JPH07267775A - Single crystal pulling up method - Google Patents

Single crystal pulling up method

Info

Publication number
JPH07267775A
JPH07267775A JP6064196A JP6419694A JPH07267775A JP H07267775 A JPH07267775 A JP H07267775A JP 6064196 A JP6064196 A JP 6064196A JP 6419694 A JP6419694 A JP 6419694A JP H07267775 A JPH07267775 A JP H07267775A
Authority
JP
Japan
Prior art keywords
layer
single crystal
crucible
pulling
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6064196A
Other languages
Japanese (ja)
Inventor
Yoshihiro Akashi
義弘 明石
Takayuki Kubo
高行 久保
Setsuo Okamoto
節男 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP6064196A priority Critical patent/JPH07267775A/en
Publication of JPH07267775A publication Critical patent/JPH07267775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a single crystal having a high number of oxygen atoms by covering the free surface of a molten layer with a cap brought into contact therewith in a process of forming a solid layer on the lower layer of a crucible. CONSTITUTION:The free surface of the molten layer is covered with the cap brought into contact therewith in the process of forming the solid layer on the lower layer in the crucible in the method for pulling up the single crystal from the molten layer while melting the solid layer by dissolving all the raw materials for the crystal in the crucible, then solidifying the raw materials for the crystal at the lower layer in the state of allowing the molten layer to remain on the upper layer in the crucible thereby forming the solid layer. The occupying area of the cap is specified to >=40% of the free surface, by which the single crystal having the number of oxygen of >=12X10<17>-atoms/cc is obtd. Fig. illustrates the process of forming the solid layer 6; (a) is the longitudinal cross section of the crucible l and (b) is a plane view. The cap 12 is supported by a hanging rod 12a fixed to the bottom end of a pulling up shaft. The cap 12 is made of SiO2 and is formed to a disk of a thickness about 10mm. While the shape of the cap is not particularly limited, the cap is so formed as to cover 50 to 70% of the surface of the molten layer 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は坩堝内に、上層に単結晶
用原料の溶融層を、また下層に単結晶用原料の固体層を
夫々位置させた状態で、前記固体層を溶解しつつ前記溶
融層から単結晶を引上げる溶融層法による単結晶引上げ
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to melting a solid layer of a raw material for a single crystal in an upper layer and a solid layer of the raw material for a single crystal in a lower layer while melting the solid layer in the crucible. The present invention relates to a single crystal pulling method by a molten layer method for pulling a single crystal from the molten layer.

【0002】[0002]

【従来の技術】単結晶を成長させる方法は、従来種々提
案されているが、その方法の一つにチョクラルスキー法
(以下、CZ法と記す)がある。図6は従来のCZ法に
よる結晶成長装置を模式的に示す断面図であり、図中1
は坩堝を示している。坩堝1は有底円筒状の石英製内層
容器1aと、この内層容器1aの外側に嵌合された有底
円筒状の黒鉛製の外層保持容器1bとから構成されてお
り、その底部中央を昇降及び回転可能な支持軸2に支持
されている。この坩堝1の外側には抵抗加熱式のヒータ
3が、またヒータ3の外側には保温筒4が夫々同心円状
に配置されている。
2. Description of the Related Art Various methods for growing a single crystal have hitherto been proposed, one of which is the Czochralski method (hereinafter referred to as the CZ method). FIG. 6 is a cross-sectional view schematically showing a conventional crystal growth apparatus using the CZ method.
Indicates a crucible. The crucible 1 is composed of a bottomed cylindrical quartz inner layer container 1a and a bottomed cylindrical graphite outer layer holding container 1b fitted to the outside of the inner layer container 1a. And is supported by a rotatable support shaft 2. A resistance heating type heater 3 is arranged outside the crucible 1, and a heat retaining cylinder 4 is arranged concentrically outside the heater 3.

【0003】前記坩堝1内には前記ヒータ3により溶融
させた結晶用原料の溶融液が存在している。また坩堝1
の中心軸上には、前記支持軸2と同方向又は逆方向への
回転、並びに昇降が可能な引上げ棒、又はワイヤ等から
なる引上げ軸7が吊設されており、該引上げ軸7の先に
取り付けられた種結晶8を溶融液の表面に接触させ、引
上げ軸7を結晶成長に合わせて回転させつつ上方へ引上
げることにより、溶融液を凝固させて単結晶9を成長さ
せている。
In the crucible 1, there is a melt of the crystal raw material which is melted by the heater 3. See also crucible 1
A pulling shaft 7 made of a pulling rod, a wire, or the like that can be rotated in the same direction as the support shaft 2 in the same direction or in the opposite direction and can be moved up and down is suspended from the central axis of the pulling shaft 7. The seed crystal 8 attached to the melted liquid is brought into contact with the surface of the melt, and the pulling shaft 7 is rotated upward in accordance with the crystal growth to pull up the melt, thereby solidifying the melt and growing the single crystal 9.

【0004】ところで、このようなCZ法では、単結晶
引上げ前に単結晶9の電気抵抗率、電気伝導型を調整す
るために溶融液中に不純物を添加(ドーピング)する
が、添加した前記不純物の単結晶9中の濃度がその引上
げ方向に沿って変化する、所謂偏析現象が生じ、引上げ
方向に均一な電気的特性を有する単結晶9が得られない
という問題があった。
By the way, in such a CZ method, impurities are added (doping) into the melt in order to adjust the electric resistivity and electric conductivity type of the single crystal 9 before pulling the single crystal. There is a problem that the concentration in the single crystal 9 of No. 1 changes along the pulling direction, a so-called segregation phenomenon occurs, and the single crystal 9 having uniform electric characteristics in the pulling direction cannot be obtained.

【0005】上記した如き不純物の偏析を抑制しながら
単結晶を成長させる方法の一つとして、溶融層法があ
る。図7は溶融層法による結晶成長装置を模式的に示す
断面図である。図6に示したのと同様に構成された坩堝
1内の単結晶用原料をヒータ3を使用して一旦全て溶融
させた後、これを坩堝1の底部側から凝固させ、上層に
単結晶用原料の溶融層5を、また下層に溶融液を凝固さ
せた固体層6を形成する。溶融層5から単結晶9を引上
げつつ、この引上げに伴ってヒータ3を少しづつ下降さ
せて固体層6を漸次溶融させて、溶融層5と固定層6と
を共存させた状態で、前記溶融層5から単結晶9を引上
げてゆく。他の構成は図6に示す場合と実質的に同じで
あり、対応する部分には同じ符号を付してある。
The melt layer method is one of the methods for growing a single crystal while suppressing the segregation of impurities as described above. FIG. 7 is a sectional view schematically showing a crystal growth apparatus by the melt layer method. The single crystal raw material in the crucible 1 having the same structure as shown in FIG. 6 is once melted by using the heater 3, and then solidified from the bottom side of the crucible 1 to form the upper layer for the single crystal. The molten layer 5 of the raw material and the solid layer 6 obtained by solidifying the molten liquid are formed in the lower layer. While pulling the single crystal 9 from the molten layer 5, the heater 3 is gradually lowered to gradually melt the solid layer 6 in association with this pulling, and the molten layer 5 and the fixed layer 6 are coexisted with each other. The single crystal 9 is pulled up from the layer 5. The other structure is substantially the same as that shown in FIG. 6, and the corresponding parts are designated by the same reference numerals.

【0006】この溶融層法は、溶融層厚一定法と溶融層
厚変化法の二つに分けられる。溶融層厚一定法は、単結
晶9を引上げる際、ヒータ3を上側から下側へ移動さ
せ、引上げられた単結晶9の量に拘らず、坩堝1内にお
ける溶融層5の体積を一定に保つように固体層6を溶融
させてゆく方法であり、特公昭34−8242号公報、
特公昭62−880号公報及び実開昭60−32474
号公報等に開示されている。この方法では、単結晶9の
成長に伴って新たに不純物濃度の低い固体層6を溶融さ
せ、溶融層5中の不純物濃度を低下させると共に、不純
物濃度を調節するために不純物を溶融層5に添加し、溶
融層5中の不純物濃度を略一定に保って単結晶9中にお
ける不純物の偏析を抑制する。
The melt layer method is divided into a melt layer thickness constant method and a melt layer thickness changing method. In the constant melting layer thickness method, when pulling the single crystal 9, the heater 3 is moved from the upper side to the lower side to make the volume of the melting layer 5 in the crucible 1 constant regardless of the amount of the pulled single crystal 9. This is a method of melting the solid layer 6 so as to keep it.
Japanese Examined Patent Publication No. 62-880 and Sho 60-32474.
It is disclosed in Japanese Patent Publication No. In this method, the solid layer 6 having a low impurity concentration is newly melted with the growth of the single crystal 9 to reduce the impurity concentration in the molten layer 5, and the impurity is added to the molten layer 5 in order to adjust the impurity concentration. Addition is performed to keep the impurity concentration in the molten layer 5 substantially constant and suppress segregation of impurities in the single crystal 9.

【0007】一方、溶融層厚変化法は意図的に溶融層5
の液量を変化させることにより、単結晶引上げ中に不純
物を添加することなく溶融層5の不純物濃度を一定に保
ち、単結晶9中の不純物の偏析を抑制する方法であり、
特開昭61−250961号公報、特開昭61−250
962号公報及び特開昭61−215285号公報等に
開示されている。上述したような溶融層法(以下、DL
CZ法と記す)による単結晶引上げ方法では、引上げら
れた単結晶9中の引上げ方向に対する不純物濃度が一定
であるため、その電気抵抗率が均一化されるという利点
がある。
On the other hand, the molten layer thickness changing method intentionally uses the molten layer 5
Is a method for suppressing the segregation of impurities in the single crystal 9 by keeping the impurity concentration of the molten layer 5 constant without adding impurities during the pulling of the single crystal by changing the liquid amount of
JP-A-61-250961, JP-A-61-250
It is disclosed in Japanese Patent Laid-Open No. 962 and Japanese Patent Laid-Open No. 61-215285. The fused layer method as described above (hereinafter DL
The single crystal pulling method based on the CZ method) has an advantage that the electric resistivity is uniform because the impurity concentration in the pulled single crystal 9 in the pulling direction is constant.

【0008】ところで、単結晶の特性を左右する大きな
因子として、前述した不純物の偏折の他に単結晶中の酸
素濃度分布がある。例えば、シリコン(Si)単結晶中
の酸素原子数はDLCZ法で得たシリコン単結晶の場
合、約8〜12×1017atoms/cc程度で、過飽和の状態
となっているが、この過飽和状態の酸素原子はSi単結
晶中に固溶されず、冷却されるに従って酸素析出物を形
成する。この酸素析出物の成長過程においては、Si原
子の放出,空孔の放出,パンチアウトと呼ばれる転位ル
ープの発生等歪を緩和させるための現象を惹き起こす。
また格子間に存在するSi原子が高温熱処理時に酸素析
出物の周囲に移動し、積層欠陥を伴った転位ループを成
長させる。
By the way, a major factor that influences the characteristics of a single crystal is the oxygen concentration distribution in the single crystal, in addition to the above-mentioned deviation of impurities. For example, the number of oxygen atoms in a silicon (Si) single crystal is about 8 to 12 × 10 17 atoms / cc in the case of a silicon single crystal obtained by the DLCZ method, which is in a supersaturated state. The oxygen atoms of are not solid-solved in the Si single crystal and form oxygen precipitates as they are cooled. In the growth process of this oxygen precipitate, a phenomenon for alleviating strain such as release of Si atoms, release of vacancies and generation of dislocation loop called punch-out is caused.
In addition, Si atoms existing in the interstitial lattice move around oxygen precipitates during high temperature heat treatment, and grow dislocation loops accompanied by stacking faults.

【0009】反面このような結晶の欠陥が、ウエハ表面
から深いところ、即ちデバイスの活性領域よりも深いと
ころに存在する場合には、ウエハ中に発生した転移を
固着し、ウエハの強度を増大させ、ウエハの熱処理過
程において酸素析出物(SiOx)を成長させてその周
りに歪を発生させ、デバイス工程でウエハの表面領域に
侵入する不純物を捕獲(以下、イントリンシックゲッタ
リングと記す)し、デバイスの活性領域の汚染を防止す
るという利点も有する。
On the other hand, when such a crystal defect exists deep from the wafer surface, that is, deeper than the active region of the device, the dislocation generated in the wafer is fixed and the strength of the wafer is increased. During the heat treatment process of the wafer, oxygen precipitates (SiOx) are grown and strain is generated around them, and impurities that enter the surface area of the wafer in the device process are captured (hereinafter referred to as intrinsic gettering), It also has the advantage of preventing contamination of the active area of the.

【0010】図8はCZ法とDLCZ法とにおける溶融
層5への酸素原子の取り込み態様を示す説明図であり、
図中右半分はCZ法による場合を、また左半分はDLC
Z法による場合を、夫々示している。
FIG. 8 is an explanatory view showing a mode of incorporating oxygen atoms into the molten layer 5 in the CZ method and the DLCZ method.
The right half of the figure is for the CZ method, and the left half is for DLC.
Each case is shown by the Z method.

【0011】CZ法では溶融液はその自由面を除いて坩
堝1の内層容器1aと広い面積に亘って接触しており、
ここからの内層容器1aの溶け込みにより溶融液中には
酸素原子が多量に供給される。これに対しDLCZでは
下層に固体層6が存在しているため、溶融層5と坩堝1
の内層容器1aとの接触面積は極めて小さく内層容器1
の溶け込み量も少なく、それだけ酸素原子の供給量も大
幅に低減される。ところで半導体装置として用いるシリ
コンウェハーにおいては、前述した酸素原子の利点を生
かして反りを抑制し、またデバイスプロセスでの重金属
のゲッタリング効果を得るため所定濃度以上の酸素濃度
が要求され、通常MOSデバイスとしてのシリコン基板
では12×1017atoms/cc以上の酸素原子が必要とされ
ている。
In the CZ method, the molten liquid is in contact with the inner layer container 1a of the crucible 1 over a wide area except for its free surface.
Due to the melting of the inner layer container 1a from here, a large amount of oxygen atoms are supplied to the melt. On the other hand, in the DLCZ, since the solid layer 6 exists in the lower layer, the molten layer 5 and the crucible 1
The contact area with the inner layer container 1a is extremely small and the inner layer container 1a
The amount of melted oxygen is small, and the amount of oxygen atoms supplied is greatly reduced. By the way, in a silicon wafer used as a semiconductor device, an oxygen concentration higher than a predetermined concentration is required in order to suppress warpage by taking advantage of the oxygen atom described above and to obtain a gettering effect of heavy metals in a device process. In such a silicon substrate, oxygen atoms of 12 × 10 17 atoms / cc or more are required.

【0012】[0012]

【発明が解決しようとする課題】しかし前述の如くDL
CZ法により偏析を防止出来、酸素濃度の小さい単結晶
9を得る上では極めて好都合である反面、大きい酸素濃
度の単結晶9を得るのは極めて難しいという難点があっ
た。
However, as described above, DL
Segregation can be prevented by the CZ method, which is extremely convenient for obtaining a single crystal 9 having a low oxygen concentration, but it is extremely difficult to obtain a single crystal 9 having a high oxygen concentration.

【0013】本発明はかかる事情に鑑みなされたもので
あって、その目的とするところはDLCZ法を用いて高
い酸素濃度を持つ単結晶を得ることを可能とした単結晶
引上げ方法を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a single crystal pulling method capable of obtaining a single crystal having a high oxygen concentration by using the DLCZ method. is there.

【0014】[0014]

【課題を解決するための手段】本発明に係る単結晶引上
げ方法は、坩堝内の結晶用原料を全て溶解した後、坩堝
内の上層に溶融層を残した状態で下層に結晶用原料を凝
固させて固体層を形成し、この固体層を溶解させつつ、
前記溶解層から単結晶を引上げる単結晶引上げ方法にお
いて、前記坩堝内の下層に固体層を形成する過程で、前
記溶融層の自由面を、これに接触させた蓋で覆い、また
蓋の占有面積は自由面の40%以上とすることを特徴と
する。
The method for pulling a single crystal according to the present invention is to melt all the crystal raw material in the crucible and then solidify the crystal raw material in the lower layer while leaving the molten layer in the upper layer in the crucible. To form a solid layer, while dissolving the solid layer,
In the single crystal pulling method for pulling a single crystal from the melted layer, in the process of forming a solid layer in the lower layer in the crucible, the free surface of the molten layer is covered with a lid in contact with it, and the lid is occupied. The area is 40% or more of the free surface.

【0015】[0015]

【作用】本発明にあっては溶融層の自由面に接触させた
蓋によって溶融層の自由面を覆うこととしているから、
自由面からの酸素原子の蒸発量が抑制されて、溶融液中
の酸素原子濃度が高められ、ひいては固体層中の酸素原
子濃度も高められ、単結晶の引上げ中はこの固体層の溶
解によって溶融液中に酸素原子が供給されることとな
る。また蓋の占有面積を溶融層の自由面の40%以上と
することで12×1017atoms/cc以上の酸素原子数を持
つ単結晶を得ることが可能となる。
In the present invention, since the free surface of the molten layer is covered with the lid in contact with the free surface of the molten layer,
The evaporation amount of oxygen atoms from the free surface is suppressed, the oxygen atom concentration in the melt is increased, and the oxygen atom concentration in the solid layer is also increased, and the solid layer melts during the pulling of the single crystal. Oxygen atoms will be supplied to the liquid. Further, by making the area occupied by the lid 40% or more of the free surface of the molten layer, it becomes possible to obtain a single crystal having the number of oxygen atoms of 12 × 10 17 atoms / cc or more.

【0016】[0016]

【実施例】以下本発明に係る単結晶引上げ方法を図面に
基づき具体的に説明する。図1は本発明に係る単結晶の
引上げ方法に用いる単結晶成長装置を模式的に示す断面
図であり、図中1は坩堝を示している。坩堝1は有底円
筒状の石英製内層容器1aと、この内層容器1aの外側
に嵌合された有底円筒状の黒鉛製外層保持容器1bとか
ら構成されている。この坩堝1の底部の略中央には支持
軸2が取り付けられ、この支持軸2によって坩堝1は回
転及び昇降可能に支持されている。またこの坩堝1の外
周には抵抗加熱式のヒータ3が、更にヒータ3の外周に
は保温筒4が夫々同心円状に配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for pulling a single crystal according to the present invention will be specifically described below with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing a single crystal growth apparatus used in the method for pulling a single crystal according to the present invention, in which 1 denotes a crucible. The crucible 1 includes a bottomed cylindrical quartz inner layer container 1a and a bottomed cylindrical graphite outer layer holding container 1b fitted to the outside of the inner layer container 1a. A support shaft 2 is attached to a substantially central portion of the bottom of the crucible 1, and the support shaft 2 supports the crucible 1 so that the crucible 1 can rotate and move up and down. Further, a resistance heating type heater 3 is arranged on the outer circumference of the crucible 1, and a heat retaining cylinder 4 is concentrically arranged on the outer circumference of the heater 3.

【0017】坩堝1の上方には図示しないチャンバー1
0の上部に連接形成された小型のほぼ円筒状のプルチャ
ンバー10aを通して引上げ軸7が回転、並びに昇降可
能なように吊設されており、引上げ軸7の下端には、種
結晶8が装着されている。一方、坩堝1内には、下部に
は固体層1が、そして上部には溶融層5が夫々形成され
ており、坩堝1内の溶融層5中に種結晶8の下端を浸漬
した後、これを回転させつつ上昇させることにより、種
結晶8の下端から単結晶9を成長させていくようになっ
ている。
A chamber 1 (not shown) is provided above the crucible 1.
The pulling shaft 7 is hung so that it can rotate and ascend and descend through a small, substantially cylindrical pull chamber 10a that is connected to the upper part of 0, and a seed crystal 8 is attached to the lower end of the pulling shaft 7. ing. On the other hand, in the crucible 1, a solid layer 1 is formed in the lower part and a molten layer 5 is formed in the upper part, and after the lower end of the seed crystal 8 is immersed in the molten layer 5 in the crucible 1, By rotating and raising the single crystal 9, the single crystal 9 is grown from the lower end of the seed crystal 8.

【0018】図2は前述した如きDLCZ法によるシリ
コン単結晶引上げ方法の処理過程を示す説明図であり、
先ず図2(a)に示す如き坩堝1内にシリコン単結晶用
の原料である多結晶シリコン11を装入し、次に図2
(b)に示す如く坩堝1を支持軸にて回転、並びに昇降
させつつヒータ3にて多結晶シリコン11を全て溶解す
る。
FIG. 2 is an explanatory view showing the processing steps of the silicon single crystal pulling method by the DLCZ method as described above.
First, polycrystalline silicon 11 which is a raw material for a silicon single crystal is charged into a crucible 1 as shown in FIG.
As shown in (b), the crucible 1 is rotated around the support shaft and moved up and down to melt all the polycrystalline silicon 11 by the heater 3.

【0019】一旦全ての単結晶用原料である多結晶シリ
コン11を溶融した後、坩堝1の底部側の温度を低めて
図2(c)に示す如く固体層6を形成し、図2(d)に
示す如く固体層6を溶解させつつ溶融層5から単結晶9
を引上げてゆくが、前記固体層6の形成過程は図3に示
す如き態様で行う。図3は固体層6の形成過程を示して
おり、図3(a)は坩堝1の縦断面図、図3(b)は平
面図である。図3から明らかなように溶融層5の自由面
を覆う態様で蓋12を溶融層5の自由面に接触させて配
置する。蓋12は引上げ軸7の下端に蓋12の上面に固
定した吊杆12aにて支持させてある。
After melting all of the polycrystalline silicon 11 which is the raw material for single crystal, the temperature on the bottom side of the crucible 1 is lowered to form the solid layer 6 as shown in FIG. 2 (c). ), The solid layer 6 is melted and the single crystal 9 is melted from the molten layer 5.
The solid layer 6 is formed in the manner shown in FIG. 3A and 3B show a process of forming the solid layer 6, FIG. 3A is a vertical sectional view of the crucible 1, and FIG. 3B is a plan view. As is clear from FIG. 3, the lid 12 is arranged in contact with the free surface of the molten layer 5 so as to cover the free surface of the molten layer 5. The lid 12 is supported on the lower end of the pulling shaft 7 by a suspension rod 12a fixed to the upper surface of the lid 12.

【0020】蓋12はSiO2 製であって、厚さ10m
m程度の円板形に成形されており、坩堝1内の溶融層5
の表面の50〜100%、望ましくは50〜70%程度
を覆う広さに形成されている。蓋12自体の形状につい
ては特に限定するものではなく、矩形,多角形状、楕円
形状等であってもよい。蓋12の材質についてもSiO
2 にのみ限定するものではなく、溶融層5の材料と実質
的に同じものであればよい。
The lid 12 is made of SiO 2 and has a thickness of 10 m.
It is formed into a disk shape of about m, and the molten layer 5 in the crucible 1
Is formed so as to cover 50 to 100%, preferably about 50 to 70% of the surface. The shape of the lid 12 itself is not particularly limited, and may be rectangular, polygonal, elliptical, or the like. The material of the lid 12 is also SiO
The material is not limited to 2 as long as it is substantially the same as the material of the molten layer 5.

【0021】これによって坩堝1内に固体層6を形成す
る際に、溶融層5の自由面からの酸素原子の蒸発が抑制
される分、溶融層5中の酸素原子濃度が増大し、これに
対応して固体層6内の酸素原子数も増大し、結果として
DLCZ法により単結晶9を引上げる過程で、溶融層5
と坩堝1の内層容器1aとの接触面積は縮小されるもの
の、その分酸素原子数の大きい固体層6の溶解により酸
素原子が供給され、溶融液中の酸素原子濃度が高めら
れ、単結晶8中に含まれる酸素原子数をも増大せしめ得
ることとなる。
As a result, when the solid layer 6 is formed in the crucible 1, the evaporation of oxygen atoms from the free surface of the molten layer 5 is suppressed, so that the concentration of oxygen atoms in the molten layer 5 increases, and Correspondingly, the number of oxygen atoms in the solid layer 6 also increases, and as a result, in the process of pulling up the single crystal 9 by the DLCZ method, the molten layer 5
Although the contact area between the inner layer container 1a of the crucible 1 and the crucible 1 is reduced, oxygen atoms are supplied by the dissolution of the solid layer 6 having a large number of oxygen atoms, and the concentration of oxygen atoms in the melt is increased, so that the single crystal 8 It is possible to increase the number of oxygen atoms contained therein.

【0022】図4は坩堝1の溶融層5における自由面に
占める蓋12の占有率と単結晶9中の酸素原子数との関
係を示す説明図であり、横軸に単結晶の引上げ方向(ト
ップを0とする)における各部の位置(mm)を、また
縦軸に酸素原子数(×1017atoms/cc)をとって示すグ
ラフである。グラフ中□印は蓋の占有面積0%(蓋12
を用いない場合)、+印は蓋の占有面積25%、◇印は
蓋の占有面積50%、△印は蓋の占有面積75%の場合
の結果を夫々示している。
FIG. 4 is an explanatory view showing the relationship between the occupation rate of the lid 12 on the free surface of the molten layer 5 of the crucible 1 and the number of oxygen atoms in the single crystal 9, with the horizontal axis representing the pulling direction of the single crystal ( 3 is a graph showing the position (mm) of each part in the top (0 is set) and the number of oxygen atoms (× 10 17 atoms / cc) on the vertical axis. In the graph, □ indicates the area occupied by the lid is 0% (lid 12
(In the case of not using), the + mark shows the result when the lid occupies 25% of the area, the ⋄ mark shows the case where the lid occupies 50%, and the Δ mark shows the result when the lid occupies 75%.

【0023】このグラフから明らかな如く、◇印の場
合、即ち蓋12の占有面積50%以上で通常のMOSト
ランジスタに使用する場合の基板中の酸素原子数である
12×1017atoms/cc以上の単結晶が得られることが解
る。従って蓋12の占有面積としては、40%以上10
0%、望ましくは50%以上とするのがよいことが解
る。
As is clear from this graph, the number of oxygen atoms in the substrate is 12 × 10 17 atoms / cc or more in the case of ⋄, that is, when the area occupied by the lid 12 is 50% or more and it is used for a normal MOS transistor. It can be seen that a single crystal of is obtained. Therefore, the occupied area of the lid 12 is 40% or more 10
It is understood that it is preferable to set it to 0%, preferably 50% or more.

【0024】図5は蓋12を施さない場合と、蓋12の
占有面積を夫々前述した25%、50%、75%として
得た単結晶における電気抵抗率の分布図であり、横軸に
引上げ方向の長さ(mm)を、また縦軸に電気抵抗率
(Ω−cm)をとって示してある。グラフ中のプロット
記号は図4の夫々に対応させてある。なお●印でプロッ
トして示した太線は全体の平均値である。
FIG. 5 is a distribution diagram of the electric resistivity of the single crystal obtained when the lid 12 is not provided and when the occupying area of the lid 12 is 25%, 50%, and 75%, respectively. The length in the direction (mm) is shown, and the vertical axis shows the electrical resistivity (Ω-cm). The plot symbols in the graph correspond to those in FIG. The thick line plotted by ● is the average value of the whole.

【0025】このグラフから明らかな如く電気抵抗率の
目標範囲である8.4〜12(Ω−cm)中に含まれる
長さが、従来方法により得たシリコン単結晶では0〜5
50mmであるのに対し、本発明方法により得たシリコ
ン単結晶の場合は50〜10000mmの範囲となり、
略2倍近い長さにわたって目標とする電気抵抗率が得ら
れていることが解る。
As is apparent from this graph, the length contained in the target range of electrical resistivity of 8.4 to 12 (Ω-cm) is 0 to 5 for the silicon single crystal obtained by the conventional method.
While it is 50 mm, in the case of a silicon single crystal obtained by the method of the present invention, it is in the range of 50 to 10,000 mm,
It can be seen that the target electrical resistivity is obtained over a length that is approximately twice as long.

【0026】[0026]

【発明の効果】以上の如く本発明方法にあっては固体層
の形成過程で溶融層の自由面に蓋を配することで、酸素
の蒸発が妨げられ、溶融層の酸素濃度を高め、これを凝
固させることで固体層内の酸素含有量を高め得、結晶引
上げ中は坩堝内周壁の溶け込み及び固体層の溶解により
夫々酸素原子が溶融液中に供給されることとなり、高い
酸素原子数を持つ単結晶が得られる優れた効果がある。
As described above, in the method of the present invention, by placing the lid on the free surface of the molten layer in the process of forming the solid layer, the evaporation of oxygen is prevented and the oxygen concentration in the molten layer is increased. It is possible to increase the oxygen content in the solid layer by solidifying the solid phase, and during the crystal pulling, oxygen atoms are supplied to the melt due to the melting of the inner wall of the crucible and the dissolution of the solid layer. It has an excellent effect of obtaining a single crystal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る単結晶の引上げ方法を実施するた
めの装置の模式的断面図である。
FIG. 1 is a schematic cross-sectional view of an apparatus for carrying out a single crystal pulling method according to the present invention.

【図2】本発明に係る単結晶引上げ方法による単結晶引
上げ過程を示す説明図である。
FIG. 2 is an explanatory view showing a single crystal pulling process by the single crystal pulling method according to the present invention.

【図3】固体層形成過程の説明図である。FIG. 3 is an explanatory diagram of a solid layer forming process.

【図4】蓋の占有面積と単結晶中の酸素原子濃度との関
係を示すグラフである。
FIG. 4 is a graph showing the relationship between the occupied area of the lid and the oxygen atom concentration in the single crystal.

【図5】本発明方法によって得た単結晶と、従来方法に
よって得た単結晶との電気抵抗率分布図である。
FIG. 5 is an electrical resistivity distribution diagram of a single crystal obtained by the method of the present invention and a single crystal obtained by a conventional method.

【図6】従来のCZ法による単結晶引上げ状態を示す説
明図である。
FIG. 6 is an explanatory diagram showing a single crystal pulling state by a conventional CZ method.

【図7】従来のLDCZ法による単結晶引上げ状態を示
す説明図である。
FIG. 7 is an explanatory diagram showing a single crystal pulling state by a conventional LDCZ method.

【図8】図8はCZ法とDLCZ法とにおける溶融層へ
の酸素原子の供給経路を示す説明図である。
FIG. 8 is an explanatory diagram showing a supply path of oxygen atoms to a molten layer in the CZ method and the DLCZ method.

【符号の説明】[Explanation of symbols]

1 坩堝 1a 内層容器 1b 外層保持容器 2 支持軸 7 引上軸 8 種結晶 9 単結晶 10 チャンバー 10a プルチャンバー 1 crucible 1a inner layer container 1b outer layer holding container 2 support shaft 7 pulling shaft 8 seed crystal 9 single crystal 10 chamber 10a pull chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 坩堝内の結晶用原料を全て溶解した後、
坩堝内の上層に溶融層を残した状態で下層に結晶用原料
を凝固させて固体層を形成し、この固体層を溶解させつ
つ、前記溶解層から単結晶を引上げる単結晶引上げ方法
において、前記坩堝内の下層に固体層を形成する過程
で、前記溶融層の自由面を、これに接触させた蓋で覆う
ことを特徴とする単結晶引上げ方法。
1. After melting all the raw materials for crystallization in the crucible,
In the state of leaving a molten layer in the upper layer in the crucible to form a solid layer by solidifying the crystallization raw material in the lower layer, while melting this solid layer, in the single crystal pulling method for pulling a single crystal from the molten layer, A method of pulling a single crystal, characterized in that, in the process of forming a solid layer as a lower layer in the crucible, the free surface of the molten layer is covered with a lid in contact with the free surface.
【請求項2】 前記溶融層の自由面を覆う蓋の占有面積
は自由面の40%以上である請求項1記載の単結晶引上
げ方法。
2. The method for pulling a single crystal according to claim 1, wherein an occupied area of the lid covering the free surface of the molten layer is 40% or more of the free surface.
JP6064196A 1994-03-31 1994-03-31 Single crystal pulling up method Pending JPH07267775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6064196A JPH07267775A (en) 1994-03-31 1994-03-31 Single crystal pulling up method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6064196A JPH07267775A (en) 1994-03-31 1994-03-31 Single crystal pulling up method

Publications (1)

Publication Number Publication Date
JPH07267775A true JPH07267775A (en) 1995-10-17

Family

ID=13251083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6064196A Pending JPH07267775A (en) 1994-03-31 1994-03-31 Single crystal pulling up method

Country Status (1)

Country Link
JP (1) JPH07267775A (en)

Similar Documents

Publication Publication Date Title
KR100798594B1 (en) Method of lifting silicon single crystal
JP2001158690A (en) Method for producing high-quality silicon single crystal
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
TWI333002B (en)
JP4013324B2 (en) Single crystal growth method
JPH07267776A (en) Growth method of single crystal
JPH0524969A (en) Crystal growing device
JPH07277875A (en) Method for growing crystal
JPH07267775A (en) Single crystal pulling up method
JP2640315B2 (en) Method for producing silicon single crystal
JPH06271384A (en) Method for pulling up single crystal
JP2550740B2 (en) Crystal growth equipment
JP2007284323A (en) Manufacturing device and manufacturing method for semiconductor single crystal
JPH08290995A (en) Silicon single crystal and its production
JPH07277870A (en) Method and device for growing single crystal
KR102492237B1 (en) Method and apparatus for growing silicon single crystal ingot
JP2600944B2 (en) Crystal growth method
JP5136253B2 (en) Method for growing silicon single crystal
JP3011085B2 (en) Single crystal growth method
JPH09208360A (en) Growth of single crystal
JPH08333189A (en) Apparatus for pulling up crystal
JPH0782084A (en) Single crystal growing method and single crystal growing apparatus
JP3584497B2 (en) Crystal growth method
JPH08310891A (en) Method for growing crystal
JPH0912392A (en) Method for growing silicon single crystal and silicon single crystal pulled up by the method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A02 Decision of refusal

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A02