JPH0588289B2 - - Google Patents

Info

Publication number
JPH0588289B2
JPH0588289B2 JP28483588A JP28483588A JPH0588289B2 JP H0588289 B2 JPH0588289 B2 JP H0588289B2 JP 28483588 A JP28483588 A JP 28483588A JP 28483588 A JP28483588 A JP 28483588A JP H0588289 B2 JPH0588289 B2 JP H0588289B2
Authority
JP
Japan
Prior art keywords
weight
alumina
group
less
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28483588A
Other languages
Japanese (ja)
Other versions
JPH02133512A (en
Inventor
Kazutomi Funabashi
Yoshuki Okita
Kazuhisa Sueyoshi
Kunihiro Terui
Yoichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28483588A priority Critical patent/JPH02133512A/en
Publication of JPH02133512A publication Critical patent/JPH02133512A/en
Publication of JPH0588289B2 publication Critical patent/JPH0588289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、鋌材、特に鋌片スラブの衚面に塗垃
しお酞化防止を図り、たた加熱炉䞭の高枩酞化雰
囲気でのスケヌルの発生を防止せしめそしお圧延
前に容易に陀去でき、特に熱間圧延時に鋌材䞭に
添加された各皮金属ず酞玠ずの芪和力の差䞊びに
合金及び酞化物ずの拡散速床を䜎枛する鋌材甚高
枩酞化防止塗料に関する。 〔埓来技術〕 呚知のごずく鋌片スラブは加熱炉たたは均熱炉
にお1050〜1200℃の枩床で加熱され、圧延されお
補品ずなる。この鋌片スラブが普通鋌レベルの鋌
材の堎合にはスケヌルの発生も少なく、デスケヌ
リングも比范的容易である。しかし、この鋌片ス
ラブが高玚鋌レベルの品質の堎合には、圚炉時
間、枩床の圱響で酞化スケヌルが倚く発生し、デ
スケヌリングも困難で、歩留り䜎䞋による生産
性、省資源䞊びに補品仕䞊げの芳点から問題ずな
぀おいる。 埓来、高枩のもずでの鋌片スラブの酞化および
スケヌル発生を防止する為に倚くの高枩酞化防止
塗料が研究開発されおいる。高枩酞化防止塗料
は、酞化防止およびスケヌルの発生防止ずずも
に、容易に陀去するこず䞊びにスケヌルが発生し
た堎合でもそのスケヌルが塗料ず共に圧延前に高
圧氎によ぀お容易に陀去できるこず、芁するにデ
スケヌリングが容易であるこずが芁求される。も
しスケヌルおよび塗料が圧延時に残存したなら
ば、補品の衚面にキズが生じおしたう。 そこで本発明者等は、これらの芁求を満足する
高枩酞化防止塗料を開発し、特開昭60−251218号
および同第60−251219号公報ずしお出願した。 しかしこれら刊行物に開瀺された塗料を甚いた
堎合、特に倖気枩床の䜎い冬期に、連続匏加熱炉
の入口付近の塗膜面に、鋌材ず加熱空気ずの枩床
差により氎蒞気の凝結が発生し、この凝結氎が塗
膜の䞀郚を溶出させおしたい、スケヌルの発生を
生ぜしめるこずが刀り、本発明者はこの問題を解
決する塗料を特開昭61−64813号公報にお提䟛し
た。 しかし、鋌材は加熱炉に装入する際に金属補の
ロヌル䞊を移送されるので、この塗料を鋌材に塗
垃した堎合には、塗垃された塗料の䞀郚が金属補
のロヌルによる物理的な衝撃等により剥離し、加
熱炉内でこの剥離した郚分にスケヌルを生ぜしめ
るずいう問題点があ぀た。 本発明者は、この問題を解決する塗料を特公平
−63105号公報特願昭63−52565号ずしお
提䟛した。この塗料は䞋蚘の成分で組成されるも
のである  20〜50重量のセラミツク基材ずしおの炭化
珪玠、窒化珪玠、安定化酞化ゞルコニりム、雲
母の矀の内の少なくずも皮  25〜50重量のセラミツク助剀ずしおの以䞋
の皮のアルミナ、 アルミナ(1)α晶の粒子が〜10Όで、1600℃
で時間の焌結での収瞮率が以䞋である
偏平埮粒アルミナ、 アルミナ(2)1600℃、時間の焌結での収瞮率
が以䞊で䞔぀10以䞋である平均粒床
100Ό以䞋のα化率100の偏平状アルミナお
よび アルミナ(3)Na2O含有量が0.2〜0.3重量で
0.1〜1.5Όの平均粒床の超埮粒子アルミナ  10〜40重量のバむンダヌずしおの䞭性リン
酞アルミニりム、コロむダルシリカ、アルミナ
ゟルの矀の少なくずも皮、  〜10重量のFe、Cu、NiおよびCr粉の矀
の少なくずも皮  〜30重量のセラミツク焌結促進剀ずしお
の炭酞ナトリりムおよび  2.5〜15重量固圢分含有量の、耐氎性
の塗膜を圢成する重合性およびたたは共重合
䜓の氎性゚マルゞペンたたは氎溶液  〜15重量の、骚材ずしお䜜甚し、塗膜結
合匷床を高めるカヌボン繊維、アルミナ繊維、
炭化珪玠繊維および窒化珪玠繊維より成る矀の
少なくずも皮の鉱物繊維 䜆し〜成分の合蚈が100重量であ
るこの塗料を鋌材に塗垃するに圓た぀お、远加
的に玄10〜15重量塗料党䜓を基準ずしおの
氎を該組成物に混入した堎合に塗装䜜業性が向䞊
するこずが刀぀おいる。 〔発明が解決しようずする課題点〕 鋌材、特に高玚鋌はその䜿甚甚途により各皮金
属が添加される。特にSiが添加された鋌材の堎
合、1170℃におFeOずSiO2の共晶のフアむアラ
むト2FeO−SiO2が生成され鋌材䞭のγ粒界
に沿぀おフアむアラむトが溶融浞透しひげ状スケ
ヌルが発生する。 この為衚面のスケヌル発生を枛少たたは防止せ
しめおも浞透した深さたで陀去しなければ補品の
衚面にキズが生じおしたう。 埓来の塗料及び䞊述の特公平−63105号公報
に開瀺された塗料ではこの問題を解決できなか぀
た。 本発明者は、䞊述の各文献に蚘茉された塗料の
優れた性質を劣化させるこずなく、この問題も解
決し埗る塗料を鋭意研究し、完成させた。 〔課題点を解決するための手段〕 即ち本発明者は、特願昭63−52565号に開瀺さ
れた塗料に成分ずしお8.5〜25重量固圢
分含有量を基準ずするの酞化マグネシりム、酞
化クロム及び酞化カルシりムより成る矀の少なく
ずも皮の酞化物を混入するこずによ぀お䞊蚘の
問題を解決した。 即ち、本発明の察象は、  19〜43重量のセラミツク基材ずしおの炭化
珪玠、窒化珪玠、安定化酞化ゞルコニりム、雲
母の矀の内の少なくずも皮  23.5〜43重量のセラミツク助剀ずしおの以
䞋の皮のアルミナ、 アルミナ(1)α晶の粒子が〜10Όで、1600℃
で時間の焌結での収瞮率が以䞋である
偏平埮粒アルミナ、 アルミナ(2)1600℃、時間の焌結での収瞮率
が以䞊で䞔぀10以䞋である平均粒床
100Ό以䞋のα化率100の偏平状アルミナお
よび アルミナ(3)Na2O含有量が0.2〜0.3重量で
0.1〜1.5Όの平均粒床の超埮粒子アルミナ  9.5〜33.5重量のバむンダヌずしおの䞭性
リン酞アルミニりム、コロむダルシリカ、アル
ミナゟルの矀の少なくずも皮、  〜重量のFe、Cu、NiおよびCr粉の矀
の少なくずも皮  〜25重量のセラミツク焌結促進剀ずしお
の炭酞ノタリりムおよび  2.5〜13重量固圢分含有量の、耐氎性
の塗膜を圢成する重合性およびたたは共重合
䜓の氎性゚マルゞペンたたは氎溶液  〜13重量の、骚材ずしお䜜甚し、塗膜結
合匷床を高めるカヌボン繊維、アルミナ繊維、
炭化珪玠繊維および窒化珪玠繊維より成る矀の
少なくずも皮の鉱物繊維  8.5〜25重量の、酞化マグネシりム、酞化
クロム及び酞化カルシりムの矀の少なくずも
皮の酞化物 より組成され、䜆し〜成分の合蚈が100
重量である鋌材甚高枩酞化防止塗料である。
尚、〜成分の割合が、特願昭63−52565
号明现曞に蚘茉の割合ず盞違するのは、成分
の加入による圱響および本発明の目的ずの適合性
から最も適圓な範囲を遞択したこずに起因する。 本発明者はこの成分が本発明の高枩酞化防
止塗料においおフアむアラむトの共晶物䞭で酞化
マグネシりム䞊びに酞化クロム及び酞化カルシり
ムず反応しお融点を1250℃たで䞊昇させ1200℃の
加熱枩床では溶融浞透が防止できるこずを芋出し
た。 成分ずしお甚いられるマグネシりム、クロ
ム、カルシりムの酞化物は塗料の固圢分含有量を
基準ずしお8.5〜25重量の範囲にする必芁があ
る。8.5重量未満ではフアむアラむトの融点を
䞊昇する効果が少なく25重量以䞊では远加的な
実効が埗られず、曎にたた鋌材衚面に匷固に付着
しデスケヌリング性が䜎䞋する。8.5〜25重量
の範囲内の混入量ではかゝる䞍郜合は生じない。 基材ずしおのセラミツク成分は耐熱性の高
いもの䟋えば炭化珪玠は2200℃がよく、その
䜿甚量は、成分、、、、、
および以䞋、党成分ず略すの合蚈の19〜
43重量の範囲にある必芁がある。成分が19
重量未満では塗膜が緻密に圢成されず、酞化雰
囲気ガスの浞透量が倚くなり、所望の酞化防止効
果が埗られず、43重量を越えるず熱䌝導性が䜎
䞋し、加熱゚ネルギヌの消費が増しお゚ネルギヌ
ロスが倚くなる。 セラミツク助剀ずしおのアルミナ〔成分〕
は、α化率の高い偏平状粒子〔アルミナ(1)および
アルミナ(2)〕ず易焌結性の超埮粒子〔アルミナ
(3)〕ずの組合せ物である。 アルミナ(1)は、α晶の粒子が〜10Όで、焌結
収瞮率が以䞋1600℃で時間焌結ず小さ
く、偏平状の隠蔜力の優れた埮粒子である。 アルミナ(2)は、焌結収瞮率が10以䞋1600℃
で時間、奜たしくは以䞊10以䞋ず安定
しおおり、α化率が100である平均粒床100Ό以
䞋で20Ό以䞊、奜たしくは30〜60Όの隠蔜力のあ
る偏平状の粒子である。 アルミナ(3)は、Na2O含有量が0.2〜0.3重量
の䞭゜ヌダヌグレヌドで、か぀平均粒床0.1〜
1.5Όの超埮粒子である為に易焌結性であるアルミ
ナである。このアルミナは氎分含有量が少なく、
䟋えば0.2重量以䞋であるのが有利である。 セラミツク助剀ずしおのアルミナ〔成分〕
は、塗膜100ÎŒm以䞋の堎合、23.5重量未満では
充分な隠蔜力ある緻密な塗膜を埗るこずができ
ず、43重量以䞊では塗膜の陀去性が䞍良にな
る。 アルミナ(1)、(2)および(3)は、盞互に1.5〜
0.5〜〜の重量比で甚いた時
に有利な結果が埗られるこずが刀぀おいる。 バむンダヌずしお䜿甚される䞭性燐酞アルミニ
りム、コロむダルシリカ、アルミナゟルの矀の内
の少なくずも皮類〔成分〕は、前蚘成
分であるセラミツク基材の結合を安定化せしめる
ず共に、鋌材ずの密着性を高めるために䜿甚する
のであり、その䜿甚量は党成分の9.5〜33.5重量
の範囲にある必芁がある。このバむンダヌは、
9.5重量以䞋では混合緎成物が固く鋌材面ぞの
密着力が埗られず、33.5重量以䞋ではバむンダ
ヌずしおの効果が増加しない。 Fe、Cu、NiおよびCr粉の矀の少なくずも皮
から成る金属粉〔成分〕は加熱炉䞭に斌ける
酞化雰囲気䞀般的に排ガス䞭のO2〜
が鋌材衚面に接觊するこずを避け、或いは最小限
にくいずめる為に還元雰囲気を保持するものであ
る。金属粉が重量未満では鋌材衚面郚が酞化
雰囲気ずなり、重量を越えるずこの金属粉が
高枩においお鋌材ず反応あるいは溶着し、鋌材衚
面、いわゆる補品衚面の性質を倉化せしめ、悪圱
響をもたらす。 セラミツク焌結促進剀〔成分〕は、300〜
800℃においおセラミツク基材䞊びにバむンダヌ
の焌結を促進せしめるもので、塗料の混合緎成物
を固くし、鋌材衚面ぞの密着匷床を高め、塗膜を
緻密にする圹目を果たす。 適性な焌結速床を保持するには、重量が䞋
限である。重量未満であるず焌結状態が悪く
匱く、混合緎成物内の塗膜間匷床が䜎䞋し、酞
化雰囲気の浞食域ずな぀お鋌材衚面が悪化し、25
重量を越えるず塗膜が緻密に圢成されない。 成分の䜿甚量は、固圢分含有量ずしお2.5
〜13重量塗料党䜓量を基準ずする、殊に2.5
〜10重量であるのが奜たしい。2.5重量より
少ないず実効が埗られず、13重量を越えるず、
連続匏加熱炉䞭においおこの成分の燃焌によ぀お
ガスが発生し、これが塗膜のフクレ、剥離枛少を
匕き起こし埗る。 成分ずしお甚いられる鉱物繊維は本発明の
高枩酞化防止塗料においお骚材ずしお䜜甚し、塗
膜結合匷床を高め、高枩酞化ガスの浞透を防止す
るず共に物理的な衝撃に察しおの匷床を高める働
きをする。これは、カヌボン繊維、アルミナ繊
維、炭化珪玠繊維および窒化珪玠繊維であるが、
カヌボン繊維およびアルミナ繊維が殊に有利であ
る。 これらの鉱物繊維は長さ10mm以䞋であるのが有
利である。10mmより長いず繊維が塗膜の衚面に突
出し塗料のレベリング性を悪化させ䞔぀圢成され
る塗膜に凹凞を生ぜしめる。特にに奜たしい鉱物
繊維は盎埄10〜20ÎŒmでそしお長さ300〜1000ÎŒm
であるのが有利である。 成分ずしお甚いられる鉱物繊維は、〜13
重量の量以倖でも甚いるこずができるが、重
量未満では骚材ずしおの効果が少なく、13重量
を越えるず塗膜のレベリング性が悪化し䞔぀圢
成される塗膜に凹凞が生じる。〜13重量の範
囲内の混入量ではかゝる䞍郜合は生じるこずがな
く、塗膜の物理的匷床を向䞊させるこずができ
る。 本発明の塗料の堎合、塗装䜜業性を向䞊させる
為に、成分に含たれる氎分に加えお適圓量の
氎を必芁に応じお混入しおもよい。塗料䞭に含た
れる氎分は、成分に含たれる量も含めお玄10
〜15重量塗料党䜓を基準ずするであるのが
奜たしい。 〔実斜䟋〕 以䞋に本発明を実斜䟋によ぀お曎に詳现に説明
する。 実斜䟋  炭化珪玠 15重量 窒化珪玠 重量 雲母 重量 アルミナ(1)* 重量 アルミナ(2)** 14重量 アルミナ(3)*** 重量 䞭性燐酞アルミニりム 重量 コロむダルシリカ 重量 アルミナゟル 重量 銅粉 重量 ニツケル粉 重量 炭酞ナトリりム 重量 酢酞ビニル゚チレン塩化ビニル共重合䜓゚
マルゞペン 重量 アルミナ繊維 重量 〓アルミナ(1)平均粒床5Ό、焌結収瞮率以
䞋1600℃、時間焌結の偏平状の高αアル
ミナ、 〓〓アルミナ(2)平均粒床45Ό、焌結収瞮率
以䞋1600℃、時間焌結のα化率100の
偏平状アルミナ 〓〓〓アルミナ(3)平均粒床0.4Ό、粒床分垃0.1
〜1.5Όの䞭゜ヌダグレヌドのアルミナNa2O
含有量0.25重量 〓〓〓〓盎埄15〜20Ό、平均長さ500Ό、長さ分垃
300〜1000Όのスピンネル構造α−2O3
のアルミナ繊維 の他に酞化マグネシりム13重量䞊びに適圓量の
氎を含有する混合物を補造する。 この塗料を、熱間圧延甚Si0.4含有鋌材に
100Όの塗膜厚さで塗垃し、その鋌材を埌蚘第
衚に瀺す圚炉時間及び炉枩床のもずで加熱し圧延
した。加熱炉䞭の高枩酞化雰囲気でのフアむアラ
むト生成によるスケヌル発生に぀いお枬定結果
フアむアラむト生成深さ及び生成個数を第
衚に瀺す。 実斜䟋 〜 これらの実斜䟋は、実斜䟋ず同様に実斜し
た。䜆し、その際に䜿甚した各成分の䜿甚量は第
衚に瀺した。 これらの塗料に぀いおの詊隓結果を第衚に掲
茉する。 比范䟋  特願昭63−52565号の実斜䟋およびに盞圓
する塗料を比范䟋およびずしお、実斜䟋ず
同様に実斜する。 各成分の組成は第衚に瀺した。これらの塗料
の堎合にも詊隓結果を第衚に瀺す。
[Industrial Application Field] The present invention is applied to the surface of steel materials, especially steel billet slabs, to prevent oxidation, to prevent the formation of scale in the high-temperature oxidizing atmosphere in a heating furnace, and to easily coat the surface of steel slabs before rolling. The present invention relates to a high-temperature antioxidant coating for steel materials that can be removed and reduces the difference in affinity between oxygen and various metals added to steel materials during hot rolling, as well as the diffusion rate of alloys and oxides. [Prior Art] As is well known, a steel billet slab is heated at a temperature of 1050 to 1200°C in a heating furnace or soaking furnace, and rolled into a product. If the billet slab is made of a steel material on the level of ordinary steel, there will be less scale generation and descaling will be relatively easy. However, if the billet slab is of high-grade steel quality, a large amount of oxidation scale will occur due to the time and temperature in the furnace, and descaling will be difficult, resulting in lower yields, which will reduce productivity, resource savings, and product finishing. This is a problem from this point of view. Conventionally, many high-temperature oxidation-inhibiting paints have been researched and developed in order to prevent oxidation and scaling of steel billet slabs under high temperatures. High-temperature anti-oxidation paints not only prevent oxidation and prevent the formation of scales, but also can be easily removed, and even if scales do occur, the scales can be easily removed together with the paint using high-pressure water before rolling, in other words, descaling is easy. is required. If scale and paint remain during rolling, scratches will occur on the surface of the product. Therefore, the present inventors developed a high-temperature antioxidant paint that satisfies these requirements, and filed applications as Japanese Patent Application Laid-open Nos. 60-251218 and 60-251219. However, when using the paints disclosed in these publications, water vapor condenses on the paint surface near the entrance of the continuous heating furnace due to the temperature difference between the steel material and the heated air, especially in the winter when the outside air temperature is low. It was found that this condensed water eluted a part of the coating film, causing scale formation, and the present inventor provided a coating solution to solve this problem in JP-A-61-64813. However, since the steel material is transferred on metal rolls when it is charged into the heating furnace, when this paint is applied to the steel material, some of the applied paint is physically transferred by the metal rolls. There was a problem in that it peeled off due to impact, etc., and scale formed on the peeled part in the heating furnace. The present inventor has provided a paint that solves this problem as Japanese Patent Publication No. 4-63105 (=Japanese Patent Application No. 63-52565). This paint is composed of the following components: a 20-50% by weight of at least one member from the group of silicon carbide, silicon nitride, stabilized zirconium oxide, mica as a ceramic base material b 25-50 The following three types of alumina are used as ceramic auxiliaries in weight percent: Alumina (1): alpha crystal particles are 1 to 10ÎŒ, heated at 1600℃
Flat fine grain alumina with a shrinkage rate of 5% or less when sintered for 3 hours at 1600℃, Alumina (2): Average particle size that has a shrinkage rate of 5% or more and 10% or less when sintered for 3 hours at 1600℃
Flat alumina of 100Ό or less with a gelatinization rate of 100% and alumina (3): Na 2 O content of 0.2 to 0.3% by weight
Ultrafine particle alumina with an average particle size of 0.1-1.5Ό c 10-40% by weight of at least one member of the group of neutral aluminum phosphate, colloidal silica, alumina sol as a binder, d 5-10% by weight of Fe, Cu, Ni and at least one member of the group of Cr powder e 5-30% by weight of sodium carbonate as a ceramic sintering accelerator and f 2.5-15% by weight (solids content) polymerizable to form a water-resistant coating and/or copolymer aqueous emulsion or solution g 3-15% by weight of carbon fibers, alumina fibers, which act as aggregates and increase coating bond strength;
At least one mineral fiber from the group consisting of silicon carbide fibers and silicon nitride fibers (However, the total of components a) to g) is 100% by weight) When applying this paint to steel materials, approximately It has been found that coating workability is improved when 10-15% by weight (based on the total paint) of water is incorporated into the composition. [Problems to be Solved by the Invention] Various metals are added to steel materials, particularly high-grade steels, depending on the intended use. In particular, in the case of steel materials with Si added, eutectic phialite (2FeO−SiO 2 ) of FeO and SiO 2 is generated at 1170°C, and the phialite melts and penetrates along the γ grain boundaries in the steel material, creating a whisker-like shape. Scale occurs. For this reason, even if scale generation on the surface is reduced or prevented, scratches will occur on the surface of the product unless it is removed to the depth where it has penetrated. Conventional paints and the paint disclosed in Japanese Patent Publication No. 4-63105 mentioned above could not solve this problem. The present inventor has conducted intensive research and has completed a paint that can solve this problem without deteriorating the excellent properties of the paint described in the above-mentioned documents. [Means for Solving the Problems] That is, the present inventor has added 8.5 to 25% by weight (based on solid content) of oxidation as component h) to the paint disclosed in Japanese Patent Application No. 63-52565. The above problem was solved by incorporating at least one oxide from the group consisting of magnesium, chromium oxide and calcium oxide. The object of the present invention is therefore: a 19-43% by weight of at least one member from the group of silicon carbide, silicon nitride, stabilized zirconium oxide, mica as a ceramic base material b 23.5-43% by weight of a ceramic auxiliary agent The following three types of alumina are used as alumina (1): α crystal particles are 1 to 10 ÎŒ and heated to 1600℃.
Flat fine grain alumina with a shrinkage rate of 5% or less when sintered for 3 hours at 1600℃, Alumina (2): Average particle size that has a shrinkage rate of 5% or more and 10% or less when sintered for 3 hours at 1600℃
Flat alumina of 100Ό or less with a gelatinization rate of 100% and alumina (3): Na 2 O content of 0.2 to 0.3% by weight
Ultrafine particle alumina with an average particle size of 0.1 to 1.5Ό c 9.5 to 33.5% by weight of at least one member of the group of neutral aluminum phosphate, colloidal silica, alumina sol as a binder, d 5 to 9% by weight of Fe, Cu, Ni and at least one of the group of Cr powders e 5-25% by weight of notalium carbonate as a ceramic sintering accelerator and f 2.5-13% by weight (solids content) polymerizable to form a water-resistant coating. and/or copolymer aqueous emulsion or solution g 3-13% by weight of carbon fibers, alumina fibers, which act as aggregates and increase coating bond strength;
At least one mineral fiber from the group consisting of silicon carbide fibers and silicon nitride fibers h 8.5 to 25% by weight of at least one from the group consisting of magnesium oxide, chromium oxide and calcium oxide
Composed of oxides of seeds, provided that the total of components a) to h) is 100
It is a high-temperature antioxidant paint for steel materials that is % by weight.
In addition, the proportions of components a) to g) are as specified in patent application No. 63-52565.
The difference from the proportions described in the specification is due to the selection of the most appropriate range from the influence of the addition of component h) and compatibility with the purpose of the present invention. The present inventors believe that component h) reacts with magnesium oxide, chromium oxide, and calcium oxide in the eutectic of phialite in the high-temperature antioxidant paint of the present invention to raise the melting point to 1250°C, and at a heating temperature of 1200°C. It has been found that melt penetration can be prevented. h) The magnesium, chromium, and calcium oxides used as components must be in the range of 8.5 to 25% by weight based on the solid content of the paint. If it is less than 8.5% by weight, the effect of raising the melting point of phialite is small, and if it is more than 25% by weight, no additional effect can be obtained, and furthermore, it adheres firmly to the steel surface and descaling properties are reduced. 8.5-25% by weight
No such inconvenience will occur if the amount is within the range of . Ceramic component a) as the base material should preferably have high heat resistance (for example, silicon carbide at 2200°C), and the amounts used are components a), b), c), d), e), and f).
and g) (hereinafter referred to as all components) totaling 19~
Must be in the range of 43% by weight. a) Ingredients are 19
If it is less than 43% by weight, the coating film will not be formed densely and the amount of oxidizing gas permeated will increase, making it impossible to obtain the desired antioxidant effect, and if it exceeds 43% by weight, the thermal conductivity will decrease and heating energy will be consumed. increases and energy loss increases. Alumina as a ceramic auxiliary agent [component b)]
are flat particles with a high gelatinization rate [alumina (1) and alumina (2)] and ultrafine particles with easy sinterability [alumina
(3)]. Alumina (1) has α-crystal particles of 1 to 10 ÎŒm in size, has a small sintering shrinkage rate of 5% or less (sintered at 1600° C. for 3 hours), and is a flat fine particle with excellent hiding power. Alumina (2) has a sintering shrinkage rate of 10% or less (1600℃
(3 hours), preferably 5% to 10%, stable, gelatinization rate of 100%, average particle size of 100Ό or less, 20Ό or more, preferably 30 to 60Ό, flat particles with hiding power. be. Alumina (3) has a Na 2 O content of 0.2-0.3% by weight
Medium soda grade and average particle size 0.1~
Alumina is easily sintered because it has ultrafine particles of 1.5Ό. This alumina has low water content,
Advantageously, it is, for example, 0.2% by weight or less. Alumina as a ceramic auxiliary agent [component b)]
When the coating film thickness is 100 ÎŒm or less, if it is less than 23.5% by weight, a dense coating film with sufficient hiding power cannot be obtained, and if it is more than 43% by weight, the removability of the coating film becomes poor. Alumina (1), (2) and (3) are mutually (1.5~
It has been found that advantageous results are obtained when a weight ratio of 3):(0.5 to 2):(1 to 3) is used. At least one type [component c)] of the group consisting of neutral aluminum phosphate, colloidal silica, and alumina sol used as a binder stabilizes the bonding of the ceramic base material, which is component a), and also improves the adhesion to the steel material. It is used to enhance the properties of the ingredients, and the amount used should be in the range of 9.5 to 33.5% by weight of the total ingredients. This binder is
If it is less than 9.5% by weight, the mixed mixture will be hard and will not have adhesion to the steel surface, and if it is less than 33.5% by weight, the effect as a binder will not increase. Metal powder [component d)] consisting of at least one of the group of Fe, Cu, Ni, and Cr powders is placed in an oxidizing atmosphere in a heating furnace (generally O 2 in exhaust gas: 1 to 2%).
A reducing atmosphere is maintained in order to avoid or minimize contact with the steel surface. If the metal powder content is less than 5% by weight, the surface of the steel material will become an oxidizing atmosphere, and if it exceeds 9% by weight, the metal powder will react with or weld to the steel material at high temperatures, changing the properties of the steel material surface, so-called product surface, and causing adverse effects. . Ceramic sintering accelerator [component e)] is 300~
It accelerates the sintering of the ceramic base material and binder at 800℃, and plays the role of hardening the paint mixture, increasing the adhesion strength to the steel surface, and making the paint film denser. 5% by weight is the lower limit to maintain a suitable sintering rate. If it is less than 5% by weight, the sintering condition will be poor (weak), the strength between the coatings in the mixed mixture will decrease, and the surface of the steel material will deteriorate due to an eroded area of the oxidizing atmosphere.
If it exceeds % by weight, the coating film will not be formed densely. f) The amount of ingredients used is 2.5 as solid content.
~13% by weight (based on the total amount of paint), especially 2.5
~10% by weight is preferred. If it is less than 2.5% by weight, it will not be effective, and if it exceeds 13% by weight,
Combustion of this component in a continuous furnace generates gases that can cause blistering and reduced peeling of the coating. g) The mineral fiber used as a component acts as an aggregate in the high-temperature antioxidant paint of the present invention, increases the bonding strength of the paint film, prevents the penetration of high-temperature oxidizing gases, and increases the strength against physical impact. do the work. These include carbon fiber, alumina fiber, silicon carbide fiber and silicon nitride fiber,
Particular preference is given to carbon fibers and alumina fibers. Advantageously, these mineral fibers have a length of less than 10 mm. If the length is longer than 10 mm, the fibers will protrude onto the surface of the paint film, impairing the leveling properties of the paint and causing unevenness in the formed paint film. Particularly preferred mineral fibers have a diameter of 10-20 ÎŒm and a length of 300-1000 ÎŒm.
It is advantageous that g) The mineral fiber used as a component is 3 to 13
It can be used in amounts other than 3% by weight, but if it is less than 3% by weight, it will have little effect as an aggregate, and if it exceeds 13% by weight, the leveling properties of the coating will deteriorate and the formed coating will become uneven. If the amount is within the range of 3 to 13% by weight, such disadvantages will not occur and the physical strength of the coating film can be improved. In the case of the paint of the present invention, in addition to the water contained in component f), an appropriate amount of water may be mixed as necessary in order to improve coating workability. The water content in the paint, including the amount contained in component f), is approximately 10%.
~15% by weight (based on the total paint) is preferred. [Example] The present invention will be explained in more detail below with reference to Examples. Example 1 Silicon carbide 15% by weight Silicon nitride 4% by weight Mica 4% by weight Alumina (1) * 6% by weight Alumina (2) ** 14% by weight Alumina (3) *** 5% by weight Neutral aluminum phosphate 3% by weight % Colloidal silica 3% by weight Alumina sol 7% by weight Copper powder 3% by weight Nickel powder 4% by weight Sodium carbonate 8% by weight Vinyl acetate/ethylene/vinyl chloride copolymer emulsion 6% by weight Alumina fiber 5% by weight Alumina (1): Flat high alpha alumina with an average particle size of 5ÎŒ and a sintering shrinkage rate of 5% or less (sintered at 1600℃ for 3 hours) Alumina (2): Average particle size of 45ÎŒ and a sintering shrinkage rate of 5%
Flat alumina with a gelatinization rate of 100% as follows (sintered at 1600℃ for 3 hours) Alumina (3): average particle size 0.4ÎŒ, particle size distribution 0.1
~1.5Ό medium soda grade alumina ( Na2O
Included 0.25 % by weight) 〓 〓 〓 Ό
300-1000Ό spinel structure (α-A 2 O 3 )
A mixture is prepared containing 13% by weight of magnesium oxide as well as a suitable amount of water in addition to the alumina fibers. This paint is applied to steel materials containing 0.4% Si for hot rolling.
Coat with a coating thickness of 100Ό, and apply the steel material to the second coating described below.
It was heated and rolled under the furnace time and furnace temperature shown in the table. The measurement results (depth of formation of firerite and number of formed pieces) of scale generation due to firerite formation in a high-temperature oxidizing atmosphere in a heating furnace are summarized in the second section.
Shown in the table. Examples 2-5 These Examples were conducted similarly to Example 1. However, the amounts of each component used at that time are shown in Table 1. Test results for these paints are listed in Table 2. Comparative Example 1 Comparative Examples A and B were prepared in the same manner as in Example 1, using paints corresponding to Examples 1 and 2 of Japanese Patent Application No. 63-52565. The composition of each component is shown in Table 1. The test results for these paints are also shown in Table 2.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】   19〜43重量のセラミツク基材ずしおの
炭化珪玠、窒化珪玠、安定化酞化ゞルコニり
ム、雲母の矀の内の少なくずも皮  23.5〜43重量のセラミツク助剀ずしおの以
䞋の皮のアルミナ、 アルミナ(1)α晶の粒子が〜10Όで、1600
℃で時間の焌結での収瞮率が以䞋である
偏平埮粒アルミナ、 アルミナ(2)1600℃、時間の焌結での収瞮
率が以䞊で䞔぀10以䞋である平均粒床
100Ό以䞋のα化率100の偏平状アルミナおよ
び アルミナ(3)Na2O含有量が0.2〜0.3重量
で0.1〜1.5Όの平均粒床の超埮粒子アルミナ  9.5〜33.5重量のバむンダヌずしおの䞭性
リン酞アルミニりム、コロむダルシリカ、アル
ミナゟルの矀の少なくずも皮、  〜重量のFe、Cu、NiおよびCr粉の矀
の少なくずも皮  〜25重量のセラミツク焌結促進剀ずしお
の炭酞ナトリりムおよび  2.5〜13重量固圢分含有量の、耐氎性
の塗膜を圢成する重合性およびたたは共重合
䜓の氎性゚マルゞペンたたは氎溶液  〜13重量の、骚材ずしお䜜甚し、塗膜結
合匷床を高めるカヌボン繊維、アルミナ繊維、
炭化珪玠繊維および窒化珪玠繊維より成る矀の
少なくずも皮の鉱物繊維  8.5〜25重量の、酞化マグネシりム、酞化
クロム及び酞化カルシりムの矀の少なくずも
皮の酞化物 より組成され、䜆し〜成分の合蚈が100
重量である鋌材甚高枩酞化防止塗料。
[Scope of Claims] 1 a 19-43% by weight of at least one member of the group consisting of silicon carbide, silicon nitride, stabilized zirconium oxide, and mica as a ceramic base material b 23.5-43% by weight as a ceramic auxiliary agent The following three types of alumina, Alumina (1): α crystal particles are 1 to 10Ό, 1600
Flat fine grain alumina with a shrinkage rate of 5% or less when sintered for 3 hours at 1600℃, Alumina (2): Average shrinkage rate of 5% or more and 10% or less when sintered for 3 hours at 1600℃ particle size
Flat alumina of 100Ό or less with a gelatinization rate of 100% and alumina (3): Na 2 O content of 0.2 to 0.3% by weight
ultrafine particle alumina with an average particle size of 0.1 to 1.5 Ό; c 9.5 to 33.5% by weight of at least one member of the group of neutral aluminum phosphate, colloidal silica, alumina sol as a binder; d 5 to 9% by weight of Fe, Cu, at least one of the group of Ni and Cr powders e 5-25% by weight of sodium carbonate as ceramic sintering accelerator and f 2.5-13% by weight (solids content) polymerized to form a water-resistant coating 3 to 13% by weight of carbon fibers, alumina fibers, which act as aggregates and increase the bond strength of the coating, g.
At least one mineral fiber from the group consisting of silicon carbide fibers and silicon nitride fibers h 8.5 to 25% by weight of at least one from the group consisting of magnesium oxide, chromium oxide and calcium oxide
Composed of oxides of seeds, provided that the total of components a) to h) is 100
High temperature anti-oxidation paint for steel material which is % by weight.
JP28483588A 1988-11-12 1988-11-12 High-temperature oxidation preventive coating for steel material Granted JPH02133512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28483588A JPH02133512A (en) 1988-11-12 1988-11-12 High-temperature oxidation preventive coating for steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28483588A JPH02133512A (en) 1988-11-12 1988-11-12 High-temperature oxidation preventive coating for steel material

Publications (2)

Publication Number Publication Date
JPH02133512A JPH02133512A (en) 1990-05-22
JPH0588289B2 true JPH0588289B2 (en) 1993-12-21

Family

ID=17683629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28483588A Granted JPH02133512A (en) 1988-11-12 1988-11-12 High-temperature oxidation preventive coating for steel material

Country Status (1)

Country Link
JP (1) JPH02133512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507972A (en) * 2005-09-14 2009-02-26 むヌテヌ゚ン ナノノェむション アクチェンゲれルシャフト Layer or coating and composition for its production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857672B1 (en) * 2003-07-15 2005-09-16 Dacral USE OF YTTRIUM, ZIRCONIUM, LANTHAN, CERIUM, PRASEODYM OR NEODYME AS A REINFORCING ELEMENT OF THE ANTI-CORROSION PROPERTIES OF ANTI-CORROSION COATING COMPOSITION.
DE10335224A1 (en) * 2003-07-30 2005-03-24 UniversitÀt Bremen Method for production of a molded body from ceramic material using metal powder and a colloidal sol useful in space shuttle-, microsystem-, fireproofing-, and/or foundry-, and/or biotechnology technology, e.g. chromatography
EP3752566A4 (en) * 2018-02-15 2021-11-24 Quaker Chemical Corporation A chemical method to decrease oxide scale generation in hot rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507972A (en) * 2005-09-14 2009-02-26 むヌテヌ゚ン ナノノェむション アクチェンゲれルシャフト Layer or coating and composition for its production

Also Published As

Publication number Publication date
JPH02133512A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
US4471059A (en) Carbon-containing refractory
JPH05171261A (en) Antioxidant coating material for steel material
JPH0588289B2 (en)
CN1045281C (en) Silicon nitride combined with silicon carbide refractory material for pouring ladle gate
GB2119816A (en) Cast iron alloy and method for producing same
JPH0463105B2 (en)
JPS6358886B2 (en)
JP3096586B2 (en) Alumina-carbon casting nozzle refractories
JP2003511341A (en) Carbon-containing heat-resistant article having protective coating
JP2774405B2 (en) Thermal spray material containing metal powder
JPS6358888B2 (en)
JPS6358887B2 (en)
JPH01176064A (en) Formation of thermal sprayed film having excellent buildup resistance
JPH02205622A (en) Paint for preventing high-temperature decarburization of carbon steel
JP3076888B2 (en) 2 melting point heat-resistant sprayed material and heat-resistant member processed by thermal spraying
JPS6333108A (en) Superior wear resistant roll at high temperature
JP3358040B2 (en) Nozzle for continuous casting
JPS63284266A (en) High-temperature oxidation inhibitor for steel material
JP3172547B2 (en) Antioxidant for graphite-containing refractories
JP3035858B2 (en) Graphite-containing refractory and method for producing the same
KR910007159B1 (en) Inhibitor for preventing oxidizing or decarburizing of a metal and method for using the same
JPS6310115B2 (en)
JPH0365556A (en) Carbon-containing refractory
CA1189093A (en) Carbon-containing refractory
JPS6131363A (en) Carbon-containing flow-in material