JP3390773B2 - Conductive antioxidant for graphite electrodes - Google Patents

Conductive antioxidant for graphite electrodes

Info

Publication number
JP3390773B2
JP3390773B2 JP06170994A JP6170994A JP3390773B2 JP 3390773 B2 JP3390773 B2 JP 3390773B2 JP 06170994 A JP06170994 A JP 06170994A JP 6170994 A JP6170994 A JP 6170994A JP 3390773 B2 JP3390773 B2 JP 3390773B2
Authority
JP
Japan
Prior art keywords
electrode
antioxidant
coating
conductive
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06170994A
Other languages
Japanese (ja)
Other versions
JPH07268249A (en
Inventor
勝美 森川
丈記 吉富
英之 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Krosaki Harima Corp
Original Assignee
Mitsubishi Chemical Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Krosaki Harima Corp filed Critical Mitsubishi Chemical Corp
Priority to JP06170994A priority Critical patent/JP3390773B2/en
Publication of JPH07268249A publication Critical patent/JPH07268249A/en
Application granted granted Critical
Publication of JP3390773B2 publication Critical patent/JP3390773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Ceramic Products (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性酸化防止材、詳し
くは特に電気製鋼炉等のアークを用いる炉で使用される
黒鉛電極の酸化防止材として好適に使用し得る導電性酸
化防止材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive antioxidant, and more particularly to a conductive antioxidant that can be suitably used as a antioxidant for graphite electrodes used in arc furnaces such as electric steelmaking furnaces. .

【0002】[0002]

【従来の技術】従来から電気製鋼炉をはじめとするアー
ク炉においては、人造黒鉛電極が使用されている。この
黒鉛電極は、大電流、高温度、溶融物の飛散等の影響を
受ける非常に苛酷な条件下で使用される。特に、電極の
先端部では、超高温のアークが発生し、電極は400℃
〜3,000℃程度の高温にさらされることになり、炉
内の開口部等から侵入した酸化性ガスにより容易に酸化
消耗する。例えば、製鋼炉では電極のコストが大きい割
合を占めるので、この電極の消耗は経済的に大きな損失
となる。この電極の酸化消耗は、50〜70重量%が側
面から生じ、アークそのものによる消耗は少ない。さら
に、電極は、先端部ほど酸化消耗により先細りするた
め、長手方向の酸化消耗が加速される。したがって、電
極の側面からの酸化防止が十分であれば、電極の消耗は
減少し経済的メリットが大きいことになる。
2. Description of the Related Art Artificial graphite electrodes have been used in arc furnaces such as electric steelmaking furnaces. This graphite electrode is used under extremely harsh conditions that are affected by large current, high temperature, and splash of melt. In particular, an extremely high temperature arc is generated at the tip of the electrode, and the temperature of the electrode is 400 ° C.
Since it is exposed to a high temperature of about 3,000 ° C., it is easily consumed by oxidation due to the oxidizing gas that has penetrated through the openings in the furnace. For example, in a steelmaking furnace, the cost of the electrodes accounts for a large proportion, and the consumption of the electrodes causes a large economical loss. 50 to 70% by weight of this electrode is consumed by oxidation, and the consumption of the arc itself is small. Furthermore, since the electrode is tapered toward the tip end due to oxidative consumption, oxidative consumption in the longitudinal direction is accelerated. Therefore, if the oxidation prevention from the side surface of the electrode is sufficient, the consumption of the electrode is reduced and the economic merit is large.

【0003】このため、電極の酸化を防止するために種
々の提案がなされている。たとえば、電極への水の噴射
による冷却によって電極を酸化温度以下に維持する方法
がある。しかしながら、この方法は、炉内に大量の水分
が入った場合には、水蒸気爆発の危険があり、電極全体
の冷却効果も少ないので十分な酸化防止効果が期待でき
ない。また、電極に保護コーティングを形成して電極表
面を保護しようとする方法がある。たとえば、黒鉛電極
表面に非導電性の酸化防止層を形成する方法(特開昭5
9−51499号公報)、さらにはシリカ超微粒子のコ
ロイド溶液にアルミナ、シリカ微粒子等を分散させたコ
ーティング材を用いる方法(特開平3−45583号公
報)が挙げられる。しかしながら、これらの従来のコー
ティング材は、いずれも非導電性であるため、電極への
通電を確保するためには、電極のチャック部分を避けて
コーティングを施す必要がある。このため、施工上の問
題や未処理部分での酸化防止が十分でない等の難点があ
る。
Therefore, various proposals have been made to prevent the oxidation of the electrodes. For example, there is a method of maintaining the electrode at an oxidation temperature or lower by cooling the electrode by jetting water. However, in this method, when a large amount of water enters the furnace, there is a risk of steam explosion and the cooling effect of the entire electrode is small, so a sufficient antioxidant effect cannot be expected. In addition, there is a method of forming a protective coating on the electrode to protect the electrode surface. For example, a method of forming a non-conductive antioxidant layer on the surface of a graphite electrode (Japanese Patent Laid-Open No. Sho 5 (1999) -58138).
9-51499), and further, a method of using a coating material in which alumina, silica fine particles and the like are dispersed in a colloidal solution of ultrafine silica particles (JP-A-3-45583). However, since all of these conventional coating materials are non-conductive, it is necessary to apply the coating while avoiding the chucked portion of the electrode in order to ensure the electric conduction to the electrode. Therefore, there are problems such as construction problems and insufficient prevention of oxidation in untreated portions.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、アー
ク炉で使用される黒鉛電極の酸化消耗を防ぐことであ
る。本発明のより具体的な目的は黒鉛電極用の従来の酸
化防止材における課題を解決しようとするものであり、
特にコーティング施工に際して電極チャック部分へのコ
ーティングも可能であり、しかも高温での酸化防止効果
のすぐれた黒鉛電極用導電性酸化防止材を提供すること
である。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent oxidative wear of graphite electrodes used in arc furnaces. A more specific object of the present invention is to solve the problems in conventional antioxidants for graphite electrodes,
In particular, it is an object of the present invention to provide a conductive antioxidant material for a graphite electrode , which is capable of coating the electrode chuck portion at the time of coating and has an excellent antioxidant effect at high temperature.

【0005】[0005]

【課題を解決するための手段】本発明の黒鉛電極用導電
性酸化防止材は、耐火性骨材、結合剤及び黒鉛化カーボ
ンブラックを含有してなることを特徴とする。以下、本
発明を詳細に説明する。まず、本発明における耐火性骨
材としては、シリカ、アルミナ、チタニア、ジルコニア
等の酸化物、SiC、B4C、CrC、WC、TiC、
VC、ZrC、NbC等の炭化物、TiN、VN、Nb
N、ZrN等の窒化物、CrSi2、TiSi2、ZrS
2等の珪化物またはケイ素等の粉末等の一種以上が用
いられる。また、ZrB2、TiB2、CrB等のほう化
物粉末、Fe、Co、Ni、Cr、V等の金属粉末も好
ましくは、上記の耐火性粉末と併用することができる。
特に、ZrB2、B4C、TiC、SiC、Siはカーボ
ンの酸化防止及び塗膜の熱間での安定性面で適当であ
り、好適に使用される。
The conductive antioxidant for a graphite electrode of the present invention is characterized by containing a refractory aggregate, a binder and graphitized carbon black. Hereinafter, the present invention will be described in detail. First, as the refractory aggregate in the present invention, oxides such as silica, alumina, titania, zirconia, SiC, B 4 C, CrC, WC, TiC,
Carbides such as VC, ZrC, NbC, TiN, VN, Nb
N, ZrN, etc. nitrides, CrSi 2 , TiSi 2 , ZrS
One or more of silicides such as i 2 or powders such as silicon are used. Further, boride powders such as ZrB 2 , TiB 2 and CrB, and metal powders such as Fe, Co, Ni, Cr and V are also preferably used in combination with the above refractory powders.
In particular, ZrB 2 , B 4 C, TiC, SiC and Si are suitable in terms of preventing oxidation of carbon and stability of the coating film against heat, and are preferably used.

【0006】結合剤としては、乾燥後の適度な塗膜強度
が得られるものであれば、特に制限されないが、好適に
は各種珪酸塩、リン酸塩、コロイド質結合剤などの無機
系結合剤を用いることができる。例えば、コロイド質結
合剤としてはコロイダルシリカやコロイダルアルミナ、
コロイダルジルコニア等が好適に使用できる。特にコロ
イダルシリカは、乾燥後の耐水性、接着性、安定性およ
び価格面で最も好ましい。さらに、本発明において用い
られる黒鉛化カーボンブラックとしては、ファーネス
法、アセチレン法、サーマル法またはコンタクト法等で
得られたカーボンブラックを酸素が実質的に存在しない
雰囲気下(例えば、N2気流中、真空中または炭素粉
中)で2000℃以上、好適には2500〜3000℃
の温度で処理したものが挙げられる。すなわち、黒鉛化
カーボンブラックは、好適には結晶子の厚さLc(Å)
を粒子径(nm)で除した値が1.0〜3.0の範囲に
あるものが用いられる。
[0006] The binder is not particularly limited as long as it can obtain an appropriate coating strength after drying, but is preferably an inorganic binder such as various silicates, phosphates and colloidal binders. Can be used. For example, as colloidal binder, colloidal silica or colloidal alumina,
Colloidal zirconia and the like can be preferably used. In particular, colloidal silica is most preferable in terms of water resistance after drying, adhesiveness, stability and price. Further, as the graphitized carbon black used in the present invention, carbon black obtained by a furnace method, an acetylene method, a thermal method, a contact method, or the like is used in an atmosphere in which oxygen is substantially absent (for example, in a N 2 stream, 2000 ° C or higher, preferably 2500 to 3000 ° C in vacuum or in carbon powder)
The thing processed at the temperature of. That is, the graphitized carbon black preferably has a crystallite thickness Lc (Å)
The value obtained by dividing by the particle diameter (nm) is in the range of 1.0 to 3.0.

【0007】上記3つの必須成分の配合量は、目的、原
料の種類などによっても異なるが、一般的に耐火性骨材
はこの3成分全量中の固形分重量%が、20〜90wt
%、好ましくは40〜70wt%、結合剤(固形分)は
2〜30wt%、好ましくは5〜15wt%、黒鉛化カ
ーボンブラックは2〜30wt%、好ましくは10〜2
0wt%程度になるように配合して用いられる。耐火性
骨材の固形分が20wt%未満であると熱間で塗膜の安
定性が悪くなりハジケが発生し、母材を酸化させ易い。
また耐火性骨材の固形分が90wt%を超えると塗膜の
耐火性が高くなりすぎて500〜800℃程度の低温域
で母材を酸化させ、以後のより高温温度域で塗膜として
機能しなくなる。また、結合剤固形分の含有量は、少な
いほど導電性の面で好ましいが2wt%未満であると接
着力が無く剥離し易い。また、結合剤固形分の含有量が
30wt%を超えると接着力は優れるが導電性の面で問
題を生じスパークの原因になる。更に、黒鉛化カーボン
ブラックの含有量は、多いほど導電性面で好ましいが3
0wt%を超えると酸化防止スリップを増粘させたり、
塗膜中の黒鉛化カーボンブラックが熱間で燃焼し、耐酸
化性能を低下させたりする。黒鉛化カーボンブラックの
含有量が2wt%未満であると耐酸化性能は優れるが所
望の導電性を得ることができない。
The blending amounts of the above-mentioned three essential components vary depending on the purpose, the kind of raw material, etc., but in general, the refractory aggregate has a solid content of 20 to 90 wt% in the total amount of these three components.
%, Preferably 40-70 wt%, binder (solid content) 2-30 wt%, preferably 5-15 wt%, graphitized carbon black 2-30 wt%, preferably 10-2.
It is used by blending so as to be about 0 wt%. When the solid content of the refractory aggregate is less than 20 wt%, the stability of the coating film is deteriorated by heat, cratering occurs, and the base material is easily oxidized.
Further, when the solid content of the refractory aggregate exceeds 90 wt%, the fire resistance of the coating film becomes too high and the base material is oxidized in a low temperature range of about 500 to 800 ° C and functions as a coating film in the higher temperature range thereafter. Will not do. Further, the smaller the solid content of the binder is, the more preferable it is in terms of conductivity. Further, when the content of the solid content of the binder exceeds 30 wt%, the adhesive force is excellent, but there is a problem in terms of conductivity, which causes sparks. Further, the higher the content of graphitized carbon black is, the more preferable it is in terms of conductivity.
If it exceeds 0 wt%, the antioxidant slip may be thickened,
The graphitized carbon black in the coating film burns hot, which may reduce the oxidation resistance. When the content of the graphitized carbon black is less than 2 wt%, the oxidation resistance performance is excellent but the desired conductivity cannot be obtained.

【0008】また、本発明においては、必要に応じて上
記以外の成分を配合することができる。たとえば、酸化
防止材成分として黒鉛粉末を配合することができる。ア
ーク炉の操業により電極が消耗すると上部に新しい電極
をつなぎ、電極ホルダー(把持機)を電極長手方向に移
動させ掴み直すが、この際に電極の塗膜と電極ホルダー
部とが接触し、塗膜が損傷する場合がある。このような
時は接触時の塗膜の損傷(剥離)を防止するために塗膜
中に黒鉛粉末を配合することで、耐摺動性が向上し塗膜
の損傷が軽減され得る。黒鉛粉末は耐火性骨材に対し2
0〜70wt%(好ましくは40〜60wt%)程度は
添加される。また、経時安定性、接着性、導電性を向上
させるためにアクリル樹脂などの水溶性ポリマーを3成
分全量に対し0.01〜3wt%程度配合することもで
きる。
Further, in the present invention, if necessary, components other than the above may be blended. For example, graphite powder can be blended as an antioxidant component. When the electrode wears out due to the operation of the arc furnace, a new electrode is connected to the upper part and the electrode holder (grasping machine) is moved in the longitudinal direction of the electrode to re-grip, but at this time, the coating film of the electrode comes into contact with the electrode holder and The membrane may be damaged. In such a case, by incorporating graphite powder into the coating film to prevent damage (peeling) of the coating film at the time of contact, sliding resistance can be improved and damage to the coating film can be reduced. Graphite powder is 2 for refractory aggregate
About 0 to 70 wt% (preferably 40 to 60 wt%) is added. Further, a water-soluble polymer such as an acrylic resin may be blended in an amount of about 0.01 to 3 wt% with respect to the total amount of the three components in order to improve stability over time, adhesiveness, and conductivity.

【0009】これらの各成分の配合は通常次のようにし
て行われる。本発明の導電性酸化防止材は上記成分を上
記特定の重量比で混合した粉末に水を加え混合および均
一化処理を行うことにより調製される。水添加量は、塗
布作業形態により異なるが、導電性酸化防止材組成成分
の固形分に対して外掛けで15〜150wt%が好まし
く、25〜100wt%が最も好ましい。上記組成成分
の混合均一化処理は、たとえば、混合粉末体積と同体積
のアルミナボールを入れたアトライター装置に上記混合
粉末、水を所定量添加し、所定時間混合して均一化処理
を行うことで調製し、導電性酸化防止材が得られる。こ
こで混合、均一化処理装置および方法に特に制限はな
く、通常の卓上ミキサー、ボールミル、ロールミルなど
で混合処理しても構わない。なお、前記混合均一化処理
の目的は、塗布された塗膜中の組成が塗膜場所に依存さ
せず、組成成分の分布を均一化させるためである。この
ようにして得られる導電性酸化防止材はアーク炉用電極
の側面に、通常100〜200μm程度の厚み(乾燥
後)にチャック部分を含めて塗布することができる。塗
布に際しては、浸漬法、刷毛塗り、スプレー(噴霧)
法、静電塗装法などの一般的な塗膜形成方法の内から最
も適している方法を選ぶことができる。この際、それぞ
れの施工法に適した作業粘度に導電性酸化防止材を調製
する必要がある。
The respective components are usually compounded in the following manner. The conductive antioxidant of the present invention is prepared by adding water to a powder obtained by mixing the above components in the above specific weight ratio, and mixing and homogenizing the mixture. The amount of water added varies depending on the coating work mode, but is preferably 15 to 150 wt%, and most preferably 25 to 100 wt%, as applied to the solid content of the conductive antioxidant composition component. The mixing and homogenizing treatment of the above composition components is carried out, for example, by adding a predetermined amount of the above mixed powder and water to an attritor device containing an alumina ball having the same volume as the mixed powder volume, and mixing for a predetermined time to perform the homogenizing treatment. To prepare a conductive antioxidant. Here, there is no particular limitation on the mixing and homogenizing treatment device and method, and the mixture treatment may be carried out by an ordinary desk mixer, ball mill, roll mill or the like. The purpose of the mixing and homogenizing treatment is to make the composition of the applied coating film uniform regardless of the location of the coating film. The conductive antioxidant thus obtained can be applied to the side surface of the arc furnace electrode, usually including the chuck portion in a thickness of about 100 to 200 μm (after drying). At the time of application, dipping method, brush application, spray (spray)
The most suitable method can be selected from general coating film forming methods such as a coating method and an electrostatic coating method. At this time, it is necessary to prepare the conductive antioxidant to a work viscosity suitable for each construction method.

【0010】[0010]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。 実施例1、2 下記の配合組成(固形分)に従って、2種類の導電性酸
化防止材を得た。 (配合I) 窒化チタン粉末 65wt% ほう化ジルコニウム粉末 5wt% 黒鉛化カーボンブラック 15wt% (商品名:三菱カーボンブラック#4000B、三菱化成(株)製) 無機結合剤(コロイダルシリカ)(固形分) 15wt% これにさらに、分散剤としてアクリル樹脂と界面活性
剤の混合物を前記〜の総量に対し0.5wt%で添
加する。
The present invention will be described in more detail with reference to the following examples. Examples 1 and 2 Two kinds of conductive antioxidants were obtained according to the following composition (solid content). (Formulation I) Titanium nitride powder 65 wt% Zirconium boride powder 5 wt% Graphitized carbon black 15 wt% (trade name: Mitsubishi carbon black # 4000B, manufactured by Mitsubishi Kasei Co.) Inorganic binder (colloidal silica) (solid content) 15 wt % Further, a mixture of an acrylic resin and a surfactant as a dispersant is added thereto in an amount of 0.5 wt% with respect to the total amount of the above.

【0011】 (配合II) 窒化チタン粉末 35wt% 黒鉛微粉末 25wt% ほう化ジルコニウム粉末 10wt% 黒鉛化カーボンブラック 15wt% (商品名:三菱カーボンブラック#4000B、三菱化成(株)製) 無機結合剤(コロイダルシリカ)(固形分) 15wt% これにさらに、分散剤としてアクリル樹脂と界面活性
剤の混合物を前記〜の総量に対し0.5wt%で添
加する。すなわち、配合I(実施例1)または配合II
(実施例2)の固形分100重量部に対して水をそれぞ
れ80重量部添加し、湿式粉砕装置「アトライター」に
より約24時間混合し、均一化処理を行い、2種類の導
電性酸化防止材を得た。
(Formulation II) Titanium nitride powder 35 wt% Graphite fine powder 25 wt% Zirconium boride powder 10 wt% Graphitized carbon black 15 wt% (trade name: Mitsubishi Carbon Black # 4000B, manufactured by Mitsubishi Kasei Co.) Inorganic binder ( Colloidal silica) (solid content) 15 wt% Further, a mixture of an acrylic resin and a surfactant as a dispersant is added at 0.5 wt% with respect to the total amount of the above items. That is, Formulation I (Example 1) or Formulation II
80 parts by weight of water was added to 100 parts by weight of the solid content of (Example 2), mixed for about 24 hours by a wet pulverizer "Attritor", and homogenized to perform two kinds of conductive oxidation prevention. I got the material.

【0012】〈体積固有抵抗〉下記の方法により、体積
固有抵抗値(Ω・cm)を測定した結果を表1に示す。
併せて市販の酸化防止材Aについての測定結果も示す
(比較例1)。なお、体積固有抵抗値測定法は次の通り
である。予め抵抗の明らかなカーボン板(50×130
×20mmt(t:厚み))の上下面に導電性酸化防止
材を所定の厚さでコーティング処理を施した後、昇温速
度400℃/Hで加熱し、所定温度(大気雰囲気下)で
1時間保持し、抵抗測定用試料を得た。この試料を抵抗
測定装置の鋼製電極にはさみ、アムスラー加圧装置を用
い全圧1tで加圧し、読みとった抵抗値から塗膜の体積
固有抵抗を下記の式により算出した。 ρ=S/H×(R−R0) ρ:塗膜の体積固有抵抗 (Ω・cm) S:試料の電流通過断面積 (cm2) H:コーティング層の合計厚さ(cm) R:処理後の全抵抗 (Ω) R0:処理前の全抵抗 (Ω)
<Volume Specific Resistance> Table 1 shows the results of measuring the volume specific resistance value (Ω · cm) by the following method.
The measurement results of the commercially available antioxidant A are also shown (Comparative Example 1). The volume resistivity measurement method is as follows. Carbon plate with known resistance (50 × 130
A conductive antioxidant is applied to the upper and lower surfaces of × 20 mmt (t: thickness) to a predetermined thickness, and then heated at a heating rate of 400 ° C./H, and heated at a predetermined temperature (in the air atmosphere) for 1 After holding for a period of time, a sample for resistance measurement was obtained. This sample was sandwiched between steel electrodes of a resistance measuring device and pressed at a total pressure of 1 t using an Amsler pressurizing device, and the volume resistivity of the coating film was calculated from the read resistance value by the following formula. ρ = S / H × (R−R 0 ) ρ: Volume resistivity of coating film (Ω · cm) S: Current passing cross-sectional area of sample (cm 2 ) H: Total thickness of coating layer (cm) R: Total resistance after treatment (Ω) R 0 : Total resistance before treatment (Ω)

【0013】[0013]

【表1】 [Table 1]

【0014】〈耐摺動試験〉さらに、配合I(実施例
1)、配合II(実施例2)に示す酸化防止材について耐
摺動性を比較した結果を次に示す。比較のために市販の
酸化防止材Aを同様にカーボン板に処理した。耐摺動試
験装置は、神鋼造機(株)製摩耗試験装置を使用した。
カーボン母材(φ50×8mmt)の上表面に上記導電
性酸化防止材をスプレー法により乾燥後に約200μm
の膜厚が得られるようにコーティングした後、自然乾燥
させ評価用テストピースとした。これをモーター付き試
験台にセットし毎分50回転で回転させコーティング面
を荷重10kgで円周8箇所に切り溝を持った鋼製リン
グ(外径/内径=φ43/φ33mm)に押し付けて2
000回転後の重量差を測定し、耐摺動特性の評価とし
た。結果を表2に示す。
<Sliding resistance test> Further, the results of comparing the sliding resistance of the antioxidants shown in Formula I (Example 1) and Formula II (Example 2) are shown below. For comparison, a commercially available antioxidant A was similarly treated on a carbon plate. As the sliding resistance test device, a wear test device manufactured by Shinko Seiki Co., Ltd. was used.
Approximately 200 μm after drying the above conductive antioxidant on the upper surface of the carbon base material (φ50 × 8 mmt) by the spray method
After coating so as to obtain a film thickness of, the test piece for evaluation was naturally dried. This is set on a test stand with a motor and rotated at 50 rpm, and the coating surface is pressed against a steel ring (outer diameter / inner diameter = φ43 / φ33 mm) with a load of 10 kg and 8 kerfs on the circumference.
The weight difference after 000 rotations was measured, and the sliding resistance was evaluated. The results are shown in Table 2.

【0015】[0015]

【表2】 このように黒鉛化カーボンブラックまたは黒鉛化カーボ
ンブラックと黒鉛微粉末をコーティング層中に含有させ
ることにより著しく耐摺動性を向上させることができ、
電極ホルダーの移動時におこる擦れからコーティング層
を保護することができる。
[Table 2] In this way, by adding graphitized carbon black or graphitized carbon black and fine graphite powder in the coating layer, it is possible to significantly improve the sliding resistance,
The coating layer can be protected from rubbing that occurs when the electrode holder moves.

【0016】〈原料溶融炉による溶融実験〉これらの酸
化防止材を原料溶融炉(4t)で用いられる黒鉛質電極
棒(φ155×3750mm)表面に、刷毛塗り法によ
り約200〜300μm厚(乾燥後)に塗布し、原料溶
融実験を行った。溶融に使用した原料は、酸化マグネシ
ウムであり、溶融に要した時間は約3時間30分であっ
た。溶融実験の結果を表3に示す。比較のために、市販
酸化防止剤A(比較例1)も併記した。配合I(実施例
1)、配合II(実施例2)および比較例1ではいずれも
スパークなどのトラブルも生じず操業上の問題は無かっ
た。酸化防止効果については、市販品を塗布した比較例
1では電極先端部から11.0%、側面から10.5%
消耗し合計21.5%の重量減少があったのに対して、
実施例1および2では側面からの酸化消耗が激減し、同
時に先端部からの酸化消耗も減少し、重量減少率は比較
例の半分以下となり良好な酸化防止効果を示した。
<Melting Experiment in Raw Material Melting Furnace> These antioxidants were applied to the surface of the graphite electrode rod (φ155 × 3750 mm) used in the raw material melting furnace (4 t) by a brush coating method to a thickness of about 200 to 300 μm (after drying). ) And the raw material melting experiment was performed. The raw material used for melting was magnesium oxide, and the time required for melting was about 3 hours and 30 minutes. The results of the melting experiment are shown in Table 3. For comparison, a commercial antioxidant A (Comparative Example 1) is also shown. In each of Formulation I (Example 1), Formulation II (Example 2) and Comparative Example 1, troubles such as sparks did not occur and there was no problem in operation. Regarding the antioxidant effect, in Comparative Example 1 in which a commercial product is applied, 11.0% from the tip of the electrode and 10.5% from the side surface.
While it was consumed and there was a total weight loss of 21.5%,
In Examples 1 and 2, the oxidative consumption from the side face was drastically reduced, and at the same time, the oxidative consumption from the tip part was also reduced, and the weight reduction rate was less than half that of the comparative example, showing a good antioxidant effect.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【発明の効果】本発明によれば、電極チャック部分への
塗布が可能で、かつ高温での酸化防止効果の優れた導電
性酸化防止材を得ることができる。
According to the present invention, it is possible to obtain a conductive antioxidant which can be applied to the electrode chuck portion and has an excellent effect of preventing oxidation at high temperatures.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C09K 15/02 H05B 7/12 C H05B 7/12 C04B 111:94 // C04B 111:94 35/52 G (72)発明者 久 英之 神奈川県中郡二宮町二宮404−2 (56)参考文献 特開 昭49−129238(JP,A) 特開 平5−295298(JP,A) 特開 昭61−207484(JP,A) 特開 昭63−26822(JP,A) 特開 昭55−58259(JP,A) 特開 昭62−71638(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09D 1/00 - 10/00 C09D 101/00 - 201/10 C04B 41/00 - 41/72 C04B 35/52 - 35/54 H01M 4/86 - 4/98 C25C 1/00 - 7/08 C25B 11/00 - 11/20 F27D 7/00 - 15/02 F27B 1/00 - 3/28 H01J 61/00 - 61/28 H05B 7/00 - 7/22 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C09K 15/02 H05B 7/12 C H05B 7/12 C04B 111: 94 // C04B 111: 94 35/52 G (72) Inventor Hideyuki Hisa 404-2 Ninomiya, Ninomiya-cho, Kanagawa Prefecture (56) References JP-A-49-129238 (JP, A) JP-A-5-295298 (JP, A) JP-A-61-207484 (JP, A) JP 63-26822 (JP, A) JP 55-58259 (JP, A) JP 62-71638 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C09D 1/00-10/00 C09D 101/00-201/10 C04B 41/00-41/72 C04B 35/52-35/54 H01M 4/86-4/98 C25C 1/00-7/08 C25B 11 / 00-11/20 F27D 7/00-15/02 F27B 1/00-3/28 H01J 61/00-61/28 H05B 7/00-7/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐火性骨材、結合剤及び黒鉛化カーボン
ブラックを含有してなる黒鉛電極用導電性酸化防止材。
1. A conductive antioxidant for a graphite electrode, which comprises a refractory aggregate, a binder and graphitized carbon black.
【請求項2】 黒鉛粉末を含有してなる請求項1記載の
黒鉛電極用導電性酸化防止材。
2. The method according to claim 1, which contains graphite powder.
Conductive antioxidant for graphite electrodes .
JP06170994A 1994-03-30 1994-03-30 Conductive antioxidant for graphite electrodes Expired - Fee Related JP3390773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06170994A JP3390773B2 (en) 1994-03-30 1994-03-30 Conductive antioxidant for graphite electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06170994A JP3390773B2 (en) 1994-03-30 1994-03-30 Conductive antioxidant for graphite electrodes

Publications (2)

Publication Number Publication Date
JPH07268249A JPH07268249A (en) 1995-10-17
JP3390773B2 true JP3390773B2 (en) 2003-03-31

Family

ID=13179038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06170994A Expired - Fee Related JP3390773B2 (en) 1994-03-30 1994-03-30 Conductive antioxidant for graphite electrodes

Country Status (1)

Country Link
JP (1) JP3390773B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265871A (en) * 2001-03-06 2002-09-18 Mikuni Color Ltd Electroconductive antioxidizing coating
ATE364578T1 (en) 2001-03-08 2007-07-15 Tsunemi Ochiai FIREPROOF PRODUCT
JP2002265211A (en) * 2001-03-08 2002-09-18 Tsunemi Ochiai Production process of graphite particle and refractory using the same
US6645629B2 (en) * 2001-03-15 2003-11-11 Mikuni Color, Ltd. Conductive antioxidant paint and graphite electrode
KR100750836B1 (en) * 2001-03-16 2007-08-22 미쿠니 시키소 가부시키가이샤 Conductive antioxidant paint and graphite electrode
FR3045598B1 (en) 2015-12-21 2018-01-12 Centre National De La Recherche Scientifique PROCESS FOR PRODUCING A CERAMIC FROM A CHEMICAL REACTION

Also Published As

Publication number Publication date
JPH07268249A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
CA1131260A (en) Carbon-containing refractory bricks
JP3390773B2 (en) Conductive antioxidant for graphite electrodes
JPH028359A (en) Sprayed deposit having wear resistance and lipophilic and hydrophobic properties and thermal spraying material
EP0150092A2 (en) A carbon-containing refractory
EP0170889B1 (en) Zrb2 composite sintered material
JPH07268250A (en) Conductive antioxidant material
CN108330429A (en) A kind of molybdenum disilicide composite coating and preparation method thereof
US6645629B2 (en) Conductive antioxidant paint and graphite electrode
JPH07268248A (en) Conductive antioxidant material
EP0116194B1 (en) A carbon-containing refractory
JP3096586B2 (en) Alumina-carbon casting nozzle refractories
JP2771613B2 (en) Carbon containing refractories
US1312257A (en) Jesse c
JP2574529B2 (en) Carbon containing refractories
JPS627658A (en) Carbon-containing refractories
JP2950622B2 (en) Carbon containing refractories
JPS5937731B2 (en) sliding member
JP2002265871A (en) Electroconductive antioxidizing coating
JP3492885B2 (en) Slide gate plate
JPH0588289B2 (en)
GB2131790A (en) Carbon-containing refractory
KR100293186B1 (en) Zirconium diboride sintering material excellent in corrosion resistance and thermal shock resistance
KR100750836B1 (en) Conductive antioxidant paint and graphite electrode
JPH07130464A (en) Electroconductive oxidation preventive material
JP2001123123A (en) Electroconductive antioxidative coating material and graphite electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees