JPH07268248A - Conductive antioxidant material - Google Patents

Conductive antioxidant material

Info

Publication number
JPH07268248A
JPH07268248A JP6170894A JP6170894A JPH07268248A JP H07268248 A JPH07268248 A JP H07268248A JP 6170894 A JP6170894 A JP 6170894A JP 6170894 A JP6170894 A JP 6170894A JP H07268248 A JPH07268248 A JP H07268248A
Authority
JP
Japan
Prior art keywords
electrode
antioxidant
carbon black
coating film
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6170894A
Other languages
Japanese (ja)
Inventor
Katsumi Morikawa
勝美 森川
Takenori Yoshitomi
丈記 吉富
Hideyuki Hisa
英之 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP6170894A priority Critical patent/JPH07268248A/en
Publication of JPH07268248A publication Critical patent/JPH07268248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To enable the application of a conductive antioxidant material to an electrode chuck part and improve the antioxidant effects of the material at high temps. by compounding a fire-resistant aggregate, a colloidal binder, and a carbon black. CONSTITUTION:This material is obtd. by mixing 20-90wt.% fire-resistant aggregate, 2-30wt.% colloidal binder. 2-30wt.% carbon black, a graphite powder in an ant. of 20-70wt.% of the aggregate, and a water-sol. polymer in an amt. of 0.01-3wt.% of the sum of all the foregoing ingredients. adding 15-150wt.% water to the resulting mixture by pouring water from the outside, and subjecting the mixture to a homogenizing treatment. The material is applied to the side of an electrode for an arc furnace to form a dry coating film with a thickness of 100-200mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性酸化防止材、詳し
くは特に電気製鋼炉等のアークを用いる炉で使用される
黒鉛電極の酸化防止材として好適に使用し得る導電性酸
化防止材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive antioxidant, and more particularly to a conductive antioxidant that can be suitably used as a antioxidant for graphite electrodes used in arc furnaces such as electric steelmaking furnaces. .

【0002】[0002]

【従来の技術】従来から電気製鋼炉をはじめとするアー
ク炉においては、人造黒鉛電極が使用されている。この
黒鉛電極は、大電流、高温度、溶融物の飛散等の影響を
受ける非常に苛酷な条件下で使用される。特に、電極の
先端部では超高温のアークが発生し、電極は400℃〜
3,000℃程度の高温にさらされることになり、炉内
の開口部等から侵入した酸化性ガスにより容易に酸化消
耗する。製鋼炉におけるこの電極のコストが占める割合
が高く、電極の酸化消耗は経済的に大きな損失となる。
この電極の酸化消耗は、50〜70重量%がその側面か
ら生じ、アークそのものによる消耗は少ない。さらに、
電極は、先端部ほど酸化消耗により先細りするため、長
手方向の酸化消耗が加速される。したがって、電極の側
面からの酸化防止が十分であれば、電極の消耗は減少し
経済的メリットが大きいことになる。
2. Description of the Related Art Artificial graphite electrodes have been used in arc furnaces such as electric steelmaking furnaces. This graphite electrode is used under extremely harsh conditions that are affected by large current, high temperature, and splash of melt. In particular, a super-high temperature arc is generated at the tip of the electrode, and the temperature of the electrode is 400 ° C-
Since it is exposed to a high temperature of about 3,000 ° C., it is easily consumed by oxidation due to the oxidizing gas that has entered through the opening or the like in the furnace. The cost of this electrode in the steelmaking furnace occupies a high proportion, and the oxidation consumption of the electrode causes a large economical loss.
50 to 70% by weight of this electrode is consumed by oxidation, and its consumption by the arc itself is small. further,
Since the tip of the electrode is tapered toward the tip due to oxidative consumption, oxidative consumption in the longitudinal direction is accelerated. Therefore, if the oxidation prevention from the side surface of the electrode is sufficient, the consumption of the electrode is reduced and the economic merit is large.

【0003】このため、電極の酸化を防止するために種
々の提案がなされている。たとえば、電極への水の噴射
による冷却によって電極を酸化温度以下に維持する方法
がある。しかしながら、この方法は、炉内に大量の水分
が入った場合には、水蒸気爆発の危険があり、電極全体
の冷却効果も少ないので十分な酸化防止効果が期待でき
ない。また、電極に保護コーティングを形成して電極表
面を保護しようとする方法がある。たとえば、黒鉛電極
表面に非導電性の酸化防止層を形成する方法(特開昭5
9−51499号公報)、さらにはシリカ超微粒子のコ
ロイド溶液にアルミナ、シリカ微粒子等を分散させたコ
ーティング材を用いる方法(特開平3−45583号公
報)が挙げられる。しかしながら、これらの従来のコー
ティング材は、いずれも非導電性であるため、電極への
通電を確保するためには、電極のチャック部分を避けて
コーティングを施す必要がある。このため、施工上の問
題や未処理部分での酸化防止が十分でない等の難点があ
る。
Therefore, various proposals have been made to prevent the oxidation of the electrodes. For example, there is a method of maintaining the electrode at an oxidation temperature or lower by cooling the electrode by jetting water. However, in this method, when a large amount of water enters the furnace, there is a risk of steam explosion and the cooling effect of the entire electrode is small, so a sufficient antioxidant effect cannot be expected. In addition, there is a method of forming a protective coating on the electrode to protect the electrode surface. For example, a method of forming a non-conductive antioxidant layer on the surface of a graphite electrode (Japanese Patent Laid-Open No. Sho 5 (1999) -58138).
9-51499), and further, a method of using a coating material in which alumina, silica fine particles and the like are dispersed in a colloidal solution of ultrafine silica particles (JP-A-3-45583). However, since all of these conventional coating materials are non-conductive, it is necessary to apply the coating while avoiding the chucked portion of the electrode in order to ensure the electric conduction to the electrode. Therefore, there are problems such as construction problems and insufficient prevention of oxidation in untreated portions.

【0004】さらに、フリット(釉薬)を使用する方法
も知られており、たとえば、特開昭48−72211号
公報には、1,000℃以下の融点をもつ釉薬材料を含
むマトリックスと耐火性骨材とを使用することを必須と
する酸化防止組成物が開示されている。しかしながら、
これらのフリットを使用する場合には、上記の問題に加
えて、1,000℃以下でマトリックスが軟化収縮する
際に塗膜が収縮し、剥離や(貫入)亀裂等の塗膜欠陥を
生じ易く、溶融後1mm程度の膜厚を確保しなければ十
分な酸化防止効果が得られない難点がある。したがっ
て、この1mm程度の膜厚を確保するためには何度も塗
布作業を繰り返す必要があり、作業上効率が非常に悪い
ということになる。
Further, a method using a frit (glaze) is also known. For example, Japanese Patent Laid-Open No. 72211/1978 discloses a matrix containing a glaze material having a melting point of 1,000 ° C. or less and a refractory bone. An antioxidant composition is disclosed that requires the use of a material. However,
When these frits are used, in addition to the above problems, the coating film shrinks when the matrix softens and shrinks at 1,000 ° C. or less, and film defects such as peeling and (penetration) cracks easily occur. However, there is a problem that a sufficient antioxidation effect cannot be obtained unless a film thickness of about 1 mm is secured after melting. Therefore, in order to secure the film thickness of about 1 mm, it is necessary to repeat the coating work many times, which means that the work efficiency is very poor.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、アー
ク炉で使用される黒鉛電極の酸化消耗を防ぐことであ
る。本発明のより具体的な目的は黒鉛電極用の従来の酸
化防止材における課題を解決しようとするものであり、
とくにコーティング施工に際して電極チャック部分への
コーティングも可能であり、しかも高温での酸化防止効
果のすぐれた導電性酸化防止材を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent oxidative wear of graphite electrodes used in arc furnaces. A more specific object of the present invention is to solve the problems in conventional antioxidants for graphite electrodes,
In particular, it is an object of the present invention to provide a conductive antioxidizing material which can be applied to the electrode chuck portion during coating and which has an excellent antioxidizing effect at high temperatures.

【0006】[0006]

【課題を解決するための手段】本発明の導電性酸化防止
材は、耐火性骨材、コロイド質結合剤及びカーボンブラ
ックを含有し、かつ実質的にガラスフリットを含有しな
いことを特徴とする。以下、本発明を詳細に説明する。
まず、本発明における耐火性骨材としては、シリカ、ア
ルミナ、チタニア、ジルコニア等の酸化物、SiC、B
4C、CrC、WC、TiC、VC、ZrC、NbC等
の炭化物、TiN、VN、NbN、ZrN等の窒化物、
CrSi2、TiSi2、ZrSi2等の珪化物またはケ
イ素等の粉末等の一種以上が用いられる。また、ZrB
2、TiB2、CrB等のほう化物粉末、Fe、Co、N
i、Cr、V等の金属粉末も、好ましくは上記の耐火性
粉末と併用することができる。特に、ZrB2、B4C、
TiC、SiC、Siはカーボンの酸化防止及び塗膜の
熱間での安定性面で適当であり、好適に使用される。コ
ロイド質結合剤としてはコロイダルシリカ、コロイダル
アルミナまたはコロイダルジルコニア等が好適に使用で
きる。特にコロイダルシリカは、乾燥後の耐水性、接着
性、安定性および価格面で最も好ましい。さらに、本発
明において用いられるカーボンブラックとしては、ファ
ーネス法、アセチレン法、サーマル法またはコンタクト
法等のいずれで得られるものも使用し得る。
The conductive antioxidant of the present invention is characterized by containing a refractory aggregate, a colloidal binder and carbon black, and is substantially free of glass frit. Hereinafter, the present invention will be described in detail.
First, examples of the refractory aggregate in the present invention include oxides such as silica, alumina, titania, zirconia, SiC, and B.
4 C, CrC, WC, TiC, VC, ZrC, NbC and other carbides, TiN, VN, NbN, ZrN and other nitrides,
One or more of silicides such as CrSi 2 , TiSi 2 and ZrSi 2 or powders such as silicon are used. Also, ZrB
2 , boride powder such as TiB 2 , CrB, Fe, Co, N
Metal powders such as i, Cr and V can also be preferably used in combination with the above refractory powder. In particular, ZrB 2 , B 4 C,
TiC, SiC, and Si are suitable in terms of preventing oxidation of carbon and stability of the coating film against heat, and are preferably used. Colloidal silica, colloidal alumina, colloidal zirconia or the like can be preferably used as the colloidal binder. In particular, colloidal silica is most preferable in terms of water resistance after drying, adhesiveness, stability and price. Further, as the carbon black used in the present invention, carbon black obtained by any of the furnace method, the acetylene method, the thermal method, the contact method and the like can be used.

【0007】本発明の導電性酸化防止材は上記の3つの
成分を必須成分とし、かつ実質的にガラスフリットを含
有しないものである。ガラスフリットは、塗膜中に含有
させると所定の温度で軟化収縮し、不透過性のガラスフ
ィルムを形成し、酸化防止には有効になり得る反面、塗
膜の収縮過程で亀裂、剥離などの塗膜欠陥を生じ易いと
いう問題点がある。加えて、アーク先端で3000℃以
上の高温になる電極棒では、連続操業に入った場合に電
極ホルダー(把持機、一般に鋼合金製が使用される。)
部も温度が400℃以上に上がる場合があり、塗膜との
接触部分で塗膜中のガラスフリット成分と鋼合金の酸化
物が焼着現象を起こし、焼着層が残り、スパークの原因
になる問題がある。このようなガラスフリットとして
は、アルカリ金属、アルカリ土類金属の珪酸塩、ほう酸
塩、リン酸塩などが挙げられる。本発明においては、上
記の問題を発生させないために、このようなガラスフリ
ットを実質的に含有させないことが必要である。
The conductive antioxidant of the present invention contains the above-mentioned three components as essential components and substantially does not contain glass frit. Glass frit, when contained in a coating film, softens and shrinks at a predetermined temperature to form an impermeable glass film, which may be effective in preventing oxidation, but may cause cracking, peeling, etc. during the shrinking process of the coating film. There is a problem that coating film defects are likely to occur. In addition, in the case of an electrode rod having a high temperature of 3000 ° C. or more at the tip of the arc, an electrode holder (a gripping machine, generally made of steel alloy is used) when the continuous operation is started.
In some cases, the temperature may rise to 400 ° C or higher, and the glass frit component in the coating and the oxide of the steel alloy cause a welding phenomenon at the contact area with the coating, leaving a welding layer and causing sparks. There is a problem. Examples of such glass frit include alkali metal, alkaline earth metal silicate, borate, and phosphate. In the present invention, it is necessary that such a glass frit is not substantially contained in order to prevent the above problems from occurring.

【0008】本発明の上記3つの必須成分の配合量は、
目的、原料の種類などによっても異なるが、一般的に耐
火性骨材はこの3成分全量中の固形分の重量%が、20
〜90wt%、好ましくは40〜70wt%、結合剤
(固形分)の重量%は2〜30wt%、好ましくは5〜
15wt%、カーボンブラックの重量%は2〜30wt
%、好ましくは10〜20wt%程度になるように配合
して用いられる。耐火性骨材の固形分が20wt%未満
であると熱間で塗膜の安定性が悪くなりハジケが発生し
て母材を酸化させ易い。また耐火性骨材の固形分が90
wt%を超えると塗膜の耐火性が高くなりすぎて500
〜800℃程度の低温域で母材を酸化させ、以後の温度
域で塗膜として機能しなくなる。また、結合剤固形分の
含有量は、少ないほど導電性の面で好ましいが2wt%
未満であると接着力が無く剥離し易い。また、結合剤固
形分の含有量は30wt%を超えると接着力は優れるが
導電性の面で問題を生じスパークの原因になる。更に、
カーボンブラックの含有量は、多いほど導電性面で好ま
しいが30wt%を超えると酸化防止スリップを増粘さ
せたり、塗膜中のカーボンブラックが熱間で燃焼し耐酸
化性能を低下させたりする。カーボンブラックの含有量
が2wt%未満であると耐酸化性能は優れるが所望の導
電性を得ることができない。
The amounts of the above three essential components of the present invention are:
Generally, the refractory aggregate has a solid content of 20% by weight in the total amount of these three components, although it varies depending on the purpose and the type of raw material.
-90 wt%, preferably 40-70 wt%, and the binder (solid content) wt% is 2-30 wt%, preferably 5-
15wt%, carbon black weight% is 2-30wt%
%, Preferably about 10 to 20 wt% is used by blending. When the solid content of the refractory aggregate is less than 20 wt%, the stability of the coating film is deteriorated due to heat and cratering occurs and the base material is easily oxidized. The solid content of the refractory aggregate is 90
If it exceeds wt%, the fire resistance of the coating becomes too high and 500
The base material is oxidized in a low temperature range of about 800 ° C., and it does not function as a coating film in the subsequent temperature range. Further, the smaller the solid content of the binder, the more preferable it is in terms of conductivity, but it is 2 wt%.
When it is less than the above range, there is no adhesive force and the film is easily peeled off. Further, if the content of the solid content of the binder exceeds 30 wt%, the adhesive force is excellent, but there is a problem in terms of conductivity, which causes sparks. Furthermore,
The higher the content of carbon black, the more preferable it is in terms of conductivity, but if it exceeds 30 wt%, the antioxidant slip will be thickened, or the carbon black in the coating film will be burned hot to reduce the oxidation resistance. When the content of carbon black is less than 2 wt%, the oxidation resistance is excellent, but desired conductivity cannot be obtained.

【0009】また、本発明においては、必要に応じて上
記以外の成分を酸化防止材成分として配合することがで
きる。たとえば、酸化防止材成分として黒鉛粉末を配合
することができる。アーク炉の操業により電極が消耗す
ると上部に新しい電極をつなぎ、電極ホルダー(把持
機)を電極長手方向に移動させて掴み直すが、この際に
電極の塗膜と電極ホルダー部とが接触し、塗膜が損傷す
る場合がある。このような時は接触時の塗膜の損傷(剥
離)を防止するために塗膜中に黒鉛粉末を配合すること
で耐摺動性が向上し、塗膜の損傷が軽減され得る。黒鉛
粉末は、耐火性骨材に対して20〜70wt%(好まし
くは40〜60wt%)程度添加される。また、経時安
定性、接着性、導電性を向上させるためにアクリル樹脂
などの水溶性ポリマーを前記3成分全量に対し0.01
〜3wt%程度配合することもできる。
Further, in the present invention, if necessary, components other than the above may be added as antioxidant components. For example, graphite powder can be blended as an antioxidant component. When the electrode wears out due to the operation of the arc furnace, a new electrode is connected to the upper part, and the electrode holder (gripping machine) is moved in the longitudinal direction of the electrode to re-grip, but at this time, the coating film of the electrode comes into contact with the electrode holder part, The coating film may be damaged. In such a case, by adding graphite powder to the coating film in order to prevent damage (peeling) of the coating film at the time of contact, sliding resistance is improved and damage to the coating film can be reduced. About 20 to 70 wt% (preferably 40 to 60 wt%) of graphite powder is added to the refractory aggregate. Further, in order to improve stability over time, adhesiveness, and conductivity, a water-soluble polymer such as an acrylic resin is added to the total amount of the above three components in an amount of 0.01
It is also possible to mix about 3 wt%.

【0010】これらの各成分の配合は通常次のようにし
て行われる。本発明の導電性酸化防止材は上記成分を上
記特定の重量比で混合した粉末に水を加えて混合および
均一化処理を行うことにより調製される。水添加量は、
塗布作業形態により異なるが、導電性酸化防止材組成成
分の固形分に対して外掛けで15〜150wt%が好ま
しく、25〜100wt%が最も好ましい。上記組成成
分の混合均一化処理は、たとえば、混合粉末体積と同体
積のアルミナボールを入れたアトライター装置に上記混
合粉末、水を所定量添加し、所定時間混合して均一化処
理を行うことで調製し、導電性酸化防止材が得られる。
ここで混合、均一化処理装置および方法に特に制限はな
く、通常の卓上ミキサー、ボールミル、ロールミルなど
で混合処理しても構わない。なお、前記混合均一化処理
を行う目的は、塗布された塗膜中の組成が塗膜場所に依
存しないように、塗膜中の組成成分の分布を均一化する
ためである。このようにして得られる導電性酸化防止材
はアーク炉用電極の側面に、通常100〜200μm程
度の厚み(乾燥後)にチャック部分を含めて塗布するこ
とができる。塗布に際しては、浸漬法、刷毛塗り、スプ
レー(噴霧)法、静電塗装法などの一般的な塗膜形成方
法の内から最も適している方法を選ぶことができる。こ
の際、それぞれの施工法に適した作業粘度に導電性酸化
防止材を調製する必要がある。
The respective components are usually compounded as follows. The conductive antioxidant of the present invention is prepared by adding water to a powder obtained by mixing the above components in the above specific weight ratio, and performing mixing and homogenization treatment. The amount of water added is
Although it varies depending on the coating operation mode, it is preferably 15 to 150 wt%, and most preferably 25 to 100 wt% in terms of the solid content of the conductive antioxidant composition component. The mixing and homogenizing treatment of the above composition components is carried out, for example, by adding a predetermined amount of the above mixed powder and water to an attritor device containing an alumina ball having the same volume as the mixed powder volume, and mixing for a predetermined time to perform the homogenizing treatment. To prepare a conductive antioxidant.
Here, there is no particular limitation on the mixing and homogenizing treatment device and method, and the mixture treatment may be carried out by an ordinary desk mixer, ball mill, roll mill or the like. The purpose of the mixing and homogenizing treatment is to homogenize the distribution of the composition components in the coating film so that the composition in the applied coating film does not depend on the location of the coating film. The conductive antioxidant thus obtained can be applied to the side surface of the arc furnace electrode, usually including the chuck portion in a thickness of about 100 to 200 μm (after drying). At the time of coating, the most suitable method can be selected from general coating film forming methods such as dipping, brush coating, spraying (spraying), and electrostatic coating. At this time, it is necessary to prepare the conductive antioxidant to a work viscosity suitable for each construction method.

【0011】[0011]

【作用】本発明の導電性酸化防止材はアーク炉用電極の
電極チャック部分への塗布が可能であり、特に電極側面
からの電極の酸化消耗が激減し、さらに先端部からの酸
化消耗も減少し、その結果重量減少率は著しく低下し、
良好な酸化防止効果を示した。
The conductive antioxidant of the present invention can be applied to the electrode chuck portion of the arc furnace electrode, and in particular, the oxidation consumption of the electrode from the side surface of the electrode is drastically reduced, and further the oxidation consumption from the tip portion is also reduced. As a result, the weight loss rate is significantly reduced,
It showed a good antioxidant effect.

【0012】[0012]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。 実施例1、2 下記の配合組成(固形分)に従って、2種類の導電性酸
化防止材を得た。 (配合I) 珪素微粉末 65wt% ほう化ジルコニウム粉末 5wt% カーボンブラック 15wt% (商品名:三菱カーボンブラックCF−9、三菱化成(株)製) 無機結合剤(コロイダルシリカ)(固形分) 15wt% これにさらに、分散剤としてアクリル樹脂と界面活性
剤の混合物を前記〜の総量に対し0.5wt%で添
加する。
The present invention will be described in more detail with reference to the following examples. Examples 1 and 2 Two kinds of conductive antioxidants were obtained according to the following composition (solid content). (Compound I) Silicon fine powder 65 wt% Zirconium boride powder 5 wt% Carbon black 15 wt% (trade name: Mitsubishi carbon black CF-9, manufactured by Mitsubishi Kasei Co., Ltd.) Inorganic binder (colloidal silica) (solid content) 15 wt% Further, a mixture of an acrylic resin and a surfactant as a dispersant is added at 0.5 wt% with respect to the total amount of the above items.

【0013】 (配合II) 珪素微粉末 30wt% 黒鉛微粉末 30wt% ほう化ジルコニウム粉末 10wt% カーボンブラック 15wt% (商品名:三菱カーボンブラックCF−9、三菱化成(株)製) 無機結合剤(コロイダルシリカ)(固形分) 15wt% これにさらに、分散剤としてアクリル樹脂と界面活性
剤の混合物を前記〜の総量に対し0.5wt%で添
加する。すなわち、配合I(実施例1)または配合II
(実施例2)の固形分100重量部に対して水をそれぞ
れ80重量部添加し、湿式粉砕装置「アトライター」に
より約24時間混合し、均一化処理を行い、2種類の導
電性酸化防止材を得た。
(Formulation II) Silicon fine powder 30 wt% Graphite fine powder 30 wt% Zirconium boride powder 10 wt% Carbon black 15 wt% (trade name: Mitsubishi Carbon Black CF-9, manufactured by Mitsubishi Kasei Co.) Inorganic binder (colloidal) Silica) (solid content) 15 wt% To this, a mixture of an acrylic resin and a surfactant as a dispersant is further added at 0.5 wt% with respect to the total amount of the above items. That is, Formulation I (Example 1) or Formulation II
80 parts by weight of water was added to 100 parts by weight of the solid content of (Example 2), mixed for about 24 hours by a wet pulverizer "Attritor", and homogenized to perform two kinds of conductive oxidation prevention. I got the material.

【0014】〈体積固有抵抗〉下記の方法により、体積
固有抵抗値(Ω・cm)を測定した結果を表1に示す。
併せて市販の酸化防止材Aについての測定結果も示す
(比較例1)。なお、体積固有抵抗値測定法は次の通り
である。予め抵抗の明らかなカーボン板(50×130
×20mmt(t:厚み))の上下面に導電性酸化防止
材を所定の厚さでコーティング処理を施した後、昇温速
度400℃/Hで加熱し、所定温度(大気雰囲気下)で
1時間保持し、抵抗測定用試料を得た。この試料を抵抗
測定装置の鋼製電極にはさみ、アムスラー加圧装置を用
い全圧1tで加圧し、読みとった抵抗値から塗膜の体積
固有抵抗を下記の式により算出した。 ρ=S/H×(R−R0) ρ:塗膜の体積固有抵抗 (Ω・cm) S:試料の電流通過断面積 (cm2) H:コーティング層の合計厚さ(cm) R:処理後の全抵抗 (Ω) R0:処理前の全抵抗 (Ω)
<Volume Specific Resistance> The results of measuring the volume specific resistance value (Ω · cm) by the following method are shown in Table 1.
The measurement results of the commercially available antioxidant A are also shown (Comparative Example 1). The volume resistivity measurement method is as follows. Carbon plate with known resistance (50 × 130
A conductive antioxidant is applied to the upper and lower surfaces of × 20 mmt (t: thickness) to a predetermined thickness, and then heated at a heating rate of 400 ° C./H, and heated at a predetermined temperature (in the air atmosphere) for 1 After holding for a period of time, a sample for resistance measurement was obtained. This sample was sandwiched between steel electrodes of a resistance measuring device and pressed at a total pressure of 1 t using an Amsler pressurizing device, and the volume resistivity of the coating film was calculated from the read resistance value by the following formula. ρ = S / H × (R−R 0 ) ρ: Volume resistivity of coating film (Ω · cm) S: Current passing cross-sectional area of sample (cm 2 ) H: Total thickness of coating layer (cm) R: Total resistance after treatment (Ω) R 0 : Total resistance before treatment (Ω)

【0015】[0015]

【表1】 [Table 1]

【0016】〈原料溶融炉による溶融実験〉これらの酸
化防止材を原料溶融炉(4t)で用いられる黒鉛質電極
棒(φ155×3750mm)表面に、刷毛塗り法によ
り約200〜300μm厚み(乾燥後)に塗布し、原料
溶融実験を行った。溶融に使用した原料は、酸化マグネ
シウムであり、溶融に要した時間は約3時間30分であ
った。溶融実験の結果を表2に示す。
<Melting Experiment with Raw Material Melting Furnace> These antioxidants were applied to the surface of the graphite electrode rod (φ155 × 3750 mm) used in the raw material melting furnace (4 t) by a brush coating method to a thickness of about 200 to 300 μm (after drying). ) And the raw material melting experiment was performed. The raw material used for melting was magnesium oxide, and the time required for melting was about 3 hours and 30 minutes. The results of the melting experiment are shown in Table 2.

【表2】 実施例1、2および比較例1ではいずれもスパークなど
のトラブルも生じず操業上の問題は無かった。酸化防止
効果については、市販品を塗布した比較例1では電極先
端部から8.5%、側面から10.2%消耗し、合計1
8.7%の重量減少があったのに対して、実施例1およ
び2では側面からの酸化消耗が激減し、さらに先端部か
らの酸化消耗も減少し、その結果重量減少率は比較例の
半分以下となり良好な酸化防止効果を示した。
[Table 2] In each of Examples 1 and 2 and Comparative Example 1, no trouble such as sparking occurred and there was no problem in operation. Regarding the antioxidant effect, in Comparative Example 1 in which a commercial product was applied, 8.5% was consumed from the electrode tip part and 10.2% from the side surface, and the total was 1
While the weight loss was 8.7%, in Examples 1 and 2, the oxidative consumption from the side face was drastically reduced, and further the oxidative consumption from the tip part was also reduced. As a result, the weight loss rate was the same as that of the comparative example. It was less than half and showed a good antioxidant effect.

【0017】[0017]

【発明の効果】本発明によれば、電極チャック部分への
塗布が可能で、かつ高温での酸化防止効果の優れた導電
性酸化防止材を得ることができる。
According to the present invention, it is possible to obtain a conductive antioxidant which can be applied to the electrode chuck portion and has an excellent effect of preventing oxidation at high temperatures.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09K 15/02 // C04B 111:94 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area C09K 15/02 // C04B 111: 94

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐火性骨材、コロイド質結合剤及びカー
ボンブラックを含有し、かつ実質的にガラスフリットを
含有しない導電性酸化防止材。
1. A conductive antioxidant containing a refractory aggregate, a colloidal binder and carbon black, and substantially free of glass frit.
【請求項2】 黒鉛粉末を含有してなる請求項1記載の
導電性酸化防止材。
2. The conductive antioxidant according to claim 1, which contains graphite powder.
JP6170894A 1994-03-30 1994-03-30 Conductive antioxidant material Pending JPH07268248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6170894A JPH07268248A (en) 1994-03-30 1994-03-30 Conductive antioxidant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6170894A JPH07268248A (en) 1994-03-30 1994-03-30 Conductive antioxidant material

Publications (1)

Publication Number Publication Date
JPH07268248A true JPH07268248A (en) 1995-10-17

Family

ID=13179011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6170894A Pending JPH07268248A (en) 1994-03-30 1994-03-30 Conductive antioxidant material

Country Status (1)

Country Link
JP (1) JPH07268248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010096800A (en) * 2000-04-14 2001-11-08 신형인 Spray composition and method to improved the characteristic of emissioning of static electricity in tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010096800A (en) * 2000-04-14 2001-11-08 신형인 Spray composition and method to improved the characteristic of emissioning of static electricity in tire

Similar Documents

Publication Publication Date Title
JPH028359A (en) Sprayed deposit having wear resistance and lipophilic and hydrophobic properties and thermal spraying material
JP3390773B2 (en) Conductive antioxidant for graphite electrodes
EP0150092A2 (en) A carbon-containing refractory
JPH07268248A (en) Conductive antioxidant material
US6645629B2 (en) Conductive antioxidant paint and graphite electrode
JPH07268250A (en) Conductive antioxidant material
CN108330429A (en) A kind of molybdenum disilicide composite coating and preparation method thereof
CN102424593B (en) Oxidation resistance coating material for continuous casting function fire resistance material
KR100490988B1 (en) Composition of Al2O3-SiC-C typed refractories with high oxidation resistance
JP2670516B2 (en) Material for glass spraying
JP2771613B2 (en) Carbon containing refractories
JPH08132191A (en) Aluminum-carbon base nozzle refractory for casting
JP2525978B2 (en) Coating for refractory holding hardware
KR100750836B1 (en) Conductive antioxidant paint and graphite electrode
JPS60251218A (en) High-temperature anti-oxidant paint for steel material
JP4275814B2 (en) Antioxidant paint for steel
JP2001123123A (en) Electroconductive antioxidative coating material and graphite electrode
JPH0588289B2 (en)
JP3014555B2 (en) Carbon-containing irregular refractories
JPH01229080A (en) High temperature oxidation-preventing coating for steel
JP3119501B2 (en) Bonding agent for electrical bonding of ceramics
JPH0345583A (en) Heat-resistant coating material for preventing oxidation of carbonaceous material
JPH07277858A (en) Antioxidant for carbon-containing refractory
JPH07130464A (en) Electroconductive oxidation preventive material
GB2131790A (en) Carbon-containing refractory