JPH04126964A - Absorption device of absorption type freezing cycle - Google Patents

Absorption device of absorption type freezing cycle

Info

Publication number
JPH04126964A
JPH04126964A JP24851490A JP24851490A JPH04126964A JP H04126964 A JPH04126964 A JP H04126964A JP 24851490 A JP24851490 A JP 24851490A JP 24851490 A JP24851490 A JP 24851490A JP H04126964 A JPH04126964 A JP H04126964A
Authority
JP
Japan
Prior art keywords
absorption liquid
heat transfer
groove
absorption
transfer pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24851490A
Other languages
Japanese (ja)
Other versions
JPH0726773B2 (en
Inventor
Yoshiya Oda
小田 芳哉
Toshihiro Hoshida
星田 敏博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP24851490A priority Critical patent/JPH0726773B2/en
Publication of JPH04126964A publication Critical patent/JPH04126964A/en
Publication of JPH0726773B2 publication Critical patent/JPH0726773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an occurrence of a deflection flow of absorption liquid by a method wherein a helical groove with its groove depth being more than a film thickness of absorption liquid in a specified twisting angle is formed at an inner surface of a heat transfer pipe. CONSTITUTION:An absorption device 20 is made such that a plurality of hollow heat transfer pipes 21 are disposed in a side-by-side relation between an upper chamber 4 and a lower chamber 5. An inner surface of each of the heat transfer pipes 21 is formed with a helical groove 22. The helical groove 22 has a trapezoidal section. Its twisting angle theta is set to 40 deg. to 50 deg.. Its depth (h) is set to have a value higher than a film thickness formed by the absorption liquid 3 flowing down in each of the heat transfer pipes 21. Absorption liquid 3 naturally flowing down at an inner surface of each of the heat transfer pipes 21 under its gravity action from the upper chamber 4 receives a resistance caused by the helical groove 22, flows in a helical form, rides over top portions of the grooves 22 and also flows down in a vertical direction, resulting in that the absorption liquid is expanded over an entire range of the inner surface of each of the heat transfer pipes 21 and no deflection flow is generated. A rate in which the absorption liquid 3 flows along the groove 22 and another rate in which the absorption liquid 3 rides over the top portions of the groove 22 and drops down in a vertical direction become preferable rates and then a leakage characteristics of the absorption liquid can be got quite well.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、冷媒の吸収性能の向上を図るための改良を
施した吸収式冷凍サイクルの吸収器に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an absorber for an absorption refrigeration cycle that has been improved to improve refrigerant absorption performance.

(従来の技術) 従来知られている吸収式冷凍サイクルには、冷媒として
水を用い、冷媒の吸収液として臭化リチウム溶液を用い
たものがある。この吸収式冷凍サイクルは、冷媒の水を
負圧の中で蒸発させて吸熱する蒸発器と、気化後の水蒸
気を吸収液に吸収させて回収するとともに前記蒸発器に
負圧を供給する吸収器と、該吸収器において水を吸収し
た吸収液を加熱して水蒸気を分離する再生器と、該再生
器において分離した水蒸気を冷却して水に戻して前記蒸
発器に供給する凝縮器とから基本的に構成されている。
(Prior Art) Some conventionally known absorption refrigeration cycles use water as a refrigerant and a lithium bromide solution as an absorption liquid for the refrigerant. This absorption refrigeration cycle consists of an evaporator that absorbs heat by evaporating refrigerant water under negative pressure, and an absorber that absorbs and recovers vaporized water vapor into an absorption liquid and supplies negative pressure to the evaporator. , a regenerator that heats the absorption liquid that has absorbed water in the absorber to separate water vapor, and a condenser that cools the water vapor separated in the regenerator and returns it to water and supplies it to the evaporator. It is structured as follows.

そして、前記吸収器は、水冷式のものと空冷式のものが
あり、空冷式のものは第4図に示すような構造になっ″
ている。同図に示す吸収器10は、上下に室4,5が設
けられ、この上下の室4,5の間に、鉛直方向に中空の
伝熱管1が複数並設されている。そして伝熱管1の内面
2に沿って上の室4から吸収液3を重力により自然流下
させて気化した冷媒を吸収させ、下の室5に滴下させる
There are two types of absorbers: water-cooled ones and air-cooled ones, and the air-cooled ones have a structure as shown in Figure 4.
ing. The absorber 10 shown in the figure has upper and lower chambers 4 and 5, and between the upper and lower chambers 4 and 5, a plurality of hollow heat exchanger tubes 1 are arranged in parallel in the vertical direction. Then, the absorption liquid 3 is caused to flow down by gravity from the upper chamber 4 along the inner surface 2 of the heat exchanger tube 1 to absorb the vaporized refrigerant and drip into the lower chamber 5.

上の室4には、図示しない蒸発器からの蒸気(気体であ
るため図示せず)及び図示しない再生器からの吸収液3
(水分が除去された濃溶液である)か流入している。萌
記下の室5に溜まった吸収液(水分を吸収して薄められ
た希溶液である)3は図示しない再生器に送られる。ま
た、冷却用空気との接触面積の増大のため、伝熱管1の
外周には多数のフィン6が設けである。
The upper chamber 4 contains steam (not shown because it is a gas) from an evaporator (not shown) and absorption liquid 3 from a regenerator (not shown).
(a concentrated solution from which water has been removed) is flowing. The absorbent liquid 3 (which is a diluted solution that has absorbed moisture) accumulated in the chamber 5 below is sent to a regenerator (not shown). Further, in order to increase the contact area with the cooling air, a large number of fins 6 are provided on the outer periphery of the heat exchanger tube 1.

(発明か解決しようとする課題) しかしなから、前記従来例にあっては、伝熱管の内面は
、平滑面であったため、重力により自然流下する吸収液
か、伝熱管内面全体に均一に広がりながら流下すること
か期待できず、伝熱管内面の一部に吸収液が集中して流
れる偏流が生じることが多かった。この偏流が生じると
、吸収液が流れない部分では水蒸気が直接冷却されて結
露し、吸収液に吸収されずに停留したり、吸収液が集中
して流下するため、水蒸気との接触面積が著しく減少し
て吸収性能が低下し、冷却性能の低下に繋がる等の不都
合を有していた。
(Problem to be solved by the invention) However, in the conventional example, since the inner surface of the heat exchanger tube was a smooth surface, the absorbed liquid naturally flowed down due to gravity or spread uniformly over the entire inner surface of the heat exchanger tube. However, it could not be expected that the absorbing liquid would flow downward, and a drifted flow often occurred in which the absorbing liquid was concentrated on a part of the inner surface of the heat exchanger tube. When this drift occurs, the water vapor may be directly cooled and condensed in areas where the absorption liquid does not flow, and may remain without being absorbed by the absorption liquid, or the absorption liquid may concentrate and flow down, resulting in a significant contact area with the water vapor. This has resulted in disadvantages such as a decrease in absorption performance and a decrease in cooling performance.

(課題を解決するための手段) 前記課題を解決するために、本発明は、鉛直方向に複数
並設された中空の伝熱管内面に沿って吸収液を重力によ
り自然流下させて、該吸収液に気化した冷媒を吸収させ
るための吸収式冷凍ザイクルの吸収器において、前記伝
熱管内面に、捩じれ角か40゜〜50°で、かつ溝深さ
か前記吸収液の膜厚以上の螺旋状の溝を形成したもので
ある。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention allows an absorption liquid to naturally flow down by gravity along the inner surface of a plurality of hollow heat transfer tubes arranged in parallel in the vertical direction. In an absorber for an absorption-type refrigerating cycle for absorbing refrigerant vaporized in water, a spiral groove is formed on the inner surface of the heat transfer tube, the helix angle is 40° to 50°, and the groove depth is greater than or equal to the film thickness of the absorption liquid. was formed.

(作用) 本発明は、伝熱管内面に螺旋状の溝を形成したことによ
り、伝熱管内を自然流下する吸収液か当該溝の抵抗によ
り螺旋状に広がりながら流下するため、吸収液か伝熱管
内面に広範囲に広がり、偏流の発生を防止できる。
(Function) In the present invention, by forming a spiral groove on the inner surface of the heat exchanger tube, the absorption liquid that naturally flows down inside the heat exchanger tube spreads spirally due to the resistance of the groove. It spreads over a wide area on the inner surface and prevents the occurrence of drift.

更に本発明は、前記溝の捩じれ角を40゜〜50°に設
定し、かつ溝深さを前記吸収液の膜厚以」二としたこと
により、吸収液か溝に沿って螺旋状に流れる割合と溝の
山を越えて鉛直方向に流れ落ちる割合とが好適な割合と
なり、吸収液が伝熱管内面全体に広がる作用(以下、濡
れ性と称する)か極めて良好に得られる。
Furthermore, in the present invention, the helix angle of the groove is set to 40° to 50°, and the depth of the groove is set to be equal to or greater than the film thickness of the absorbent liquid, so that the absorbent liquid flows spirally along the groove. The ratio and the ratio of flowing down in the vertical direction over the ridges of the grooves are suitable, and the effect of spreading the absorption liquid over the entire inner surface of the heat exchanger tube (hereinafter referred to as wettability) can be obtained extremely well.

(実施例) 以下、本発明に係る吸収式冷凍ザイクルの吸収器の一実
施例を添付図面を用いて説明する。
(Example) Hereinafter, an example of an absorber of an absorption type refrigerating cycle according to the present invention will be described with reference to the accompanying drawings.

第1図は、本実施例の構成を示す縦断面図である。同図
において、第4図に示した従来の吸収2(10と同一構
成部分には、同一符号を付してその説明は省略する。
FIG. 1 is a longitudinal sectional view showing the configuration of this embodiment. In the same figure, the same components as those of the conventional absorber 2 (10) shown in FIG.

第1図に示すように、本実施例の吸収器20は従来例と
同様に、」1下の室4,5の間に、管軸が鉛直方向に一
致するように中空の伝熱管21か複数11■と設されて
いる。そして、伝熱管21の内面には、一定ピツチの螺
旋状の溝22か形成されている。この溝22は、第2図
に拡大して示すように底部に向かって収縮する逆台形の
断面を有し、その捩じれ角θは、40゜〜500の範囲
内に設定しである。また、溝22の深さ1]は、伝熱管
21内を流下する吸収液3が形成する膜厚以上となるよ
うに設定しである。なお、溝山角度α(第3図の拡大図
に示す)は、後述の実験結果によるように、45°前後
が好適である。
As shown in FIG. 1, the absorber 20 of this embodiment, like the conventional example, has hollow heat transfer tubes 21 arranged between the lower chambers 4 and 5 so that the tube axes are vertically aligned. There are multiple numbers of 11■. Further, on the inner surface of the heat exchanger tube 21, spiral grooves 22 with a constant pitch are formed. This groove 22 has an inverted trapezoidal cross section that contracts toward the bottom, as shown in an enlarged view in FIG. 2, and its twist angle θ is set within the range of 40° to 500°. Further, the depth 1 of the groove 22 is set to be equal to or greater than the film thickness formed by the absorbing liquid 3 flowing down inside the heat transfer tube 21. Note that, as shown in the experimental results described later, the groove angle α (shown in the enlarged view of FIG. 3) is preferably around 45°.

この螺旋状の溝22は、伝熱管21の上端から下端まで
連続するように形成されており、溝22の本数は、伝熱
管21の管径に対する捩じれ角θと溝深さ1]の関係か
ら自動的に決定される。
This spiral groove 22 is formed so as to be continuous from the upper end to the lower end of the heat exchanger tube 21, and the number of grooves 22 is determined based on the relationship between the twist angle θ and the groove depth 1 with respect to the tube diameter of the heat exchanger tube 21. Determined automatically.

このように構成された本実施例の吸収器20にあっては
、上の室4から重力により伝熱管21内面を自然流下す
る吸収液3が、螺旋状の溝22による抵抗を受けて螺旋
状に広がって流れるとともに、溝22の山を越えて鉛直
方向にも流下するため、伝熱管2I内面全体に吸収液が
広範囲に広がって、偏流が発生することが無い。また、
溝22の捩じれ角を40゜〜50°に設定し、溝深さl
]を吸収液3の膜厚以上としたことにより、吸収液3が
溝22に沿って螺旋状に流れる割合と溝22の山を越え
て鉛直方向に流れ落ちる割合とが好適な割合となり、吸
収液の濡れ性か極めて良好に得られる。
In the absorber 20 of this embodiment configured in this way, the absorption liquid 3 flowing down the inner surface of the heat transfer tube 21 due to gravity from the upper chamber 4 is resisted by the spiral grooves 22 and flows into a spiral shape. Since the absorption liquid spreads over a wide area and flows down in the vertical direction over the peaks of the grooves 22, the absorption liquid spreads over a wide area over the entire inner surface of the heat exchanger tube 2I, and no uneven flow occurs. Also,
The helix angle of the groove 22 is set to 40° to 50°, and the groove depth l
] is set to be greater than or equal to the film thickness of the absorbent liquid 3, the ratio of the rate of the absorbent liquid 3 spiraling along the grooves 22 and the rate of flowing down in the vertical direction over the peaks of the grooves 22 becomes a suitable ratio, and the absorbent liquid Very good wettability can be obtained.

具体的には、第1図に示すように、上の室4の底面に溜
まっている吸収液3が伝熱管21の」二端面から流れ込
み、重ツノによって鉛直方向に流れようとするが、螺旋
状の溝22を乗り越えて流下するため、吸収液3の一部
は、溝22に沿って螺旋状に流れる。従って、伝熱管2
1内を流下する吸収液3は、全体的に溝22のピッチよ
り大きいピッチの螺旋を描きながら流れ落ちることにな
り、その結果、吸収液3は伝熱管21内面に広がる。
Specifically, as shown in FIG. 1, the absorption liquid 3 accumulated at the bottom of the upper chamber 4 flows from the two end surfaces of the heat transfer tube 21 and tries to flow vertically due to the heavy horns, but it does not flow in a spiral direction. Because the absorption liquid 3 flows down over the shaped groove 22, a part of the absorption liquid 3 flows spirally along the groove 22. Therefore, heat exchanger tube 2
The absorption liquid 3 flowing down inside the heat exchanger tube 1 flows down while drawing a spiral with a pitch larger than the pitch of the grooves 22 as a whole, and as a result, the absorption liquid 3 spreads on the inner surface of the heat exchanger tube 21.

従って、本実施例の伝熱管21内においては、吸収液3
と水蒸気の接触面積か大きくなり、水蒸気の吸収効率が
向」ニする。このため、吸収器20内に発生ずる負圧が
増大し、この負圧が蒸発器に供給されることにより、蒸
発器における水の蒸発を促進する。よって、蒸発器にお
ける冷却効率が増大する。
Therefore, in the heat exchanger tube 21 of this embodiment, the absorption liquid 3
The contact area between the water vapor and water vapor increases, and the water vapor absorption efficiency improves. Therefore, the negative pressure generated within the absorber 20 increases, and this negative pressure is supplied to the evaporator, thereby promoting the evaporation of water in the evaporator. Therefore, the cooling efficiency in the evaporator increases.

当該出願に係る発明者の実験では、溝深さ11が0.5
mm以上(水蒸気の吸収能力を発生させるのに必要な吸
収液の膜厚か約0.3mmであるため、これ以」二に設
定する必要がある)とし、溝山角度αを45°とした場
合に、水蒸気の吸収効率及び吸収液3の濡れ性が極めて
良好となった。
In the inventor's experiments related to the application, the groove depth 11 was 0.5
mm or more (because the film thickness of the absorbing liquid required to generate water vapor absorption capacity is about 0.3 mm, it is necessary to set it to 2 from this point), and the groove angle α was set to 45°. In this case, the water vapor absorption efficiency and the wettability of the absorption liquid 3 were extremely good.

(発明の効果) 以上詳細に説明したように、本発明に係る吸収式冷凍サ
イクルの吸収器は、伝熱管内面に螺旋状の溝を形成した
ことにより、伝熱管内を自然流下する吸収液か当該溝の
抵抗により螺旋状に広がりながら流下するため、吸収液
を伝熱管内面に広範囲に広がらせることかでき、吸収液
の偏流の発生を防止できる。
(Effects of the Invention) As explained in detail above, the absorber of the absorption refrigeration cycle according to the present invention has a spiral groove formed on the inner surface of the heat exchanger tube, so that the absorption liquid that naturally flows down inside the heat exchanger tube can be absorbed by the absorber. Since the absorption liquid flows down while spreading in a spiral shape due to the resistance of the groove, the absorption liquid can be spread over a wide range on the inner surface of the heat exchanger tube, and the occurrence of uneven flow of the absorption liquid can be prevented.

更に本発明は、前記溝の捩じれ角を40゜〜50°に設
定し、かつ溝深さを前記吸収液の膜厚以上としたことに
より、吸収液が溝に沿って螺旋状に流れる割合と溝の山
を越えて鉛直方向に流れ落ちる割合とが好適な割合とな
り、吸収液の濡れ性を向上させることができる。従って
、吸収液と冷媒との接触面積を増大でき、冷媒の吸収性
能を高め、冷却能率を向」ニさせることができる。
Furthermore, in the present invention, the helix angle of the groove is set to 40° to 50°, and the groove depth is set to be equal to or greater than the film thickness of the absorbent liquid, thereby increasing the rate at which the absorbent liquid flows spirally along the groove. The rate at which the absorbent liquid flows down in the vertical direction over the ridges of the groove is a suitable rate, and the wettability of the absorbent liquid can be improved. Therefore, the contact area between the absorption liquid and the refrigerant can be increased, the refrigerant absorption performance can be improved, and the cooling efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る吸収式冷凍サイクルの吸収器の一
実施例の構成を示す縦断面図、第2図は同実施例におけ
る伝熱管の拡大断面図、第3図は同伝熱管内の溝の拡大
断面図、第4図は従来の吸収器の縦断面図である。 3・・・吸収液      4,5・・・室・・フィ ン 0・・・吸収器 ■ ・・・伝熱管 ・・溝 θ・・・捩じれ角
FIG. 1 is a longitudinal sectional view showing the structure of an embodiment of an absorber in an absorption refrigeration cycle according to the present invention, FIG. 2 is an enlarged sectional view of a heat exchanger tube in the same embodiment, and FIG. 3 is an inside view of the heat exchanger tube. FIG. 4 is a longitudinal sectional view of a conventional absorber. 3...Absorbing liquid 4,5...Chamber...Fin 0...Absorber■...Heat transfer tube...Groove θ...Twisting angle

Claims (1)

【特許請求の範囲】 鉛直方向に複数並設された中空の伝熱管内面に沿って吸
収液を重力により自然流下させて、該吸収液に気化した
冷媒を吸収させるための吸収式冷凍サイクルの吸収器に
おいて、 前記伝熱管内面に、捩じれ角が40゜〜50゜で、かつ
溝深さが前記吸収液の膜厚以上の螺旋状の溝を形成した
ことを特徴とする吸収式冷凍サイクルの吸収器。
[Claims] An absorption type refrigeration cycle in which an absorption liquid is allowed to flow down by gravity along the inner surface of a plurality of hollow heat transfer tubes arranged in a vertical direction, and the vaporized refrigerant is absorbed into the absorption liquid. In the absorption refrigeration cycle, a spiral groove having a twist angle of 40° to 50° and a groove depth equal to or greater than the film thickness of the absorption liquid is formed on the inner surface of the heat transfer tube. vessel.
JP24851490A 1990-09-17 1990-09-17 Absorption refrigeration cycle absorber Expired - Lifetime JPH0726773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24851490A JPH0726773B2 (en) 1990-09-17 1990-09-17 Absorption refrigeration cycle absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24851490A JPH0726773B2 (en) 1990-09-17 1990-09-17 Absorption refrigeration cycle absorber

Publications (2)

Publication Number Publication Date
JPH04126964A true JPH04126964A (en) 1992-04-27
JPH0726773B2 JPH0726773B2 (en) 1995-03-29

Family

ID=17179319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24851490A Expired - Lifetime JPH0726773B2 (en) 1990-09-17 1990-09-17 Absorption refrigeration cycle absorber

Country Status (1)

Country Link
JP (1) JPH0726773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201213A (en) * 1992-11-03 1994-07-19 Samsung Electronics Co Ltd Absorption type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201213A (en) * 1992-11-03 1994-07-19 Samsung Electronics Co Ltd Absorption type air conditioner

Also Published As

Publication number Publication date
JPH0726773B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JPH09152290A (en) Absorption refrigerating machine
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
US5730001A (en) Absorption type refrigerating machine
WO2022224554A1 (en) Absorber unit for absorption refrigerator, heat exchange unit, and absorption refrigerator
JPH04126964A (en) Absorption device of absorption type freezing cycle
JP3138010B2 (en) Absorption refrigerator
JPH09280692A (en) Plate type evaporating and absorbing device for absorption refrigerating machine
JP3295182B2 (en) Absorption refrigerator
JPH06307788A (en) Heat transfer wall, heat transfer tube, heat exchanger, and absorption/cooler/heater
JP3199287B2 (en) Heat exchanger tubes for heat exchangers
WO2022138018A1 (en) Absorber for absorption chiller, heat exchange unit for absorption chiller, and absorption chiller
JP2779565B2 (en) Absorption refrigerator
KR100707682B1 (en) Heat pipe for absorption refrigerating machine
JP2001041608A (en) Evaporator and absorber for absorption refrigerating machine
JP2000111291A (en) Heat transfer pipe
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube
KR200150457Y1 (en) Heat pipe
JP2962866B2 (en) Absorber
JPH05215446A (en) Double effect absorption refrigerating machine
JP3756980B2 (en) Plate type absorber for absorption refrigerator
JPH0961080A (en) Turbo freezer
JPH058424Y2 (en)
JPH0518632A (en) Absorption refrigerating apparatus
JPH03255863A (en) Absorbing refrigerator
JPH11108501A (en) Evaporator for absorption-type refrigerating machine