8)との間に加熱
体(13)を設けてこれを炉室(14)とすると共に隔
壁(8)内部を被処理物(10)の反応室(12)と
し、炉室(14)に対しては経路中に圧力調整弁(6
3)を具備した非反応性ガスの供給路(47)を設け、
反応室(12)に対しては原料ガスの導入路(21)及
び経路中に反応圧力調整弁(34)を具備した排出路
(32)を設けて成り、前記隔壁(8)は気体浸透性を
有し、前記圧力調整弁(63)を反応圧力調整弁(3
4)よりも高い圧力に設定して炉室(14)内の非反応
性ガスが隔壁(8)を介して反応室(12)内へ浸入す
る状態が常に保持されるようにすると共に、前記供給路
(47)を流れる非反応性ガスが流量調整器(70)を
介して導入路(21)内の原料ガスと混合可能になされ
ていることを特徴とする反応処理装置。
5. A heat insulating layer (7) having an inverted cup shape is provided in the high pressure vessel (1), and a partition (8) is provided inside the heat insulating layer (7), and the heat insulating layer (7) and the partition (8). A heating element (13) is provided between the heating chamber and the heating chamber to form a furnace chamber (14), and the inside of the partition wall (8) serves as a reaction chamber (12) for the object to be treated (10). Is a pressure regulating valve (6
3) is provided with a non-reactive gas supply path (47),
The reaction chamber (12) is provided with an inlet passage (21) for the raw material gas and an outlet passage (32) provided with a reaction pressure adjusting valve (34) in the passage, and the partition wall (8) is gas permeable. And a reaction pressure adjusting valve (3)
The pressure is set higher than that of 4) so that the state in which the non-reactive gas in the furnace chamber (14) enters the reaction chamber (12) through the partition wall (8) is always maintained, and A reaction treatment device, characterized in that a non-reactive gas flowing through a supply passage (47) can be mixed with a raw material gas inside an introduction passage (21) through a flow rate regulator (70).
【請求項6】 前記供給路(47)に非反応性ガス用の
流量検出器(71)が設けられ、該流量検出器(71)
からの信号によって前記流量調整器(70)が制御され
る構成となっていることを特徴とする請求項5記載の反
応処理装置。
6. The flow path (47) is provided with a flow rate detector (71) for non-reactive gas, and the flow rate detector (71).
The reaction processing apparatus according to claim 5, wherein the flow rate regulator (70) is controlled by a signal from the.
【請求項7】 前記供給路(47)と導入路(21)と
が高圧容器(1)外で開閉弁(77)を介して連通可能
になされていることを特徴とする請求項5又は請求項6
記載の反応処理装置。
7. The supply passage (47) and the introduction passage (21) can communicate with each other outside the high-pressure container (1) via an opening / closing valve (77). Item 6
The reaction processing apparatus described.
JP05748494A 1994-03-28 1994-03-28 Pressure control method and reaction processing device Expired - Fee Related JP3477236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05748494A JP3477236B2 (en) 1994-03-28 1994-03-28 Pressure control method and reaction processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05748494A JP3477236B2 (en) 1994-03-28 1994-03-28 Pressure control method and reaction processing device

Publications (2)

Publication Number Publication Date
JPH07268635A true JPH07268635A (en) 1995-10-17
JP3477236B2 JP3477236B2 (en) 2003-12-10

Family

ID=13056994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05748494A Expired - Fee Related JP3477236B2 (en) 1994-03-28 1994-03-28 Pressure control method and reaction processing device

Country Status (1)

Country Link
JP (1) JP3477236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154089A1 (en) 2008-06-18 2009-12-23 株式会社神戸製鋼所 High‑pressure treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154089A1 (en) 2008-06-18 2009-12-23 株式会社神戸製鋼所 High‑pressure treatment apparatus
US8573962B2 (en) 2008-06-18 2013-11-05 Kobe Steel, Ltd. High-pressure treatment apparatus

Also Published As

Publication number Publication date
JP3477236B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
US6800139B1 (en) Film deposition apparatus and method
US4619844A (en) Method and apparatus for low pressure chemical vapor deposition
TW201243095A (en) Atomic layer deposition with plasma source
KR920020087A (en) Vacuum Exhaust System and Exhaust Method
US5520001A (en) Vapor controller
WO2002082523A1 (en) Heat treating method and heat treating device
US6063198A (en) High pressure release device for semiconductor fabricating equipment
US20090064765A1 (en) Method of Manufacturing Semiconductor Device
JP2670515B2 (en) Vertical heat treatment equipment
JP3477236B2 (en) Pressure control method and reaction processing device
WO2022004520A1 (en) Film forming method and film forming device
CN113564561B (en) Powder particle coating equipment based on fluidized bed and chemical vapor deposition technology
JPH05304099A (en) Flow-rate control device
JP2696920B2 (en) Atmosphere treatment equipment
JP3856397B2 (en) Wafer processing method for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
CN110144568A (en) A kind of gas phase reaction furnace being used to prepare nano material
JPH07284650A (en) Reaction treating device
JP4304354B2 (en) Semiconductor device processing method
KR102631544B1 (en) Acetylene black manufacturing system that controls physical properties of acetylene black by controlling pressure
JPH0465316B2 (en)
JP2001060555A (en) Substrate treating method
FI129734B (en) Precursor supply chamber
JP2556625Y2 (en) Vapor phase growth equipment
JP2008210852A (en) Substrate treating equipment and method of manufacturing semiconductor device
JPH08980A (en) Decaborane gas feeding system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20070926

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080926

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080926

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100926

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110926

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees