JPH07267745A - Refractory for flowed-in forming - Google Patents

Refractory for flowed-in forming

Info

Publication number
JPH07267745A
JPH07267745A JP6063811A JP6381194A JPH07267745A JP H07267745 A JPH07267745 A JP H07267745A JP 6063811 A JP6063811 A JP 6063811A JP 6381194 A JP6381194 A JP 6381194A JP H07267745 A JPH07267745 A JP H07267745A
Authority
JP
Japan
Prior art keywords
spherical
refractory
pitch
aggregate
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6063811A
Other languages
Japanese (ja)
Inventor
Aiichiro Sakamoto
愛一郎 坂本
Takeshi Takarabe
毅 財部
Akira Kojima
昭 小島
Noriyuki Inoue
典幸 井上
Hideaki Ohashi
秀明 大橋
Fumiaki Osawa
文明 大沢
Shinji Motoike
真二 本池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Crucible Co Ltd
Nippon Steel Corp
Nippon Rutsubo KK
Original Assignee
Nippon Crucible Co Ltd
Nippon Steel Corp
Nippon Rutsubo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co Ltd, Nippon Steel Corp, Nippon Rutsubo KK filed Critical Nippon Crucible Co Ltd
Priority to JP6063811A priority Critical patent/JPH07267745A/en
Publication of JPH07267745A publication Critical patent/JPH07267745A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To improve flowability and fillability at the time of flowed-in forming as the lining of a molten metal vessel and to improve durability and corrosion resistance as the lining. CONSTITUTION:In refractories for flowed-in forming based on refractory aggregate such as alumina, spinel or bauxite, spherical refractory aggregate having sphericity of >=0.75 is allowed to account for 10-50wt.% of the total amt. and spherical pitch having sphericity of >=0.75 is incorporated by 1-5wt.%. The pref. diameter of the spherical refractory aggregate is in the range of 0.5-5mm and that of the spherical pitch is in the range of 0.5-2mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉出銑樋、取鍋、タ
ンディッシュ等の溶融金属容器の内張りに使用する流し
込み成形用耐火物に関し、とくに耐火物の施工厚が薄か
ったり、形状が複雑であったり、施工面が幅広く平滑面
が要求される等の用途に適する、流動性および充填性が
良好で、かつ溶融金属及びスラグに対する耐食性にすぐ
れた流し込み成形用耐火物に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a cast molding refractory used for lining molten metal containers such as blast furnace tap gutters, ladles, and tundish. The present invention relates to a cast molding refractory material which is suitable for applications such as being complicated or requiring a wide construction surface and having a smooth surface, and having excellent fluidity and filling properties and excellent corrosion resistance to molten metal and slag.

【0002】[0002]

【従来の技術】溶融金属容器の内張りに使用する流し込
み成形用耐火物は、通常、アルミナ、スピネル、ボーキ
サイト、炭化珪素、アルミナセメント、耐火粘土等の耐
火材に解膠剤、減水剤を混合している。施工現場でミキ
サーで加水混練したのち、所定の型枠内に投入し、バイ
ブレーター掛けをして、投入後成形物の内部に巣や空隙
をもつ未充填部が生じるのを防止し、充填度を高めてい
る。近年、アルミナセメントの添加を減量するととも
に、アルミナ、シリカ、炭化珪素の超微粉を使用する提
案がなされ、養生硬化後の強度向上および溶融金属、ス
ラグに対する耐食性の向上が図られている。
2. Description of the Related Art Casting refractories used for lining molten metal containers are usually prepared by mixing a peptizer and a water reducing agent with refractory materials such as alumina, spinel, bauxite, silicon carbide, alumina cement, and refractory clay. ing. After kneading with a mixer at the construction site, put it in a predetermined mold and apply a vibrator to prevent the formation of unfilled parts with cavities and voids inside the molded product, and to improve the filling degree. I am raising. In recent years, it has been proposed to reduce the amount of alumina cement added and use ultrafine powder of alumina, silica, and silicon carbide to improve the strength after curing and improve the corrosion resistance to molten metal and slag.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ときと
してバイブレーター掛けが不十分であったり、耐火物の
施工厚が薄かったり、形状が複雑である箇所は、なお未
充填部が発生したりする。これら形状が複雑な箇所への
充填に対しては、枠そのものを振動させて流動性および
充填性を促進させる等の手段が必要になってくる。ま
た、バイブレーター掛けが不適切な場合は、所定の型枠
から外に耐火物が漏れだすというトラブルを生じること
がある。また、施工面が幅広く平滑面が要求される場合
には、バイブレーター掛けをしても表面に凹凸が生じて
しまい平滑度をだすのが極めて困難である。さらに、バ
イブレーター掛け作業は、専従の作業員を必要とし、か
つ、この作業は重労働を伴うという問題がある。
However, in some cases, the vibrating is insufficient, the thickness of the refractory material is thin, or the portion having a complicated shape still has an unfilled portion. For filling in a portion having a complicated shape, means for vibrating the frame itself to promote fluidity and filling property is required. If the vibrator is not properly applied, the refractory may leak out of the predetermined mold. In addition, when the construction surface is wide and a smooth surface is required, it is extremely difficult to obtain smoothness because the surface has irregularities even when applied with a vibrator. Further, there is a problem that the vibrating work requires a full-time worker and this work involves heavy labor.

【0004】他方、耐火物の添加水を増量すると流動性
が向上するが、添加水の増量は施工体の充填性を低下
し、耐火物の耐用性能の低下をもたらす。さらに、リン
酸塩、カルボン酸塩等の解膠剤の使用、アルミナやシリ
カ等の超微粉材料の添加も耐火物の流動性を向上させる
ことが知られているが、バイブレーター掛けを軽減もし
くは不要とさせる程の効果が得られていないのが現状で
ある。
On the other hand, if the amount of added water of the refractory material is increased, the fluidity is improved, but the increased amount of the added water decreases the filling property of the construction body and causes the deterioration of the durability performance of the refractory material. It is also known that the use of deflocculants such as phosphates and carboxylates, and the addition of ultrafine powder materials such as alumina and silica improve the flowability of refractories, but it reduces or eliminates the need for vibration. It is the current situation that the effect to the effect is not obtained.

【0005】これらの諸問題の解決には、加水混練後の
流し込み成形用耐火物の流動性、充填性が良好で、狭い
箇所でもバイブレーター掛けを軽減しても、もしくは省
略しても施工体の内部に未充填部を形成することなく、
耐火物の施工ができることが好ましい。以下、この発明
において、流し込み成形用耐火物のこのようなバイブレ
ーターによる加振という物理的外力に頼らずとも、流動
性、充填性に良好な性質を自流性という。本発明の目的
は、自流性の良好な流し込み成形用耐火物を提供するこ
とにある。
In order to solve these various problems, the flowability and the filling property of the cast molding refractory after the hydro-kneading are good, and even if the vibration is reduced even in a narrow space, or even if the vibration is omitted, the structure of the construction body can be reduced. Without forming an unfilled part inside,
It is preferable that refractory can be constructed. Hereinafter, in the present invention, the property of good flowability and filling property is referred to as self-flowing property without depending on the physical external force such as the vibration of the cast refractory by the vibrator. An object of the present invention is to provide a cast refractory material having good self-flowing property.

【0006】[0006]

【課題を解決するための手段】そこで本発明では、アル
ミナ、スピネル、ボーキサイト等の耐火性骨材を主体と
する流し込み成形用耐火物において、0.75以上の球
形度の球状耐火性骨材が全体の10〜50重量%を占め
るようにし、かつ、0.75以上の球形度の球状ピッチ
を1〜5重量%含有させた。前記球状耐火性骨材の粒子
径は0.5〜5mmの範囲が好適であり、前記球状ピッチ
の粒子径は0.5〜2mmの範囲が好適である。
Therefore, according to the present invention, a cast refractory material mainly composed of a refractory aggregate such as alumina, spinel, bauxite, etc. is a spherical refractory aggregate having a sphericity of 0.75 or more. It was made to occupy 10 to 50% by weight of the whole, and 1 to 5% by weight of a spherical pitch having a sphericity of 0.75 or more was contained. The spherical refractory aggregate preferably has a particle size of 0.5 to 5 mm, and the spherical pitch preferably has a particle size of 0.5 to 2 mm.

【0007】[0007]

【作用】球状耐火性骨材は、アルミナ、スピネル、ボー
キサイトから選択して1種以上のものを使用する。いず
れも、溶融金属及びスラグに対する耐食性にすぐれ、通
常の流し込み成形用耐火物の骨材として使用されている
ものである。球状耐火性骨材は、その粒子の球形度が1
〜0.75のものが好ましい。球形度は、最も長い直径
D1に対するその位置から90度の位置における直径D
2の比で示す。球状耐火性骨材(球形度0.75以上の
ものをさす)の含有比は、10〜50重量%が好まし
い。10重量%以下では、流動性および充填性において
効果がすくない。50重量%以上では、溶融金属に対す
る耐蝕性が低下する。粒子表面が平滑なものは、不規則
でランダムなものより粒子間の物理的接合が劣るからで
ある。したがって、耐食性の向上のためにも、含有させ
る球状耐火性骨材の大きさは中間粒が望ましく、具体的
には球状耐火性骨材の粒子径が0.5〜5mmの範囲が最
も適している。粗粒子や微粉としては、物理的に結合の
強い不規則でランダムな粒子を使用する方がむしろ好ま
しいことになる。
The spherical refractory aggregate is one or more selected from alumina, spinel and bauxite. All of them are excellent in corrosion resistance to molten metal and slag, and are used as aggregates of ordinary cast refractory materials. Spherical refractory aggregates have a particle sphericity of 1
It is preferably about 0.75. The sphericity is the diameter D at a position 90 degrees from the position with respect to the longest diameter D1.
The ratio is 2. The content ratio of the spherical refractory aggregate (refers to those having a sphericity of 0.75 or more) is preferably 10 to 50% by weight. When it is 10% by weight or less, the effect is poor in fluidity and filling property. If it is 50% by weight or more, the corrosion resistance to the molten metal decreases. This is because a particle having a smooth surface is inferior in physical bonding between particles as compared with an irregular and random particle. Therefore, in order to improve the corrosion resistance, the size of the spherical refractory aggregate to be contained is preferably an intermediate grain, and specifically, the spherical refractory aggregate having a particle size of 0.5 to 5 mm is most suitable. There is. As coarse particles and fine powder, it is rather preferable to use irregular and random particles having a strong physical bond.

【0008】球状ピッチ(球形度0.75以上のものを
さす)は、溶融金属に濡れにくいカーボン材料であるこ
とから、各種溶融金属に対する耐浸透性を強化するため
に使用する。ここでも球状ピッチの使用が自流性に有効
なことを見いだした。球状ピッチは加熱溶融させた液体
ピッチをオリフィス管を有した容器から小滴にして水中
に落とし、球状化させる手法、または加熱溶融させた液
体ピッチを蒸気圧力釜からノズルを通して噴霧して球状
化させる手法にて製造されたもの等が使用できる。球状
ピッチの粒子径0.5〜2mmのものを1重量%から5重
量%採用する。
Spherical pitch (having a sphericity of 0.75 or more) is a carbon material that is difficult to wet with molten metal, and therefore is used for enhancing penetration resistance to various molten metals. Here again, it was found that the use of spherical pitch is effective for free flowing. Spherical pitch is a technique in which liquid pitch that has been melted by heating is made into droplets from a container with an orifice tube and dropped into water to make it spherical, or liquid pitch that is melted by heating is sprayed from a steam pressure cooker through a nozzle to make it spherical. Those manufactured by the method can be used. A spherical pitch having a particle size of 0.5 to 2 mm is used in an amount of 1 to 5% by weight.

【0009】施工体が受熱した時にピッチは100℃程
度から軟化し、さらに200℃を超えるとピッチ中の揮
発分が飛散し、そこには残留した固定炭素分と揮発分に
相当する空隙が残る。従って、球状ピッチが2mm以上で
は、施工体内の空隙が大きくなり、組織が不均一となっ
て好ましくない。また、0.5mm以下では、本発明の目
的とする自流性の向上に寄与しないばかりか逆に素材特
有の溌水性が発揮され、混練物粘性が増大し、流動性を
阻害する。
When the construction body receives heat, the pitch softens from about 100 ° C., and when it exceeds 200 ° C., the volatile components in the pitch scatter, and the residual fixed carbon components and voids corresponding to the volatile components remain therein. . Therefore, if the spherical pitch is 2 mm or more, the voids in the construction body become large and the structure is not uniform, which is not preferable. On the other hand, if it is 0.5 mm or less, not only does it not contribute to the improvement of the free-flowing property which is the object of the present invention, but conversely, the water repellent characteristic of the material is exhibited, the viscosity of the kneaded product increases, and the fluidity is impaired.

【0010】球状ピッチの含有量が5重量%以上では、
採用粒子径の制約で述べたことと同様に施工体内の空隙
が多くなり、組織が不均一になるとともに、充填密度の
低下も招く。また、1重量%以下ではカーボン素材に期
待する耐浸透性強化に乏しく耐食性に劣る。
When the content of the spherical pitch is 5% by weight or more,
As described in the restrictions on the adopted particle size, there are many voids in the construction body, the structure becomes non-uniform, and the packing density decreases. On the other hand, if it is less than 1% by weight, the carbon material is poor in the enhancement of penetration resistance and poor in corrosion resistance.

【0011】なお、採用する球状のアルミナ、スピネ
ル、ボーキサイト等の耐火性素材群と、球状ピッチに分
けて、採用する粒子の大きさ、配合量をそれぞれ規定し
たのは、前述のようにピッチだけが受熱して軟化する性
質を有する他に、アルミナ、スピネル、ボーキサイト等
の比重とピッチの比重が著しく異なることによる。すな
わち、通常耐火物に使用する一般的原料素材であるアル
ミナは比重4.0、スピネルが比重3.6で、ボーキサ
イトが3.6等に対して、ピッチは比重1.3であり、
前者(アルミナ等)と後者(ピッチ)は約3倍の比重差
を有する。
The refractory material group such as spherical alumina, spinel, bauxite, etc. to be adopted and the spherical pitch are divided into the particle size and the compounding amount which are respectively defined by the pitch as mentioned above. In addition to having the property of being softened by receiving heat, the specific gravity of alumina, spinel, bauxite, etc. is remarkably different from the specific gravity of pitch. That is, alumina, which is a general raw material usually used for refractories, has a specific gravity of 4.0, spinel has a specific gravity of 3.6, bauxite has a specific gravity of 1.3, while bauxite has a specific gravity of 1.3.
The former (alumina etc.) and the latter (pitch) have a difference in specific gravity of about 3 times.

【0012】これらの材料のほか、耐火物の耐熱衝撃
性、耐食性を向上させる目的で、炭化珪素を骨材および
微粉として約10〜35重量%含有させると効果的であ
る。
In addition to these materials, it is effective to contain silicon carbide in an amount of about 10 to 35% by weight as an aggregate and a fine powder for the purpose of improving the thermal shock resistance and corrosion resistance of refractory materials.

【0013】さらに、アルミナ超微粉、シリカ超微粉、
耐火粘土、アルミナセメント、並びにリン酸塩、カルボ
ン酸塩などの解膠剤を添加して、本発明の流し込み成形
用耐火物が構成される。
Further, ultrafine alumina powder, ultrafine silica powder,
The refractory for casting according to the present invention is constituted by adding refractory clay, alumina cement, and deflocculants such as phosphates and carboxylates.

【0014】[0014]

【実施例】以下に本発明の実施例について説明する。第
1表は、球状アルミナ骨材を採用した例であり、ここで
は、球形度0.93の比較的球形に近い球状アルミナ骨
材と球形度0.88の球状ピッチを使用した。
EXAMPLES Examples of the present invention will be described below. Table 1 is an example in which spherical alumina aggregate is adopted. Here, spherical alumina aggregate having a sphericity of 0.93 and a spherical pitch having a sphericity of 0.88 are used.

【0015】第1表の実施例1は、球状アルミナ骨材を
20重量%、実施例2は30重量%、実施例3は40重
量%とした例であり、さらに実施例4は実施例3に対し
て球状ピッチを増量した例を示し、これらは比較例1と
対比される。比較例1は、従来のアルミナ骨材と微粉末
ピッチを採用した例であり、実施例1〜4よりも添加水
量を多く必要とし、さらに自流性も劣る。結果として、
物理特性及び耐食性においても実施例の方が良好であ
る。比較例2は、球状アルミナ骨材の量が少ない場合で
あり、自流性が比較例1と同等レベルであり、実施例1
よりもはるかに劣ることが理解される。さらに比較例3
は骨材部の全量を球状アルミナ骨材とした例であり、実
施例3との対比で、自流性は向上しているものの、物理
特性が低下している。これは、球状アルミナ骨材の採用
量を拡大することでボールベアリング効果が発揮されて
自流性は向上したものの、粒子間の接合力が低下して物
理特性が低下し、さらに耐食性の低下につながったもの
と考えられる。
Example 1 in Table 1 is an example in which the spherical alumina aggregate is 20% by weight, Example 2 is 30% by weight, and Example 3 is 40% by weight. Further, Example 4 is Example 3 In comparison with Comparative Example 1, the spherical pitch is increased. Comparative Example 1 is an example in which a conventional alumina aggregate and a fine powder pitch are adopted, which requires a larger amount of added water than Examples 1 to 4, and is also inferior in free flowing. as a result,
Also in terms of physical properties and corrosion resistance, the examples are better. Comparative Example 2 is a case where the amount of the spherical alumina aggregate is small, and the free flowing property is at the same level as that of Comparative Example 1.
It is understood to be much worse than. Comparative Example 3
Shows an example in which the total amount of the aggregate portion is spherical alumina aggregate, and in comparison with Example 3, the free flowing property is improved, but the physical property is deteriorated. This is because although the ball bearing effect was exhibited by increasing the amount of spherical alumina aggregate used and the free-flowing property was improved, the bonding force between particles was reduced and the physical properties were reduced, further leading to lower corrosion resistance. It is believed that

【0016】実施例2に対して、球状ピッチ量を少なく
したのが比較例4であり、比較例4は球状アルミナ骨材
を採用していない比較例1よりも自流性に優れるもの
の、実施例2には劣る。なお、比較例4は強度が向上し
気孔率が下がっているが、これはカーボン素材であるピ
ッチ分が少なくなったことにより焼結が進んで強度が上
昇し、また同時にピッチ揮発分が少なくなったことで気
孔率が下がったと考えられる。さらに耐食性が大きく低
下しているのは、カーボン量が少なくなったことで容易
に浸透され易くなったことを裏付けている。
In comparison with Example 2, Comparative Example 4 has a smaller spherical pitch amount, and although Comparative Example 4 is superior in free flowing property to Comparative Example 1 which does not employ spherical alumina aggregate, Inferior to 2. Incidentally, in Comparative Example 4, the strength is improved and the porosity is lowered, but this is because the sintering progresses and the strength is increased due to the decrease in the pitch amount which is a carbon material, and at the same time, the pitch volatile content decreases. It is thought that this caused the porosity to decrease. Furthermore, the fact that the corrosion resistance is greatly reduced supports the fact that the amount of carbon was reduced and the carbon was easily penetrated.

【0017】実施例4は、実施例2よりも球状ピッチを
増量したものであり、実施例4よりも増量したのが比較
例5である。比較例5は、カーボン素材である球状ピッ
チが多すぎることにより、自流性の向上度合いが乏し
く、また気孔率も大きくなることから耐食性において好
ましくない。
In Example 4, the spherical pitch was increased more than in Example 2, and in Comparative Example 5, the amount was increased more than in Example 4. Comparative Example 5 is not preferable in terms of corrosion resistance because the amount of spherical pitch, which is a carbon material, is too large, the degree of improvement in free-flowing property is poor, and the porosity is large.

【0018】なお、球状アルミナは仮焼アルミナを原料
として、これを造粒して球状体としたのち、乾燥処理し
たものをロータリーキルンにて焼成後分級したものであ
り、Al2 3 99%以上を含有し、粒子のひとつひと
つがボール状のものを使用した。
The spherical alumina is obtained by granulating the calcined alumina as a raw material to obtain a spherical body, which is dried and then calcined in a rotary kiln and classified. Al 2 O 3 99% or more Was used, and each of the particles had a ball shape.

【0019】第2表は球状スピネル骨材、また第3表は
球状ボーキサイト骨材を採用した例であり、球状スピネ
ル骨材およびボーキサイト骨材は、スピネルおよびボー
キサイト原鉱をボールミルにて微粉砕したものを造粒し
て球状体とし、乾燥焼成処理したのち0.5〜5mmの範
囲に篩分け、粒度調整して使用した。
Table 2 is an example in which spherical spinel aggregate is used, and Table 3 is an example in which spherical bauxite aggregate is used. For the spherical spinel aggregate and bauxite aggregate, spinel and bauxite raw ore are finely pulverized by a ball mill. The product was granulated into a spherical body, dried and calcined, and then sieved in the range of 0.5 to 5 mm to adjust the particle size before use.

【0020】第2表の実施例に採用した球状スピネル骨
材は、球形度0.81であった。第2表の実施例1は球
状スピネル骨材を30重量%、実施例2は50重量%と
した例であり、従来骨材を採用した比較例1よりも自流
性、物理特性、耐食性において向上しており、第1表と
同様の効果が認められる。
The spherical spinel aggregate used in the examples of Table 2 had a sphericity of 0.81. Example 1 in Table 2 is an example in which the spherical spinel aggregate is 30% by weight, and Example 2 is 50% by weight, which is improved in free-flowing property, physical property and corrosion resistance as compared with Comparative Example 1 in which the conventional aggregate is adopted. Therefore, the same effect as in Table 1 is recognized.

【0021】第3表は、球状ボーキサイト骨材を採用し
た例であり、その球形度は0.78であった。球状ボー
キサイト骨材及び球状ピッチを採用した実施例1,2は
比較例1よりも自流性、物理特性、耐食性において、こ
こでも向上していることが認められる。
Table 3 is an example in which spherical bauxite aggregate was adopted, and the sphericity was 0.78. It can be seen that Examples 1 and 2 employing the spherical bauxite aggregate and spherical pitch also have improved self-flow properties, physical properties, and corrosion resistance as compared with Comparative Example 1.

【0022】[0022]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 自流性試験値 直径300mmの鋳鉄製フローテーブルとφ100×φ7
0×H60mmの台形のフローコーン(JISR5201
セメントの物理試験方法)を使用し、フローテーブル上
においたフローコーン内に所定添加水量で混練した材料
を充填した。充填完了後、フローコーンを除去し、30
秒静置後に自重で流動し広がった材料の直径を測定し
た。数値が大きいほど自流性が良好である。
[Table 3] Free-flow test value Cast iron flow table with diameter 300 mm and φ100 × φ7
0xH60mm trapezoidal flow cone (JISR5201
The physical test method for cement) was used to fill the material mixed in the flow cone placed on the flow table with a predetermined amount of added water. After the filling is complete, remove the flow cone and
After standing for 2 seconds, the diameter of the material that flowed and spread under its own weight was measured. The larger the value, the better the free-flowing property.

【0023】曲げ強さ 圧縮強さ 所定の添加水量を加え、混練下材料を40×40×16
0mmの型に流し込み、室内で一晩養生し脱枠後110℃
×24時間乾燥し、さらに電気炉内で1450℃×3時
間の還元雰囲気で焼成処理したものを供試サンプルとし
て、油圧式一軸圧縮試験機(アムスラー)にて曲げ強さ
及び圧縮強さを測定した。
Bending strength Compressive strength A predetermined amount of added water was added, and the material under kneading was 40 × 40 × 16.
Pour into a 0 mm mold, let it cure overnight in the room, and deframe it at 110 ° C.
Bending strength and compressive strength were measured with a hydraulic uniaxial compression tester (Amsler) by using a test sample that was dried for 24 hours and baked in a reducing atmosphere at 1450 ° C for 3 hours in an electric furnace. did.

【0024】気孔率 かさ比重 強度測定用供試サンプルと同様のものを作成し、空中重
量を計測後、真空含水法にて水中重量、含水重量を測定
し算出した。
A sample similar to the test sample for measuring the porosity and bulk specific gravity was prepared, and the weight in air was measured, and then the weight in water and the weight in water were measured and calculated by the vacuum hydrate method.

【0025】耐 食 性 高周波誘導炉溶解侵食試験装置にて、供試材を内張り材
としてFC20鋳鉄2Kgと高炉スラグ100grを150
0℃〜1600℃で溶解侵食試験した時の各供試材の溶
損量を測定した。また、その評価は比較例1を100と
して、他の供試材の溶損量を比例計算にて指数化したも
のであり、100より大きい数字は耐食性に劣り、小さ
い数字は耐食性良好と位置付けられる。
In a corrosion resistance high frequency induction furnace melting and erosion tester, FC20 cast iron 2 kg and blast furnace slag 100 gr 150 were used as test materials for lining materials.
The amount of erosion loss of each test material at the time of the dissolution and erosion test at 0 ° C to 1600 ° C was measured. Further, the evaluation was made by indexing the amount of erosion of the other test materials by proportional calculation with Comparative Example 1 being 100. A number larger than 100 is inferior in corrosion resistance, and a small number is inferior to good corrosion resistance. .

【0026】[0026]

【発明の効果】本発明の流し込み成形用耐火物は、下記
のごとき優れた特性を有している。 従来の流し込み成形用耐火物に比べて、添加水量が少
ない領域でも自流性に優れている。 その結果として、物理特性とともに溶融金属に対する
耐食性が向上し、耐火物としての寿命延長がはかれる。 さらには、自流性が発揮されることにより、充填のた
めのバイブレーター掛けが軽減もしくは不要となること
で施工作業上の省力化、省人化がはかれる。
The cast refractory material of the present invention has the following excellent properties. Compared to conventional cast molding refractories, it has excellent self-flow property even in the region where the amount of added water is small. As a result, physical properties as well as corrosion resistance to molten metal are improved, and the life of the refractory is extended. Further, by exhibiting the self-flowing property, it is possible to reduce or eliminate the need for a vibrator for filling, which leads to labor saving and labor saving in the construction work.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 昭 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 井上 典幸 愛知県豊田市美里4丁目3番3号 (72)発明者 大橋 秀明 愛知県豊田市栄生町1丁目24番2号 (72)発明者 大沢 文明 愛知県豊田市青木町2丁目107番3号 (72)発明者 本池 真二 愛知県豊田市平芝町3丁目13番7号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Kojima 1 Kimitsu, Kimitsu-shi, Chiba Shin-Nippon Steel Co., Ltd. Kimitsu Steel Co., Ltd. (72) Inventor Noriyuki Inoue 4-3-3 Misato, Toyota, Aichi 72) Inventor Hideaki Ohashi 1-24-2, Eiyo-cho, Toyota-shi, Aichi (72) Inventor Fumiaki Osawa 2-107-3, Aoki-cho, Toyota-shi, Aichi (72) Inventor Shinji Honike Toyota-shi, Aichi 3-13-7 Hirashiba-cho

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ、スピネル、ボーキサイト等の
耐火性骨材を主体とする流し込み成形用耐火物であっ
て、0.75以上の球形度の球状耐火性骨材が全体の1
0〜50重量%を占め、かつ、0.75以上の球形度の
球状ピッチが1〜5重量%含まれていることを特徴とす
る流し込み成形用耐火物。
1. A cast refractory material mainly composed of refractory aggregates such as alumina, spinel, bauxite, etc., and spherical refractory aggregates having a sphericity of 0.75 or more are 1% of the total.
A cast refractory material comprising 0 to 50% by weight and 1 to 5% by weight of a spherical pitch having a sphericity of 0.75 or more.
【請求項2】 前記球状耐火性骨材の粒子径が0.5〜
5mmであることを特徴とする請求項1に記載の流し込み
成形用耐火物。
2. The particle diameter of the spherical refractory aggregate is 0.5 to
The cast refractory material according to claim 1, wherein the refractory material is 5 mm.
【請求項3】 前記球状ピッチの粒子径が0.5〜2mm
であることを特徴とする請求項1または請求項2に記載
の流し込み成形用耐火物。
3. The particle diameter of the spherical pitch is 0.5 to 2 mm.
The cast refractory material according to claim 1 or 2, wherein
JP6063811A 1994-03-31 1994-03-31 Refractory for flowed-in forming Withdrawn JPH07267745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6063811A JPH07267745A (en) 1994-03-31 1994-03-31 Refractory for flowed-in forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6063811A JPH07267745A (en) 1994-03-31 1994-03-31 Refractory for flowed-in forming

Publications (1)

Publication Number Publication Date
JPH07267745A true JPH07267745A (en) 1995-10-17

Family

ID=13240140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6063811A Withdrawn JPH07267745A (en) 1994-03-31 1994-03-31 Refractory for flowed-in forming

Country Status (1)

Country Link
JP (1) JPH07267745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692855B1 (en) 1998-04-21 2004-02-17 Toto Ltd. Solid electrolyte type fuel cell and method of producing the same
US8273674B2 (en) * 2005-12-21 2012-09-25 Saint-Gobain Centre De Recherches Et D'etudes European Self-flow refractory mixture
JP2013119502A (en) * 2011-12-08 2013-06-17 Shinagawa Refractories Co Ltd Indefinite-form fireproof composition
JP2016210636A (en) * 2015-04-30 2016-12-15 黒崎播磨株式会社 Mortar and application method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692855B1 (en) 1998-04-21 2004-02-17 Toto Ltd. Solid electrolyte type fuel cell and method of producing the same
US8273674B2 (en) * 2005-12-21 2012-09-25 Saint-Gobain Centre De Recherches Et D'etudes European Self-flow refractory mixture
JP2013119502A (en) * 2011-12-08 2013-06-17 Shinagawa Refractories Co Ltd Indefinite-form fireproof composition
JP2016210636A (en) * 2015-04-30 2016-12-15 黒崎播磨株式会社 Mortar and application method thereof

Similar Documents

Publication Publication Date Title
TW201100351A (en) Unburned alumina-carbon brick and kiln facility utilizing same
CN105753489B (en) A kind of integrated stopper rod used for continuous casting and its manufacturing method
US6165926A (en) Castable refractory composition and methods of making refractory bodies
JP2920726B2 (en) Cast refractories
JP2006198671A (en) Sand for sliding nozzle of ladle
JPH07267745A (en) Refractory for flowed-in forming
CN104193359B (en) A kind of special corundum gravity flow pouring material of stainless steel ladle and constructional method thereof
JP5590662B2 (en) Castable refractory manufacturing method
JP4220131B2 (en) Amorphous refractory composition for ladle
JP2004142957A (en) Low elastic modulus alumina-magnesia castable refractory, pre-cast block, and molten metal vessel
JPH09169558A (en) Molded or fired porous refractory
CN1061962C (en) Tap-hole clayplug for blast furnace iron notch
JPH0952169A (en) Refractory for tuyere of molten steel container
CN112239353A (en) Lining brick for one-pot hot metal ladle and preparation process thereof
US5885510A (en) Methods of making refractory bodies
JPH09157043A (en) Casting refractory for blast-furnace launder
JPH11322380A (en) Alumina cement and castable refractory by using the same
JPH10338578A (en) Ramming material, insertion-type immersion nozzle fixed with that material, and fixing method of insertion-type immersion nozzle
JP2003171183A (en) Alumina-magnesia castable refractory having low elastic modulus, precast block, and vessel for molten metal
JPS6028783B2 (en) Basic monolithic refractory for molten metal containers
JPS591233B2 (en) High zircon vibration molding material
JPH08157266A (en) Composition for chamotte flowed-in refractory
JPH07237977A (en) Composition for alumina spinel-based cast refractory
KR100413281B1 (en) Basic castable composition for tundish bottom reinforcement using waste refractories
JPH07110792B2 (en) Basic amorphous refractory

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605