JPH0726773B2 - Absorption refrigeration cycle absorber - Google Patents

Absorption refrigeration cycle absorber

Info

Publication number
JPH0726773B2
JPH0726773B2 JP24851490A JP24851490A JPH0726773B2 JP H0726773 B2 JPH0726773 B2 JP H0726773B2 JP 24851490 A JP24851490 A JP 24851490A JP 24851490 A JP24851490 A JP 24851490A JP H0726773 B2 JPH0726773 B2 JP H0726773B2
Authority
JP
Japan
Prior art keywords
absorbing liquid
heat transfer
groove
absorber
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24851490A
Other languages
Japanese (ja)
Other versions
JPH04126964A (en
Inventor
芳哉 小田
敏博 星田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP24851490A priority Critical patent/JPH0726773B2/en
Publication of JPH04126964A publication Critical patent/JPH04126964A/en
Publication of JPH0726773B2 publication Critical patent/JPH0726773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冷媒の吸収性能の向上を図るための改良を
施した吸収式冷凍サイクルの吸収器に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to an absorber of an absorption refrigeration cycle, which has been improved to improve the absorption performance of a refrigerant.

(従来の技術) 従来知られている吸収式冷凍サイクルには、冷媒として
水を用い、冷媒の吸収液として臭化リチウム溶液を用い
たものがある。この吸収式冷凍サイクルは、冷媒の水を
負圧の中で蒸発させて吸熱する蒸発器と、気化後の水蒸
気を吸収液に吸収させて回収するとともに前記蒸発器に
負圧を供給する吸収器と、該吸収器において水を吸収し
た吸収液を加熱して水蒸気を分離する再生器と、該再生
器において分離した水蒸気を冷却して水に戻して前記蒸
発器に供給する凝縮器とから基本的に構成されている。
(Prior Art) Some conventionally known absorption refrigeration cycles use water as a refrigerant and a lithium bromide solution as an absorption liquid of the refrigerant. This absorption refrigeration cycle includes an evaporator that evaporates water of a refrigerant in a negative pressure and absorbs heat, and an absorber that absorbs vaporized water vapor into an absorbing liquid and collects the same and supplies a negative pressure to the evaporator. And a regenerator that heats an absorbing liquid that has absorbed water in the absorber to separate water vapor, and a condenser that cools the water vapor separated in the regenerator and returns the water to the evaporator. It is configured to

そして、前記吸収器は、水冷式のものと空冷式のものが
あり、空冷式のものは第4図に示すような構造になって
いる。同図に示す吸収器10は、上下に室4,5が設けら
れ、この上下の室4,5の間に、鉛直方向に中空の伝熱管
1が複数並設されている。そして伝熱管1の内面2に沿
って上の室4から吸収液3を重力により自然流下させて
気化した冷媒を吸収させ、下の室5に滴下させる。上の
室4には、図示しない蒸発器からの蒸気(気体であるた
め図示せず)及び図示しない再生器からの吸収液3(水
分が除去された濃溶液である)が流入している。前記下
の室5に溜まった吸収液(水分を吸収して薄められた希
溶液である)3は図示しない再生器に送られる。また、
冷却用空気との接触面積の増大のため、伝熱管1の外周
には多数のフィン6が設けてある。
The absorber is classified into a water-cooled type and an air-cooled type, and the air-cooled type has a structure as shown in FIG. In the absorber 10 shown in the figure, chambers 4 and 5 are provided at the upper and lower sides, and a plurality of hollow heat transfer tubes 1 are vertically arranged in parallel between the upper and lower chambers 4 and 5. Then, along the inner surface 2 of the heat transfer tube 1, the absorbing liquid 3 is allowed to naturally flow down from the upper chamber 4 by gravity to absorb the vaporized refrigerant, and the dropped liquid is dropped into the lower chamber 5. Vapor (not shown because it is a gas) from an evaporator (not shown) and absorption liquid 3 (which is a concentrated solution from which water has been removed) have flowed into the upper chamber 4 from a regenerator (not shown). The absorbing liquid (which is a dilute solution diluted by absorbing water) 3 accumulated in the lower chamber 5 is sent to a regenerator (not shown). Also,
A large number of fins 6 are provided on the outer periphery of the heat transfer tube 1 in order to increase the contact area with the cooling air.

(発明が解決しようとする課題) しかしながら、前記従来例にあっては、伝熱管の内面
は、平滑面であったため、重力により自然流下する吸収
液が、伝熱管内面全体に均一に広がりながら流下するこ
とが期待できず、伝熱管内面の一部に吸収液が集中して
流れる偏流が生じることが多かった。この偏流が生じる
と、吸収液が流れない部分では水蒸気が直接冷却されて
結露し、吸収液に吸収されずに停留したり、吸収液が集
中して流下するため、水蒸気との接触面積が著しく減少
して吸収性能が低下し、冷却性能の低下に繋がる等の不
具合を有していた。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional example, since the inner surface of the heat transfer tube was a smooth surface, the absorbing liquid that naturally flows down due to gravity flows down while uniformly spreading over the entire inner surface of the heat transfer tube. It was not possible to expect this, and there was often a case in which the absorbing liquid concentratedly flowed on a part of the inner surface of the heat transfer tube. When this uneven flow occurs, the steam is directly cooled and condensed in the portion where the absorbing liquid does not flow, and stays without being absorbed by the absorbing liquid, or the absorbing liquid concentrates and flows down. There was a problem such as a decrease in absorption performance and a decrease in cooling performance.

(課題を解決するための手段) 前記課題を解決するために、本発明は、鉛直方向に複数
並設された中空の伝熱管内面に沿って吸収液を重力によ
り自然流下させて、該吸収液に気化した冷媒を吸収され
るための吸収式冷凍サイクルの吸収器において、前記伝
熱管内面に、捩じれ角が40°〜50°で、かつ溝深さが前
記吸収液の膜厚以上の螺旋状の溝を形成したものであ
る。
(Means for Solving the Problems) In order to solve the above problems, the present invention is to allow gravity to flow down an absorbing liquid along the inner surfaces of hollow heat transfer tubes that are arranged in parallel in the vertical direction. In the absorber of the absorption refrigeration cycle for absorbing vaporized refrigerant, the inner surface of the heat transfer tube has a twist angle of 40 ° to 50 °, and a groove depth of a spiral shape having a film thickness of the absorbing liquid or more. The groove is formed.

(作用) 本発明は、伝熱管内面に螺旋状の溝を形成したことによ
り、伝熱管内を自然流下する吸収液が当該溝の抵抗によ
り螺旋状に広がりながら流下するため、吸収液が伝熱管
内面に広範囲に広がり、偏流の発生を防止できる。
(Operation) In the present invention, since the spiral groove is formed on the inner surface of the heat transfer tube, the absorbing liquid that naturally flows down in the heat transfer tube flows down while spreading spirally due to the resistance of the groove. It spreads over a wide area on the inner surface and can prevent uneven flow.

更に本発明は、前記溝の捩じれ角を40°〜50°に設定
し、かつ溝深さを前記吸収液の膜厚以上としたことによ
り、吸収液が溝に沿って螺旋状に流れる割合と溝の山を
越えて鉛直方向に流れ落ちる割合とが好適な割合とな
り、吸収液が伝熱管内面全体に広がる作用(以下、濡れ
性と称する)が極めて良好に得られる。
Furthermore, the present invention, by setting the twist angle of the groove to 40 ° to 50 ° and setting the groove depth to be equal to or more than the film thickness of the absorbing liquid, the ratio of the absorbing liquid flowing spirally along the groove and A suitable ratio is a ratio that the liquid flows vertically over the crests of the groove, and an action (hereinafter referred to as wettability) in which the absorbing liquid spreads over the entire inner surface of the heat transfer tube can be obtained very well.

(実施例) 以下、本発明に係る吸収式冷凍サイクルの吸収器の一実
施例を添付図面を用いて説明する。
(Example) Hereinafter, one example of an absorber of an absorption refrigeration cycle according to the present invention will be described with reference to the accompanying drawings.

第1図は、本実施例の構成を示す縦断面図である。同図
において、第4図に示した従来の吸収器10と同一構成部
分には、同一符号を付してその説明は省略する。
FIG. 1 is a vertical sectional view showing the structure of this embodiment. In the figure, the same components as those of the conventional absorber 10 shown in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted.

第1図に示すように、本実施例の吸収器20は従来例と同
様に、上下の室4,5の間に、管軸が鉛直方向に一致する
ように中空の伝熱管21が複数並設されている。そして、
伝熱管21の内面には、一定ピッチの螺旋状の溝22が形成
されている。この溝22は、第2図に拡大して示すように
底部に向かって収縮する逆台形の断面を有し、その捩じ
れ角θは、40°〜50°の範囲内に設定してある。また、
溝22の深さhは、伝熱管21内を流下する吸収液3が形成
する膜厚以上となるように設定してある。なお、溝山角
度α(第3図の拡大図に示す)は、後述の実験結果によ
るように、45°前後が好適である。
As shown in FIG. 1, in the absorber 20 of this embodiment, a plurality of hollow heat transfer tubes 21 are arranged between the upper and lower chambers 4 and 5 so that the tube axes coincide with each other in the vertical direction, as in the conventional example. It is set up. And
A spiral groove 22 having a constant pitch is formed on the inner surface of the heat transfer tube 21. The groove 22 has an inverted trapezoidal cross section that contracts toward the bottom as shown in an enlarged view in FIG. 2, and the twist angle θ is set within the range of 40 ° to 50 °. Also,
The depth h of the groove 22 is set to be equal to or larger than the film thickness formed by the absorbing liquid 3 flowing down in the heat transfer tube 21. The groove angle α (shown in the enlarged view of FIG. 3) is preferably around 45 °, as will be shown by the experimental results described later.

この螺旋状の溝22は、伝熱管21の上端から下端まで連続
するように形成されており、溝22の本数は、伝熱管21の
管径に対する捩じれ角θと溝深さhの関係から自動的に
決定される。
The spiral groove 22 is formed so as to be continuous from the upper end to the lower end of the heat transfer tube 21, and the number of the grooves 22 is automatically determined from the relationship between the twist angle θ with respect to the tube diameter of the heat transfer tube 21 and the groove depth h. To be decided.

このように構成された本実施例の吸収器20にあっては、
上の室4から重力により伝熱管21内面を自然流下する吸
収液3が、螺旋状の溝22による抵抗を受けて螺旋状に広
がって流れるとともに、溝22の山を越えて鉛直方向にも
流下するため、伝熱管21内面全体に吸収液が広範囲に広
がって、偏流が発生することが無い。また、溝22の捩じ
れ角を40°〜50°に設定し、溝深さhを吸収液3の膜厚
以上としたことにより、吸収液3が溝22に沿って螺旋状
に流れる割合と溝22の山を越えて鉛直方向に流れ落ちる
割合とが好適な割合となり、吸収液の濡れ性が極めて良
好に得られる。
In the absorber 20 of the present embodiment configured in this way,
The absorbing liquid 3 that naturally flows down from the upper chamber 4 by gravity on the inner surface of the heat transfer tube 21 flows in a spiral shape under the resistance of the spiral groove 22 and also flows downward in the vertical direction beyond the ridges of the groove 22. Therefore, the absorbing liquid does not spread over a wide area on the entire inner surface of the heat transfer tube 21 and uneven flow does not occur. Further, by setting the twist angle of the groove 22 to 40 ° to 50 ° and setting the groove depth h to be equal to or larger than the film thickness of the absorbing liquid 3, the ratio of the absorbing liquid 3 flowing spirally along the groove 22 and the groove A suitable ratio is a ratio of flowing in the vertical direction over the 22 ridges, and the wettability of the absorbing liquid can be extremely excellent.

具体的には、第1図に示すように、上の室4の底面に溜
まっている吸収液3が伝熱管21の上端面から流れ込み、
重力によって鉛直方向に流れようとするが、螺旋状の溝
22を乗り越えて流下するため、吸収液3の一部は、溝22
に沿って螺旋状に流れる。従って、伝熱管21内を流下す
る吸収液3は、全体的に溝22のピッチより大きいピッチ
の螺旋を描きながら流れ落ちることになり、その結果、
吸収液3は伝熱管21内面に広がる。従って、本実施例の
伝熱管21内においては、吸収液3と水蒸気の接触面積が
大きくなり、水蒸気の吸収効率が向上する。このため、
吸収器20内に発生する負圧が増大し、この負圧が蒸発器
に供給されることにより、蒸発器における水の蒸発を促
進する。よって、蒸発器における冷却効率が増大する。
Specifically, as shown in FIG. 1, the absorbing liquid 3 accumulated on the bottom surface of the upper chamber 4 flows from the upper end surface of the heat transfer tube 21,
It tries to flow vertically due to gravity, but spiral grooves
Part of the absorbing liquid 3 flows over the groove 22 in order to flow over the 22.
Spirally flows along. Therefore, the absorbing liquid 3 flowing down in the heat transfer tube 21 flows down while drawing a spiral having a pitch larger than the pitch of the grooves 22 as a whole.
The absorbing liquid 3 spreads on the inner surface of the heat transfer tube 21. Therefore, in the heat transfer tube 21 of the present embodiment, the contact area between the absorbing liquid 3 and the water vapor is increased, and the water vapor absorption efficiency is improved. For this reason,
The negative pressure generated in the absorber 20 increases, and this negative pressure is supplied to the evaporator, thereby promoting evaporation of water in the evaporator. Therefore, the cooling efficiency in the evaporator is increased.

当該出願に係る発明者の実験では、溝深さhが0.5mm以
上(水蒸気の吸収能力を発生させるのに必要な吸収液の
膜厚が約0.3mmであるため、これ以上に設定する必要が
ある)とし、溝山角度αを45°とした場合に、水蒸気の
吸収効率及び吸収液3の濡れ性が極めて良好となった。
In the experiment conducted by the inventor of the present application, the groove depth h is 0.5 mm or more (since the film thickness of the absorbing liquid required to generate the water vapor absorption capacity is about 0.3 mm, it is necessary to set the groove depth h or more. If the groove angle α is 45 °, the water vapor absorption efficiency and the wettability of the absorbing liquid 3 are extremely good.

(発明の効果) 以上詳細に説明したように、本発明に係る吸収式冷凍サ
イクルの吸収器は、伝熱管内面に螺旋状の溝を形成した
ことにより、伝熱管内を自然流下する吸収液が当該溝の
抵抗により螺旋状に広がりながら流下するため、吸収液
を伝熱管内面に広範囲に広がらせることができ、吸収液
の偏流の発生を防止できる。
(Effects of the Invention) As described in detail above, the absorber of the absorption refrigeration cycle according to the present invention has the spiral groove formed on the inner surface of the heat transfer tube, so that the absorption liquid that naturally flows down in the heat transfer tube is Since it flows downward while spreading spirally due to the resistance of the groove, it is possible to spread the absorbing liquid over a wide range on the inner surface of the heat transfer tube, and it is possible to prevent uneven flow of the absorbing liquid.

更に本発明は、前記溝の捩じれ角を40°〜50°に設定
し、かつ溝深さを前記吸収液の膜厚以上としたことによ
り、吸収液が溝に沿って螺旋状に流れる割合と溝の山を
越えて鉛直方向に流れ落ちる割合とが好適な割合とな
り、吸収液の濡れ性を向上させることができる。従っ
て、吸収液と冷媒との接触面積を増大でき、冷媒の吸収
性能を高め、冷却効率を向上させることができる。
Furthermore, the present invention, by setting the twist angle of the groove to 40 ° to 50 ° and setting the groove depth to be equal to or more than the film thickness of the absorbing liquid, the ratio of the absorbing liquid flowing spirally along the groove and A preferable ratio is a ratio of flowing in the vertical direction over the crests of the groove, and the wettability of the absorbing liquid can be improved. Therefore, the contact area between the absorbing liquid and the refrigerant can be increased, the refrigerant absorbing performance can be improved, and the cooling efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る吸収式冷凍サイクル吸収器の一実
施例の構成を示す縦断面図、第2図は同実施例における
伝熱管の拡大断面図、第3図は同伝熱管内の溝の拡大断
面図、第4図は従来の吸収器の縦断面図である。 3……吸収液、4,5……室 6……フィン、20……吸収器 21……伝熱管、22……溝 θ……捩じれ角
FIG. 1 is a longitudinal sectional view showing the structure of an embodiment of an absorption type refrigeration cycle absorber according to the present invention, FIG. 2 is an enlarged sectional view of a heat transfer tube in the same embodiment, and FIG. FIG. 4 is an enlarged sectional view of the groove, and FIG. 4 is a vertical sectional view of a conventional absorber. 3 ... Absorbing liquid, 4,5 ... Chamber 6 ... Fin, 20 ... Absorber 21 ... Heat transfer tube, 22 ... Groove θ ... Twist angle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉛直方向に複数並設された中空の伝熱管内
面に沿って吸収液を重力により自然流下させて、該吸収
液に気化した冷媒を吸収させるための吸収式冷凍サイク
ルの吸収器において、 前記伝熱管内面に、捩じれ角が40°〜50°で、かつ溝深
さが前記吸収液の膜厚以上の螺旋状の溝を形成したこと
を特徴とする吸収式冷凍サイクルの吸収器。
1. An absorber of an absorption refrigeration cycle for allowing gravity of an absorbing liquid to flow down along the inner surfaces of hollow heat transfer tubes arranged in parallel in the vertical direction so that the absorbing liquid absorbs vaporized refrigerant. In the inner surface of the heat transfer tube, a helix angle of 40 ° to 50 °, and a spiral groove having a groove depth of not less than the film thickness of the absorbing liquid is formed, and the absorber of the absorption refrigeration cycle. .
JP24851490A 1990-09-17 1990-09-17 Absorption refrigeration cycle absorber Expired - Lifetime JPH0726773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24851490A JPH0726773B2 (en) 1990-09-17 1990-09-17 Absorption refrigeration cycle absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24851490A JPH0726773B2 (en) 1990-09-17 1990-09-17 Absorption refrigeration cycle absorber

Publications (2)

Publication Number Publication Date
JPH04126964A JPH04126964A (en) 1992-04-27
JPH0726773B2 true JPH0726773B2 (en) 1995-03-29

Family

ID=17179319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24851490A Expired - Lifetime JPH0726773B2 (en) 1990-09-17 1990-09-17 Absorption refrigeration cycle absorber

Country Status (1)

Country Link
JP (1) JPH0726773B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421173A (en) * 1992-11-03 1995-06-06 Samsung Electronics Co., Ltd. Absorption heating and cooling device

Also Published As

Publication number Publication date
JPH04126964A (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US6098420A (en) Absorption chiller and heat exchanger tube used the same
JPH09152290A (en) Absorption refrigerating machine
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
US5730001A (en) Absorption type refrigerating machine
JPH0726773B2 (en) Absorption refrigeration cycle absorber
JP3091071B2 (en) Heat exchangers and absorption air conditioners
JP3138010B2 (en) Absorption refrigerator
JP3199287B2 (en) Heat exchanger tubes for heat exchangers
JPH09280692A (en) Plate type evaporating and absorbing device for absorption refrigerating machine
JPH06147784A (en) Heat exchanger tube
JP3266886B2 (en) Heat transfer tube
JPH0961080A (en) Turbo freezer
WO2022138018A1 (en) Absorber for absorption chiller, heat exchange unit for absorption chiller, and absorption chiller
KR100707682B1 (en) Heat pipe for absorption refrigerating machine
KR100378532B1 (en) Evaporator for absorption chiller
JP2962866B2 (en) Absorber
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube
JPS61114092A (en) Heat exchanger
JPH03255863A (en) Absorbing refrigerator
KR200150457Y1 (en) Heat pipe
JPH058424Y2 (en)
JPH05215446A (en) Double effect absorption refrigerating machine
JP2002243380A (en) Absorbing type cold water or hot water machine
JP2003254680A (en) Heat exchanger and absorption refrigerating machine using it