JPH0518632A - Absorption refrigerating apparatus - Google Patents

Absorption refrigerating apparatus

Info

Publication number
JPH0518632A
JPH0518632A JP16836791A JP16836791A JPH0518632A JP H0518632 A JPH0518632 A JP H0518632A JP 16836791 A JP16836791 A JP 16836791A JP 16836791 A JP16836791 A JP 16836791A JP H0518632 A JPH0518632 A JP H0518632A
Authority
JP
Japan
Prior art keywords
heat transfer
absorber
pipe
tube
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16836791A
Other languages
Japanese (ja)
Inventor
Masahiro Furukawa
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16836791A priority Critical patent/JPH0518632A/en
Publication of JPH0518632A publication Critical patent/JPH0518632A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids

Abstract

PURPOSE:To improve refrigerant steam absorbing capacity of an absorber and to improve the operation efficiency of an absorption CONSTITUTION:A plurality of protrusions 32 are longitudinally formed on the outer surface of a pipe and a crest part 33 of the protrusion 32 and a root part 34 between the adjoining protrusions 32 and 32 form a curved surface. The curvature of radius of the root part 34 is increased to a value higher than that of the crest part 33. An absorption type freezer is provided with an absorber 3 having heat transfer pipes 31 wherein a lean solution dripped on the outer surface of the pipe is cooled by cooling water flowing through the pipes. The lean solution dripped on the heat transfer pipe 31 smoothly flows from the root part 34 over the crest part 33 to the next root part 34, and the lean solution is smoothly replaced at the root part 34. The lean solution approximately uniformly flows throughout the whole periphery of the heat transfer pipe 31. Further, Marangoni convection generated at the crest part 33 and that at the root part 34 are interfered with each other and high agitation operation is generated in the axial direction of the pipe. The heat exchange efficiency of the heat transfer pipe 31 is sharply improved. Absorbing capacity of refrigerant steam of the absorber 3 is improved, and the operation efficiency of an absorption type freezer is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複数の吸収器用伝熱管を
有した吸収器を配管接続した吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine in which an absorber having a plurality of absorber heat transfer tubes is connected by piping.

【0002】[0002]

【従来の技術】例えば特開昭58−200995号公報
には管外面に長手方向に複数の突条が形成され、突条の
山部と突条の間の谷部とを曲面にした伝熱管が開示され
ている。
2. Description of the Related Art For example, Japanese Patent Laid-Open No. 58-200995 discloses a heat transfer tube in which a plurality of ridges are formed in the longitudinal direction on the outer surface of the pipe, and the peaks of the ridges and the valleys between the ridges are curved. Is disclosed.

【0003】又、例えば実開昭61−49267号公報
には吸収器に収納されて外表面が平滑の複数の伝熱管か
ら成る冷却水熱交換器の間に、濃吸収液を細分化して小
粒子にするデミスターを設けた吸収式冷凍機が開示され
ている。
Further, for example, in Japanese Utility Model Laid-Open No. 61-49267, the concentrated absorbing liquid is subdivided into small pieces between cooling water heat exchangers which are housed in an absorber and are composed of a plurality of heat transfer tubes having smooth outer surfaces. An absorption refrigerator provided with a demister for making particles is disclosed.

【0004】[0004]

【発明が解決しようとする課題】上記従来の技術におい
て、突条の山部と谷部との曲率半径が略等しく、谷部の
曲率半径が小さい場合には、谷部の吸収液が隣りの谷部
へ移動しにくいため、伝熱管外表面での熱交換効率が低
下し、吸収器の蒸発器からの冷媒蒸気の吸収能力が低下
する。この結果、蒸発器での冷媒蒸気の発生が抑えら
れ、冷却能力が低下して運転効率が低下する虞れがあ
る。
In the above conventional technique, when the ridges and the valleys of the ridges have substantially the same radius of curvature and the valleys have a small radius of curvature, the absorbing liquid in the valleys is adjacent to each other. Since it is difficult to move to the valley portion, the heat exchange efficiency on the outer surface of the heat transfer tube decreases, and the ability to absorb the refrigerant vapor from the evaporator of the absorber decreases. As a result, the generation of refrigerant vapor in the evaporator is suppressed, and the cooling capacity is reduced, which may reduce the operating efficiency.

【0005】又、それぞれの伝熱管の外表面が平滑であ
るときには、吸収液が表面張力によって片寄って下方へ
滴下し、各伝熱管外表面での熱交換効率が低下する。こ
のため、熱交換効率を向上するには、それぞれの伝熱管
と伝熱管との間に例えばデミスターを設ける必要があ
り、吸収器は大型化し、吸収冷凍機が大型化するという
問題が発生する。又、各デミスターが蒸発器からの冷媒
蒸気の流れの抵抗になり、吸収器での冷媒蒸気の吸収能
力が低下し、冷却能力が低下して運転効率が低下する虞
れがある。
Further, when the outer surface of each heat transfer tube is smooth, the absorbing liquid is offset by the surface tension and drops downward, so that the heat exchange efficiency on the outer surface of each heat transfer tube decreases. Therefore, in order to improve the heat exchange efficiency, it is necessary to provide, for example, a demister between each heat transfer tube, which causes a problem that the absorber becomes large and the absorption refrigerator becomes large. Further, each demister may become a resistance to the flow of the refrigerant vapor from the evaporator, the absorption capacity of the refrigerant vapor in the absorber may be reduced, the cooling capacity may be reduced, and the operation efficiency may be reduced.

【0006】本発明は、吸収器の冷媒蒸気の吸収能力を
向上し、吸収式冷凍機の運転効率を向上することを目的
とする。
An object of the present invention is to improve the absorption capacity of the refrigerant vapor of the absorber and improve the operation efficiency of the absorption refrigerator.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、吸収器3、高温再生器4、低温再生器1
1、凝縮器12及び蒸発器2を配管接続して冷凍サイク
ルを形成した吸収式冷凍機において、管外面に長手方向
に複数の突条32を形成し、この突条32の山部33及
び隣り合った突条32,32の間の谷部34を曲面と
し、且つ、谷部34の曲率半径を山部33の曲率半径よ
り大きくし、低温再生器11からの吸収液が管外表面に
滴下又は散布され、管内の冷却水によって管外の吸収液
を冷却する吸収器用伝熱管31を有した吸収器3を備え
た吸収式冷凍機を提供し、吸収器3の冷媒蒸気の吸収能
力を向上し、蒸発器2の冷媒蒸気発生量を増加させ、吸
収式冷凍機の運転効率を向上するものである。
In order to solve the above problems, the present invention solves the above problems by using an absorber 3, a high temperature regenerator 4 and a low temperature regenerator 1.
1. In an absorption chiller in which a condenser 12 and an evaporator 2 are connected by piping to form a refrigeration cycle, a plurality of protrusions 32 are formed in the longitudinal direction on the outer surface of the pipe, and the protrusions 32 of the protrusions 32 and adjacent portions are formed. The valley portion 34 between the fitted ridges 32, 32 is formed into a curved surface, and the radius of curvature of the valley portion 34 is made larger than the radius of curvature of the mountain portion 33, so that the absorbing liquid from the low temperature regenerator 11 drops on the outer surface of the tube. Alternatively, the absorption type refrigerator provided with the absorber 3 having the absorber heat transfer pipe 31 that is sprayed and cools the absorption liquid outside the pipe by the cooling water inside the pipe is provided, and the absorption capacity of the refrigerant vapor of the absorber 3 is improved. Then, the refrigerant vapor generation amount of the evaporator 2 is increased, and the operation efficiency of the absorption refrigerator is improved.

【0008】又、管外面に15°以下のねじれ角を成す
ような複数の突条37をそれらが連続した湾曲面形状を
与え、且つ山部38の曲率半径R1と谷部40の曲率半
径R2とをそれらの比率R2/R1が1より大きくなるよ
うに形成した伝熱管36を収納した吸収器3を備えた吸
収式冷凍機を提供し、各伝熱管の濡れ性を良くし、吸収
器3が大型化した場合にも冷媒蒸気の吸収能力を向上
し、吸収式冷凍機の運転効率を向上するものである。
Further, a plurality of ridges 37 having a twist angle of 15 ° or less are provided on the outer surface of the tube to give a continuous curved surface shape, and the radius of curvature R 1 of the peak 38 and the radius of curvature of the valley 40 are provided. Provided is an absorption refrigerator having an absorber 3 accommodating a heat transfer tube 36 in which R 2 and the ratio R 2 / R 1 are formed to be greater than 1, thereby improving the wettability of each heat transfer tube. Even when the absorber 3 is upsized, the absorption capacity of the refrigerant vapor is improved, and the operation efficiency of the absorption refrigerator is improved.

【0009】又、上段の伝熱管31と下段の伝熱管31
との間に、管外面に15°以下のねじれ角を成すような
複数の突条37を形成し、突条37の山部38と谷部4
0を曲面とし、且つ、谷部40の曲率半径が山部38の
曲率半径より大きい伝熱管36を収納した吸収器を備え
た吸収式冷凍機を提供し、吸収液を伝熱管31に均一に
滴下して運転効率を向上するものである。
The upper heat transfer tube 31 and the lower heat transfer tube 31
And a plurality of ridges 37 having a twist angle of 15 ° or less are formed on the outer surface of the pipe, and the peaks 38 and the valleys 4 of the ridges 37 are formed.
Provided is an absorption refrigerator having an absorber in which 0 is a curved surface and the radius of curvature of the valley portion 40 is larger than the radius of curvature of the mountain portion 38, and the absorbing liquid is evenly distributed to the heat transfer pipe 31. It is added dropwise to improve the operation efficiency.

【0010】更に、1対の管板1A,1Aと、管支え支
持板36と、管外面に複数の突条32が形成され、谷部
34の曲率半径を山部33の曲率半径より大きくし、且
つ、管外面を平滑にした管板支持部31A,31A及び
管支え支持部31Bを形成した伝熱管31を設けた吸収
器を備えた吸収式冷凍機を提供し、吸収式冷凍機の運転
効率を向上すると共に、伝熱管31を管板支持部31
A,31A及び管支え支持部31Bに確実に支持するも
のである。
Further, a pair of tube sheets 1A, 1A, a tube support plate 36, and a plurality of ridges 32 are formed on the outer surface of the tube, and the radius of curvature of the valley portion 34 is made larger than that of the mountain portion 33. Further, an absorption refrigerator having an absorber provided with a heat transfer tube 31 having tube plate support portions 31A and 31A having a smooth tube outer surface and a tube support support portion 31B is provided, and operation of the absorption refrigerator is provided. In addition to improving efficiency, the heat transfer tube 31 is attached to the tube plate support portion
A, 31A and the pipe support portion 31B are reliably supported.

【0011】又、突条32の高さを管板支持部31A,
31A及び管支え支持部31Bに向かい徐々に低くし、
山部33及び谷部34の端での亀裂を回避するものであ
る。
Further, the height of the ridge 32 is set to the tube plate supporting portion 31A,
31A and the pipe support portion 31B are gradually lowered,
The cracks at the ends of the peaks 33 and the valleys 34 are avoided.

【0012】[0012]

【作用】伝熱管31に滴下した濃吸収液が山部33より
曲率半径が大きい谷部34から山部33を越えて次の谷
部34へスムーズに流れることによって、谷部34での
吸収液の入れ換えがスムーズに行われ、且つ、濃吸収液
が伝熱管31の全周にわたりほぼ均一に流れ、更に、山
部33及び谷部34に発生したマランゴニー対流が互い
に干渉し合うことによって、管軸方向に大きな撹乱作用
が発生し、伝熱管31での熱交換効率が大幅に向上し、
冷媒蒸気を吸収して温度が上昇した濃吸収液の伝熱管3
1での冷却能力が向上し、濃吸収液による冷媒蒸気の吸
収能力を回復し、冷媒蒸気の吸収量を増加し、蒸発器2
での冷却能力を向上することができ、吸収式冷凍機の運
転効率を向上することが可能になる。
The concentrated absorbing liquid dropped into the heat transfer tube 31 smoothly flows from the valley portion 34 having a larger radius of curvature than the peak portion 33 to the next valley portion 34 over the peak portion 33, so that the absorbing liquid in the valley portion 34 is Are smoothly exchanged, the concentrated absorbent flows almost uniformly over the entire circumference of the heat transfer tube 31, and the Marangoni convections generated in the crests 33 and the valleys 34 interfere with each other, so that the tube axis A large disturbance action occurs in the direction, the heat exchange efficiency in the heat transfer tube 31 is significantly improved,
Heat transfer tube 3 for concentrated absorbing liquid whose temperature has risen by absorbing refrigerant vapor
1, the cooling capacity is improved, the absorption capacity of the refrigerant vapor by the concentrated absorbing liquid is recovered, the absorption amount of the refrigerant vapor is increased, and the evaporator 2
The cooling capacity can be improved, and the operation efficiency of the absorption refrigerator can be improved.

【0013】又、濃吸収液が伝熱管36の外表面に形成
された捩じり角をなす突条37の山部38を越えて一層
スムーズに流れ、且つ、濃吸収液が管軸方向に流れなが
ら下方の伝熱管31へ滴下することによって、伝熱管3
1の濡れ性が向上し、伝熱管31での冷却能力が一層向
上し、吸収器の冷媒蒸気の吸収能力が向上し、吸収式冷
凍機の運転効率を向上することが可能になる。
Further, the concentrated absorbent flows more smoothly over the ridges 38 of the projections 37 formed on the outer surface of the heat transfer tube 36 and forming a twist angle, and the concentrated absorbent moves in the axial direction of the tube. The heat transfer tube 3 is dropped by dropping it into the heat transfer tube 31 below while flowing.
The wettability of No. 1 is improved, the cooling capacity of the heat transfer tube 31 is further improved, the absorption capacity of the refrigerant vapor of the absorber is improved, and the operation efficiency of the absorption chiller can be improved.

【0014】更に、上段の伝熱管31から伝熱管36に
片寄って滴下した吸収液が伝熱管36の外表面をねじれ
に沿って流れ、吸収液が伝熱管36の下端からほぼ均一
に下段の伝熱管31に滴下して管外表面を均一に流れ、
伝熱管31の伝熱性能を向上し、吸収器の冷媒蒸気の吸
収能力が向上して吸収式冷凍機の運転効率を向上するこ
とが可能になる。
Further, the absorbing liquid dripping from the upper heat-transfer tube 31 to the heat-transfer tube 36 is offset and flows along the outer surface of the heat-transfer tube 36 along the twisting direction, so that the absorbing liquid is transferred from the lower end of the heat-transfer tube 36 almost uniformly to the lower-step. Drops on the heat pipe 31 and flows evenly on the outer surface of the pipe,
It is possible to improve the heat transfer performance of the heat transfer tube 31, improve the absorption capacity of the refrigerant vapor of the absorber, and improve the operation efficiency of the absorption refrigerator.

【0015】又、管板支持部31A,31A及び管支え
支持部31Bにて伝熱管31を支持することによって、
確実に伝熱管31は支持されると共に、管板支持部31
A,31Aと管板1A,1Aとの間のシールを確実にす
ることが可能になり、突条32の高さを徐々に低くする
ことによって、山部33及び谷部34の端での亀裂を回
避することが可能となる。
Further, by supporting the heat transfer tube 31 by the tube sheet support portions 31A, 31A and the tube support support portion 31B,
The heat transfer tube 31 is surely supported, and the tube plate support portion 31
It becomes possible to ensure the seal between A, 31A and the tube sheet 1A, 1A, and by gradually lowering the height of the ridge 32, cracks at the ends of the peaks 33 and valleys 34 Can be avoided.

【0016】[0016]

【実施例】以下、本発明の第1の実施例を図面に基づい
て詳細に説明する。図1において、1は蒸発吸収器胴
(下胴)であり、この蒸発吸収器胴1に蒸発器2及び吸
収器3が収納されている。4は例えばガスバーナー5を
備えた高温再生器であり、吸収器3の吸収液溜り3Aか
ら高温再生器4に至る稀吸収液配管6の途中に第1吸収
液ポンプP、低温熱交換器7及び高温熱交換器8が設け
られている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below in detail with reference to the drawings. In FIG. 1, reference numeral 1 denotes an evaporative absorber cylinder (lower cylinder), and an evaporator 2 and an absorber 3 are housed in the evaporative absorber cylinder 1. Reference numeral 4 denotes a high temperature regenerator equipped with a gas burner 5, for example, a first absorbent pump P and a low temperature heat exchanger 7 in the middle of the dilute absorbent liquid pipe 6 from the absorbent reservoir 3A of the absorber 3 to the high temperature regenerator 4. And a high temperature heat exchanger 8 are provided.

【0017】10は高温胴(上胴)であり、この高温胴
10に低温再生器11及び凝縮器12が収納されてい
る。そして、13は高温再生器4から低温再生器11に
至る冷媒蒸気管、14は低温再生器11に設けられた加
熱器、15は加熱器14から凝縮器12に至る冷媒管で
ある。16は凝縮器12から蒸発器2に至る冷媒液流下
管、17は蒸発器2に配管接続された冷媒循環管、18
は冷媒ポンプである。21は蒸発器2に接続された冷水
管、21Aは蒸発器熱交換器である。
Reference numeral 10 denotes a high-temperature cylinder (upper cylinder), in which the low-temperature regenerator 11 and the condenser 12 are housed. Further, 13 is a refrigerant vapor pipe from the high temperature regenerator 4 to the low temperature regenerator 11, 14 is a heater provided in the low temperature regenerator 11, and 15 is a refrigerant pipe from the heater 14 to the condenser 12. Reference numeral 16 is a refrigerant liquid flow-down pipe from the condenser 12 to the evaporator 2, 17 is a refrigerant circulation pipe connected to the evaporator 2 by piping, 18
Is a refrigerant pump. Reference numeral 21 is a cold water pipe connected to the evaporator 2, and 21A is an evaporator heat exchanger.

【0018】22は高温再生器4から高温熱交換器8に
至る中間吸収液管、23は高温熱交換器8から低温再生
器11に至る中間吸収液管、23Aは中間吸収液の流入
口、24は中間吸収液管23に設けられた第2吸収液ポ
ンプである。25は低温再生器11から低温熱交換器7
に至る濃吸収液管、26は低温熱交換器7から吸収器3
に至る濃吸収液管、27は濃吸収液管25から第2吸収
液ポンプ24の入口側の中間吸収液管23に至る濃吸収
液戻し管(バイパス管)である。又、28は濃吸収液戻
し管26に設けられたダンパである。又、29は冷却水
管、29Aは吸収器熱交換器、29Bは凝縮器熱交換
器、30は吸収器熱交換器29Aの上方に設けられた濃
吸収液散布装置である。
Reference numeral 22 is an intermediate absorption liquid pipe from the high temperature regenerator 4 to the high temperature heat exchanger 8, 23 is an intermediate absorption liquid pipe from the high temperature heat exchanger 8 to the low temperature regenerator 11, 23A is an inlet of the intermediate absorption liquid, Reference numeral 24 is a second absorption liquid pump provided in the intermediate absorption liquid pipe 23. 25 is the low temperature regenerator 11 to the low temperature heat exchanger 7
The concentrated absorption liquid pipe to 26, the low temperature heat exchanger 7 to the absorber 3
And 27 is a concentrated absorbent return pipe (bypass pipe) from the concentrated absorbent pipe 25 to the intermediate absorbent liquid pipe 23 on the inlet side of the second absorbent pump 24. Further, 28 is a damper provided in the concentrated absorbent return pipe 26. Further, 29 is a cooling water pipe, 29A is an absorber heat exchanger, 29B is a condenser heat exchanger, and 30 is a concentrated absorbent dispersion device provided above the absorber heat exchanger 29A.

【0019】吸収器熱交換器29Aは略水平に複数段、
複数列配管された伝熱管31から構成されている。そし
て、伝熱管31は円形であり、直径は全長にわたり等し
く例えば16mmである。又、伝熱管31の外表面には
図2ないし図4に示したように長手方向、即ち管軸方向
に複数の突条32が形成されている。ここで、突条32
の数は4ないし16にする。そして、各突条32の山部
33…、及び隣り合った突条32,32の間の谷部34
…はそれぞれ曲面形状をしている。そして、山部33…
の曲率半径R1が例えば1.0mm、谷部34…の曲率
半径R2が例えば1.5mmであり、山部33…より谷
部34…の曲率半径が大きくなり、R2/R1が1より大
きくなるように伝熱管は作成れている。ここで、R2
1は4より小さくする。又、各突条32の高さ(H)
が1.0mm以下の例えば0.7mmになり、且つ、各
突条32の間隔が例えば略4mmになるように伝熱管3
1は作成されている。
The absorber heat exchanger 29A has a plurality of stages arranged substantially horizontally.
The heat transfer tubes 31 are arranged in a plurality of rows. The heat transfer tube 31 has a circular shape and the diameter is equal over the entire length, for example, 16 mm. Further, as shown in FIGS. 2 to 4, a plurality of protrusions 32 are formed on the outer surface of the heat transfer tube 31 in the longitudinal direction, that is, the tube axis direction. Where the ridge 32
Number of 4 to 16 Then, the ridges 33 of each ridge 32, and the valley 34 between the adjacent ridges 32, 32.
Each has a curved shape. And Yamabe 33 ...
The radius of curvature R 1 is for example 1.0mm, the troughs 34 ... is, for example 1.5mm radius of curvature R 2 of crest 33 ... valley 34 ... curvature radius of larger than, the R 2 / R 1 The heat transfer tube is made larger than 1. Where R 2 /
R 1 is smaller than 4. Also, the height of each protrusion 32 (H)
Is 1.0 mm or less, for example, 0.7 mm, and the distance between the protrusions 32 is, for example, about 4 mm.
1 has been created.

【0020】更に、図3に示したように伝熱管31の両
端には管外面を平滑にした管板支持部(拡管部)31
A,31Aが形成され、これら管板支持部31A,31
Aが低温胴1の管板1A,1Aの支持孔1a,1aを貫
通して支持されている。又伝熱管31の中間部(中央)
に管外面を平滑に管支え支持部1Bが形成され、この管
支え支持部31Bが支持板1Bの支持孔1bを貫通して
支持されている。そして、伝熱管31には突条32の高
さが管板支持部31A,31A及び管支え支持部31B
に向けて徐々に低くなる不完全突条部31Cが10mm
ないし50mm形成されている。
Further, as shown in FIG. 3, at both ends of the heat transfer tube 31, a tube plate supporting portion (expanding portion) 31 having a smooth outer tube surface is provided.
A and 31A are formed, and these tube plate support portions 31A and 31A are formed.
A is supported by penetrating through the support holes 1a, 1a of the tube plates 1A, 1A of the cold cylinder 1. Also, the middle part (center) of the heat transfer tube 31
A pipe supporting and supporting portion 1B is formed on the outer surface of the pipe so as to be smooth, and the pipe supporting and supporting portion 31B is supported by penetrating the supporting hole 1b of the supporting plate 1B. In addition, the height of the ridge 32 of the heat transfer tube 31 is such that the tube plate support portions 31A and 31A and the tube support support portion 31B.
The incomplete ridge portion 31C gradually lowers to 10 mm
Formed to 50 mm.

【0021】上記のように構成した吸収式冷凍機の運転
時、高温再生器4のガスバーナー5が燃焼し、吸収器3
から流れて来た例えば臭化リチウム(LiBr)水溶液
(界面活性剤を含む)などの稀吸収液が加熱され、冷媒
蒸気が稀吸収液から分離する。冷媒蒸気は冷媒蒸気管1
3を経て低温再生器11へ流れる。そして、低温再生器
11で高温再生器4からの中間吸収液を加熱して凝縮し
た冷媒液が凝縮器12へ流れる。凝縮器12では低温再
生器11から流れて来た冷媒蒸気が凝縮して、低温再生
器11から流れて来た冷媒液と共に蒸発器2へ流下す
る。蒸発器2では冷媒ポンプ18の運転によって、冷媒
液が蒸発器熱交換器21Aに散布される。そして、蒸発
器熱交換器21Aで冷却されて温度が低下した冷水が負
荷に供給される。蒸発器2で気化した冷媒蒸気は吸収器
3へ流れ、吸収器熱交換器29Aに散布された濃吸収液
に吸収される。
During operation of the absorption refrigerator constructed as described above, the gas burner 5 of the high temperature regenerator 4 burns, and the absorber 3
The rare absorption liquid, such as an aqueous solution of lithium bromide (LiBr) (containing a surfactant), flowing from the above is heated, and the refrigerant vapor is separated from the rare absorption liquid. Refrigerant vapor is refrigerant vapor pipe 1
It flows to the low temperature regenerator 11 via 3. Then, the refrigerant liquid obtained by heating and condensing the intermediate absorption liquid from the high temperature regenerator 4 in the low temperature regenerator 11 flows into the condenser 12. In the condenser 12, the refrigerant vapor flowing from the low temperature regenerator 11 is condensed and flows down to the evaporator 2 together with the refrigerant liquid flowing from the low temperature regenerator 11. In the evaporator 2, the refrigerant liquid is sprayed to the evaporator heat exchanger 21A by the operation of the refrigerant pump 18. Then, cold water that has been cooled by the evaporator heat exchanger 21A and has its temperature lowered is supplied to the load. The refrigerant vapor vaporized in the evaporator 2 flows to the absorber 3 and is absorbed by the concentrated absorbing liquid sprinkled on the absorber heat exchanger 29A.

【0022】高温再生器4で冷媒蒸気が分離して濃度が
上昇した中間吸収液は中間吸収液管22、高温熱交換器
8、中間吸収液管23及び第2吸収液ポンプ24を経て
低温再生器11へ流れる。
The intermediate absorption liquid whose concentration is increased by separating the refrigerant vapor in the high temperature regenerator 4 passes through the intermediate absorption liquid pipe 22, the high temperature heat exchanger 8, the intermediate absorption liquid pipe 23 and the second absorption liquid pump 24 and is regenerated at low temperature. It flows to the vessel 11.

【0023】中間吸収液は高温再生器4からの冷媒蒸気
が内部を流れる加熱器14によって加熱される。そし
て、中間吸収液から冷媒蒸気が分離して吸収液の濃度は
さらに上昇する。
The intermediate absorbing liquid is heated by the heater 14 in which the refrigerant vapor from the high temperature regenerator 4 flows. Then, the refrigerant vapor is separated from the intermediate absorption liquid, and the concentration of the absorption liquid is further increased.

【0024】低温再生器11で加熱凝縮された濃吸収液
は濃吸収液管25へ流入して低温熱交換器7及び濃吸収
液管26を経て吸収器3へ流れ、濃吸収液散布装置(以
下散布装置という)30から吸収器熱交換器29Aに滴
下する。そして、濃吸収液が吸収器熱交換器29Aの伝
熱管31に滴下した場合には濃吸収液が各突条32…の
山部33…を越えて伝熱管31の外表面をスムーズに流
れ、各谷部34…でマランゴニー対流、即ち界面活性剤
の液膜表面の濃度分布により、表面張力差が生じ、これ
に起因して張力対流が発生する。即ち、図5に示したよ
うに各谷部34…では液膜の厚さ(ΔH)が厚くなり、
管軸方向のマランゴニー対流が強くなる。又、各山部3
3…では液膜の厚さ(Δh)が薄くなり、管軸方向のマ
ランゴニー対流が弱くなる。そして、山部33…と谷部
34…のマランゴニー対流が干渉し合い、管軸方向に大
きな撹乱作用が発生する。
The concentrated absorption liquid heated and condensed in the low temperature regenerator 11 flows into the concentrated absorption liquid pipe 25, flows through the low temperature heat exchanger 7 and the concentrated absorption liquid pipe 26 into the absorber 3, and the concentrated absorption liquid spraying device ( (Hereinafter referred to as a spraying device) 30 to the absorber heat exchanger 29A. Then, when the concentrated absorbent drips onto the heat transfer tube 31 of the absorber heat exchanger 29A, the concentrated absorbent smoothly flows over the outer surface of the heat transfer tube 31 over the ridges 33 ... In each of the valleys 34, Marangoni convection, that is, a concentration distribution on the surface of the liquid film of the surfactant causes a difference in surface tension, which causes tension convection. That is, as shown in FIG. 5, the thickness (ΔH) of the liquid film becomes thicker in each valley portion 34.
Marangoni convection in the tube axis direction becomes stronger. In addition, each mountain part 3
In 3 ..., the thickness (Δh) of the liquid film becomes thin, and Marangoni convection in the tube axis direction becomes weak. Then, the Marangoni convections of the mountain portions 33 and the valley portions 34 interfere with each other, and a large disturbing action occurs in the axial direction of the tube.

【0025】さらに、谷部34…の曲率半径が山部33
…の曲率半径より大きく、谷部34…がなだらかな曲面
形状であり、谷部34…での濃吸収液の入れ換わりが速
くなり、伝熱管31…の外表面での濃吸収液の移動が速
くなる。そして、伝熱管31…の全周にわたり略均一に
マランゴニー対流が発生する。このため、各伝熱管31
…での熱交換量が増加し、伝熱管31の外表面を流れる
濃吸収液が冷却される。そして、蒸発器2から吸収器3
へ流れて来た冷媒蒸気が伝熱管31の外表面を流れる濃
吸収液に吸収される。濃吸収液を吸収して濃度が薄くな
った吸収液(稀吸収液)は第1吸収液ポンプPの運転に
よって高温再生器4へ送られる。
Further, the radius of curvature of the valleys 34 ...
The radius of curvature is larger than the radius of curvature of the valleys 34, and the valleys 34 have a gentle curved surface shape, the replacement of the concentrated absorbing liquid in the valleys 34 becomes faster, and the movement of the concentrated absorbing liquid on the outer surface of the heat transfer tubes 31. Get faster Then, Marangoni convection is generated substantially uniformly over the entire circumference of the heat transfer tubes 31 .... Therefore, each heat transfer tube 31
The amount of heat exchange in the ... increases, and the concentrated absorbing liquid flowing on the outer surface of the heat transfer tube 31 is cooled. Then, from the evaporator 2 to the absorber 3
The refrigerant vapor flowing in is absorbed by the concentrated absorbing liquid flowing on the outer surface of the heat transfer tube 31. The absorption liquid (rare absorption liquid), which has absorbed the concentrated absorption liquid and becomes thin in concentration, is sent to the high temperature regenerator 4 by the operation of the first absorption liquid pump P.

【0026】上記実施例によれば、低温再生器11から
流れて来た濃吸収液が伝熱管31…に滴下したとき、管
外面の吸収液が山部33…より曲率半径が大きい谷部3
4…から曲面に形成された山部33…を越えて次の谷部
34…へスムーズに流れ、谷部34…での吸収液の入れ
換えがスムーズに行われるとともに、吸収液を伝熱管3
1の全周にわたり均一に流すことができ、又、山部33
…及び谷部34…に発生したマランゴニー対流が互いに
干渉し合い、管軸方向に大きな撹乱作用が発生し、伝熱
管31…での熱交換効率を大幅に向上させることができ
る。このため、伝熱管31の外表面を流れる間に冷媒蒸
気を吸収して温度が上昇した吸収液の伝熱管31による
冷却能力を向上することができ、冷媒蒸気の吸収能力を
回復することができるので、吸収器3での冷媒蒸気の吸
収量が増加し、蒸発器2での冷媒蒸気の発生量が増加
し、この結果、蒸発器2での冷却能力を向上することが
でき、吸収式冷凍機の運転効率を向上することができ
る。
According to the above-mentioned embodiment, when the concentrated absorbent flowing from the low temperature regenerator 11 is dropped onto the heat transfer tubes 31, the valley on the outer surface of the tube has a larger radius of curvature than the peaks 33.
4 smoothly flows to the next troughs 34 over the curved peaks 33 ..., so that the absorption liquid is smoothly exchanged in the troughs 34 and the absorption liquid is transferred to the heat transfer tube 3
1 can be flowed uniformly over the entire circumference, and the mountain portion 33
... and the Marangoni convections generated in the troughs 34 interfere with each other to generate a large disturbing action in the axial direction of the tube, and the heat exchange efficiency in the heat transfer tubes 31 can be significantly improved. For this reason, it is possible to improve the cooling capacity of the heat transfer tube 31 for absorbing liquid whose temperature has risen due to absorption of the refrigerant vapor while flowing on the outer surface of the heat transfer tube 31, and to recover the refrigerant vapor absorption capacity. Therefore, the absorption amount of the refrigerant vapor in the absorber 3 increases, the generation amount of the refrigerant vapor in the evaporator 2 increases, and as a result, the cooling capacity in the evaporator 2 can be improved, and the absorption refrigeration The operating efficiency of the machine can be improved.

【0027】又、管内面を管外面に対応して曲面に形成
することにより、管内面への冷却水中のスケール付着を
防止できるとともに管内の清掃を容易に行うことができ
る。この結果、吸収式冷凍機の保守、点検作業の簡略化
を図ることができる。
Further, by forming the inner surface of the pipe into a curved surface corresponding to the outer surface of the pipe, it is possible to prevent the scale from adhering to the inner surface of the cooling water in the cooling water and to easily clean the inside of the pipe. As a result, the maintenance and inspection work of the absorption refrigerator can be simplified.

【0028】さらに、突条32の高さを1.5mmより
大きくした場合には伝熱管31…の管外に滴下した吸収
液が谷部34…に滞留し易くなり、吸収液の入れ換えが
スムーズに行われなくなるため、突条の高さを1.5m
m以下にするのが望ましい。
Further, when the height of the protrusions 32 is made larger than 1.5 mm, the absorbing liquid dripping outside the heat transfer pipes 31 is likely to stay in the valleys 34, and the replacement of the absorbing liquid is smooth. The height of the ridge is 1.5m.
It is desirable to be less than or equal to m.

【0029】又、伝熱管31には管外面を平滑にした管
板支持部31A,31Aと管支え支持部31Bが形成さ
れているので、伝熱管31を管板1A,1A及び支持板
1Bに管板支持部31A,31A及び管支え支持部31
Bにて確実に支持することができ、又、管板1A,1A
と管板支持部31A,31Aとのシールを拡管によって
確実に行うことができる。又、突条32の高さが徐々に
低くなっているので、山部33及び谷部34の端での亀
裂の発生を回避できる。
Further, since the heat transfer tube 31 is formed with the tube plate support portions 31A, 31A and the tube support support portion 31B whose outer surfaces are smoothed, the heat transfer tube 31 is connected to the tube plates 1A, 1A and the support plate 1B. Tube plate support portions 31A, 31A and tube support support portion 31
It can be reliably supported by B, and tube sheets 1A, 1A
The tube sheet support portions 31A and 31A can be reliably sealed by expanding the tube. Further, since the height of the ridge 32 is gradually reduced, it is possible to avoid the occurrence of cracks at the ends of the peaks 33 and the valleys 34.

【0030】以下、本発明の第2の実施例を図面に基づ
いて説明する。尚、図6及び図7において上記第1の実
施例と同様の構成のものには同じ符号を付しその詳細な
説明は省略する。
A second embodiment of the present invention will be described below with reference to the drawings. In FIGS. 6 and 7, the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0031】図6において、35は吸収器3の散布装置
30の下方に設けられた吸収器熱交換器である。吸収器
熱交換器35は上記第1の実施例と同様に複数の段、複
数列の伝熱管36からなる伝熱管群から構成されてい
る。そして、伝熱管36の外表面は、図7に示すように
長手方向、即ち管軸方向に15°以下の捩じれ角α°
(図示にあって約5°)を有し、且つ、管軸方向に複数
の突条37が形成されている。しかも、この各突条37
の山部38及び隣り合った突条37,37の間の谷部4
0は、それぞれ曲面形状をしている。そして、山部38
の曲率半径が例えば1.0mm、谷部40の曲率半径が
例えば1.5mmであり、山部38より谷部40の曲率
半径を大きくなるように伝熱管36は形成されている。
また、各突条37の高さが1.5mm以下の例えば0.
7mmになり、且つ、各突条2の間隔が例えば略4mm
になるように伝熱管1を形成する。そして、捩じれ角は
例えば5°である。
In FIG. 6, reference numeral 35 is an absorber heat exchanger provided below the spraying device 30 of the absorber 3. The absorber heat exchanger 35 is composed of a heat transfer tube group including a plurality of stages and a plurality of rows of heat transfer tubes 36, as in the first embodiment. The outer surface of the heat transfer tube 36 has a twist angle α of 15 ° or less in the longitudinal direction, that is, the tube axis direction, as shown in FIG. 7.
(About 5 ° in the drawing), and a plurality of ridges 37 are formed in the pipe axis direction. Moreover, each of these ridges 37
The mountain portion 38 and the valley portion 4 between the adjacent ridges 37, 37.
Each 0 has a curved surface shape. And Yamabe 38
Has a radius of curvature of, for example, 1.0 mm, the valley portion 40 has a radius of curvature of, for example, 1.5 mm, and the heat transfer tube 36 is formed so that the radius of curvature of the valley portion 40 is larger than that of the mountain portion 38.
Further, the height of each protrusion 37 is 1.5 mm or less, for example, 0.
7 mm, and the distance between the protrusions 2 is, for example, about 4 mm.
The heat transfer tube 1 is formed so that. The twist angle is, for example, 5 °.

【0032】上記のように構成された吸収器を備えた吸
収式冷凍機の運転時、第1の実施例に示した吸収式冷凍
機と同様に吸収液及び冷媒が循環する。そして、低温再
生器から流れて来た濃吸収液が散布装置30から伝熱管
36に滴下する。濃吸収液は各突条37の山部38を越
えて伝熱管36の外表面をスムーズに流れ、各谷部40
でマランゴニー対流、即ち界面活性剤の液膜表面の濃度
分布により、表面張力差が生じ、これに起因して張力対
流が発生する。
During operation of the absorption refrigerator having the absorber constructed as described above, the absorbing liquid and the refrigerant circulate as in the absorption refrigerator shown in the first embodiment. Then, the concentrated absorbing liquid flowing from the low temperature regenerator is dropped from the spraying device 30 to the heat transfer tube 36. The concentrated absorbent smoothly flows over the outer surface of the heat transfer tube 36 over the peaks 38 of the protrusions 37, and the valleys 40
Thus, due to Marangoni convection, that is, the concentration distribution of the surfactant on the liquid film surface, a difference in surface tension is generated, which causes tension convection.

【0033】即ち、上記第1の実施例と同様に各谷部4
0では管軸方向のマランゴニー対流が強くなると共に、
各山部38では管軸方向のマランゴニー対流が弱くな
る。このため、山部38と谷部40とのマランゴニー対
流が干渉し合い、管軸方向に大きな撹乱作用が発生す
る。
That is, as in the first embodiment, each trough 4 is formed.
At 0, Marangoni convection in the tube axis direction becomes stronger, and
The Marangoni convection in the tube axis direction is weakened in each mountain portion 38. For this reason, the Marangoni convection of the peaks 38 and the valleys 40 interferes with each other, and a large disturbing action occurs in the axial direction of the tube.

【0034】さらに、突条37には捩じれ角があるた
め、濃吸収液は捩じれ角に沿って流下する。このため、
各段の伝熱管36の全長にわたって吸収液が濡れ、偏流
することがないので、管群全体にわたり均一なマランゴ
ニー対流が発生する。
Further, since the ridge 37 has a twist angle, the concentrated absorbing liquid flows down along the twist angle. For this reason,
Since the absorbing liquid does not get wet and unevenly flow over the entire length of the heat transfer tubes 36 in each stage, uniform Marangoni convection is generated over the entire tube group.

【0035】上記のように各伝熱管36を外表面を流下
するときに、濃吸収液は蒸発器2から流れて来た冷媒蒸
気を吸収し、下段の伝熱管36に滴下する吸収液ほど濃
度は薄くなる。そして、吸収器3の吸収液溜り3Aに溜
った稀吸収液が高温再生器4へ送られる。
When the heat transfer tubes 36 flow down the outer surface as described above, the concentrated absorbing liquid absorbs the refrigerant vapor flowing from the evaporator 2, and the concentration of the absorbing liquid dropped to the lower heat transfer tubes 36 is higher. Becomes thin. Then, the rare absorption liquid accumulated in the absorption liquid reservoir 3A of the absorber 3 is sent to the high temperature regenerator 4.

【0036】上記実施例によれば、伝熱管36の外表面
に滴下した濃吸収液が山部38より曲率半径が大きい谷
部40から曲面に形成された山部38を越えて次の谷部
40へとスムーズに流れ、谷部40での吸収液の入れ換
えが捩じり角があるため更にスムーズに行われると共
に、吸収液を伝熱管36の全周にわたり均一に流して管
群全体での濡れ性を向上することができ、且つ、山部3
8及び谷部40に発生したマランゴニー対流が互いに干
渉し合い、管軸方向に大きな撹乱作用が発生し、伝熱管
36での熱交換効率即ち伝熱性能を大幅に向上させるこ
とができる。この結果、冷媒蒸気を吸収して温度が上昇
した吸収液を一層効率良く冷却して冷媒蒸気の吸収能力
を回復することができ、吸収器3での冷媒蒸気の吸収量
が増加して吸収器3の高性能化を図ることができ、蒸発
器2での冷媒蒸気の発生量が増加し、吸収式冷凍機の運
転効率を向上することができる。
According to the above-described embodiment, the concentrated absorbing liquid dropped on the outer surface of the heat transfer tube 36 passes from the trough 40 having a larger radius of curvature than the trough 38 to the trough 38 formed on the curved surface to the next trough. 40, and the absorption liquid in the valley portion 40 is replaced more smoothly due to the twist angle, and the absorption liquid is made to flow evenly over the entire circumference of the heat transfer pipe 36 so that the entire pipe group The wettability can be improved, and the mountain portion 3
8 and the Marangoni convections generated in the troughs 40 interfere with each other to generate a large disturbing action in the tube axis direction, and the heat exchange efficiency in the heat transfer tubes 36, that is, the heat transfer performance can be significantly improved. As a result, it is possible to more efficiently cool the absorbing liquid that has absorbed the refrigerant vapor and whose temperature has risen, and to recover the refrigerant vapor absorption capacity, so that the absorption amount of the refrigerant vapor in the absorber 3 increases and the absorber 3 can be improved in performance, the amount of refrigerant vapor generated in the evaporator 2 can be increased, and the operation efficiency of the absorption refrigerator can be improved.

【0037】ここで、伝熱管36での伝熱性能の変化は
図8に示したようになる。図8は臭化リチウム水溶液を
流量が0.66Kg/msで散布した場合の熱交換量を
示し、従来は熱交換量が43KW出力したが、本発明で
は45KW出力した。故に熱交換量はほぼ5%上昇す
る。
Here, the heat transfer performance of the heat transfer tube 36 changes as shown in FIG. FIG. 8 shows the amount of heat exchange when the aqueous solution of lithium bromide is sprayed at a flow rate of 0.66 Kg / ms, and the amount of heat exchange was 43 KW in the prior art, but 45 KW in the present invention. Therefore, the heat exchange amount increases by almost 5%.

【0038】以下、本発明の第3の実施例を図面に基づ
いて説明する。尚、図9、図10において、上記第1の
実施例及び第2の実施例と同様の構成のものには同じ符
号を付しその詳細な説明は省略する。
A third embodiment of the present invention will be described below with reference to the drawings. In FIGS. 9 and 10, the same components as those in the first and second embodiments are designated by the same reference numerals and detailed description thereof will be omitted.

【0039】41は散布装置30の下方に設けられた吸
収器熱交換器である。吸収器熱交換器41は上段の伝熱
管群42及び下段の伝熱管群43とこれらの伝熱管群4
2と伝熱管群43との間に例えば1段設けられた伝熱管
36とから構成されている。そして、伝熱管群42と伝
熱管群43とはそれぞれ複数段、複数列の伝熱管31か
ら構成されている。
Reference numeral 41 is an absorber heat exchanger provided below the spraying device 30. The absorber heat exchanger 41 includes an upper heat transfer tube group 42, a lower heat transfer tube group 43, and these heat transfer tube groups 4
The heat transfer tube 36 is provided between the heat transfer tube group 2 and the heat transfer tube group 43 in one stage, for example. The heat transfer tube group 42 and the heat transfer tube group 43 are each composed of a plurality of stages and a plurality of rows of heat transfer tubes 31.

【0040】上記のように構成された吸収器を備えた吸
収式冷凍機の運転時、第1の実施例に示した吸収式冷凍
機と同様に吸収液及び冷媒が循環する。そして、低温再
生器から流れて来た濃吸収液が散布装置30から伝熱管
群42の伝熱管31に滴下する。伝熱管31に滴下した
濃吸収液は各突条32の山部33を越え、伝熱管31の
外表面を流れる。そして、各谷部34ではマランゴニー
対流が生じ、伝熱管31内を流れる冷却水と吸収液との
熱交換が促進される。伝熱管31の外表面を流れ、下端
に達した濃吸収液は下段の伝熱管31へほぼ均一に滴下
し、以下同様に上段の伝熱管31から下段の伝熱管31
へ濃吸収液が滴下してこの間に冷媒蒸気を吸収して濃度
は次第に薄くなる。このように、濃吸収液が滴下してい
るとき、例えば吸収冷凍機が大型であり、吸収器が大型
で各伝熱管31,…,36の長さが長く、例えば伝熱管
36より上段の伝熱管31の一部(例えば右部)が僅か
でも下方へ湾曲していた場合には、その伝熱管31の外
表面を流れる濃吸収液は右部へ向って流れる。このた
め、この伝熱管31の右部から滴下する濃吸収液の量が
他の部分である中央部及び左部より多くなり、そして、
下段の伝熱管31においても、右部へ上方から滴下する
濃吸収液の量が多いため右部から滴下する濃吸収液の量
が他の部分より多くなる。
During operation of the absorption refrigerator having the absorber configured as described above, the absorbing liquid and the refrigerant circulate as in the absorption refrigerator shown in the first embodiment. Then, the concentrated absorbent flowing from the low temperature regenerator is dropped from the spraying device 30 to the heat transfer tubes 31 of the heat transfer tube group 42. The concentrated absorbing liquid dropped on the heat transfer tubes 31 flows over the outer surface of the heat transfer tubes 31 over the peaks 33 of the protrusions 32. Then, Marangoni convection occurs in each valley 34, and heat exchange between the cooling water flowing in the heat transfer tube 31 and the absorbing liquid is promoted. The concentrated absorbing liquid that has flowed on the outer surface of the heat transfer tube 31 and has reached the lower end is substantially evenly dropped to the heat transfer tube 31 in the lower stage.
The concentrated absorbent drops into the liquid and absorbs the refrigerant vapor during this period, so that the concentration gradually decreases. As described above, when the concentrated absorbing liquid is dripping, for example, the absorption refrigerator is large, the absorber is large, and the length of each heat transfer pipe 31, ... When a part (for example, right part) of the heat pipe 31 is curved downward even slightly, the concentrated absorbent flowing on the outer surface of the heat transfer pipe 31 flows toward the right part. For this reason, the amount of the concentrated absorbing liquid dripping from the right part of the heat transfer tube 31 is larger than that of the other part, that is, the central part and the left part, and
Also in the lower heat transfer tube 31, the amount of the concentrated absorbent dropped from the upper portion to the right portion is large, so that the amount of the concentrated absorbent dropped from the right portion is larger than the other portions.

【0041】そして、中間段の伝熱管36に上方の伝熱
管31から滴下する吸収液も同様に伝熱管36の右部が
多く左部及び中央部が少ない。ここで、伝熱管36の外
表面には上段の伝熱管31とは違い、図7に示したよう
にねじれ角を有した複数の突条37が形成され、山部3
8及び谷部40も突条37と同様にねじれ角を有してい
るため、伝熱管36の左部に滴下した吸収液は各山部3
8及び谷部40に案内されて伝熱管36の右部及び中央
部へ流れる。ここで、伝熱管36の表と裏とでねじれの
方向が異なるため、伝熱管36の右部に滴下した吸収液
が滴下量の少ない部分へ流れ、吸収液が伝熱管36の下
端からほぼ均一に滴下する。伝熱管36の下段の伝熱管
31では吸収液が外表面をほぼ均一に流れ、吸収液が下
段の伝熱管31へほぼ均一に滴下する。以下、同様に各
伝熱管31にて、吸収液が外表面をほぼ均一に流れ、そ
の間に冷媒蒸気を吸収して薄くなり最下段の伝熱管31
から吸収液溜り3Aに滴下する。そして、吸収液溜り3
Aの稀吸収液は高温再生器4へ送られる。
Similarly, in the absorbing liquid dropped from the upper heat transfer tube 31 to the intermediate heat transfer tube 36, the right part of the heat transfer tube 36 is large and the left part and the center part are small. Here, unlike the heat transfer tube 31 in the upper stage, a plurality of ridges 37 having a helix angle are formed on the outer surface of the heat transfer tube 36 as shown in FIG.
8 and the valley portion 40 also have the same helix angle as the ridge 37, the absorbing liquid dropped to the left portion of the heat transfer tube 36 is
8 and the valley portion 40 to flow to the right and central portions of the heat transfer tube 36. Here, since the front and back of the heat transfer tube 36 have different twisting directions, the absorbing liquid that has dripped on the right part of the heat transfer tube 36 flows to a portion with a small drip amount, and the absorbing liquid is almost even from the lower end of the heat transfer tube 36. Drop on. In the lower heat transfer tube 31 of the heat transfer tube 36, the absorbing liquid flows almost uniformly on the outer surface, and the absorbing liquid drops substantially uniformly into the lower heat transfer tube 31. Hereinafter, similarly, in each heat transfer tube 31, the absorbing liquid flows almost uniformly on the outer surface, and in the meantime, it absorbs the refrigerant vapor and becomes thin, and the heat transfer tube 31 in the lowermost stage becomes thin.
Is dripped into the absorbing liquid reservoir 3A. And the absorption liquid pool 3
The rare absorbent of A is sent to the high temperature regenerator 4.

【0042】上記実施例によれば中間段の伝熱管36よ
り上方の伝熱管31が例えば僅かに湾曲して一部が下方
に撓み、その部分に吸収液が集まり、下方に撓んだ部分
から滴下する吸収液が多くなった場合に、中間段の伝熱
管36の外表面にはねじれ角を有した複数の突条37が
形成されているため、伝熱管6に滴下した吸収液が突条
37の山部38と、谷部40に案内されて滴下量が少な
い部分へ流れ分散され、ほぼ均一に吸収液が滴下する。
そして、伝熱管36より下段の各伝熱管31の外表面に
は吸収液がほぼ均一に流れ、伝熱管31での伝熱性能を
向上させることができ、この結果、伝熱管31に撓みが
発生した場合にも、冷媒蒸気を吸収して温度が上昇した
吸収液を各伝熱管31で冷却して冷媒蒸気の吸収能力を
回復することができ、吸収器3での冷媒蒸気の吸収量が
増加して吸収器3の高性能化を図ることができ、吸収式
冷凍機の運転能力を向上することができる。
According to the above-described embodiment, the heat transfer tube 31 above the intermediate heat transfer tube 36 is, for example, slightly curved and partly bent downward, and the absorbing liquid gathers in that part, and the bent part bends downward. When the amount of the absorbing liquid to be dripped becomes large, a plurality of ridges 37 having a helix angle are formed on the outer surface of the heat transfer tube 36 at the intermediate stage. The absorption liquid is dripped almost uniformly by being guided by the ridges 38 and the troughs 40 of 37 to flow into and disperse in a portion where the dripping amount is small.
Then, the absorbing liquid flows substantially evenly on the outer surface of each heat transfer tube 31 below the heat transfer tube 36, and the heat transfer performance of the heat transfer tube 31 can be improved. As a result, the heat transfer tube 31 is bent. Also in this case, the absorption liquid that has absorbed the refrigerant vapor and whose temperature has risen can be cooled by each heat transfer tube 31 to recover the absorption capacity of the refrigerant vapor, and the absorption amount of the refrigerant vapor in the absorber 3 increases. As a result, the performance of the absorber 3 can be improved, and the operating capacity of the absorption refrigerator can be improved.

【0043】又、ねじれ角を有した伝熱管36を中間段
に使用し、上段及び下段の複数の伝熱管にはねじれ角が
ない伝熱管31を使用しているため、吸収器3の伝熱管
に総てねじれ角を有した伝熱管を使用した場合と比較し
て大幅に伝熱管コストを低減することができる。又、各
伝熱管31の管外表面が平滑な場合にも中間段に伝熱管
36を設けることによって吸収器の伝熱性能を向上させ
ることができ、吸収式冷凍機の運転効率を向上すること
ができる。
Further, since the heat transfer tube 36 having a helix angle is used in the middle stage and the heat transfer tubes 31 having no helix angle are used in the upper and lower heat transfer tubes, the heat transfer tube of the absorber 3 is used. The heat transfer tube cost can be significantly reduced as compared with the case where all the heat transfer tubes having a twist angle are used. Further, even if the outer surface of each heat transfer tube 31 is smooth, the heat transfer performance of the absorber can be improved by providing the heat transfer tube 36 in the intermediate stage, and the operation efficiency of the absorption chiller can be improved. You can

【0044】又、図9に示した吸収器より、伝熱管31
の段数が多い場合(例えば40段以上)には、全体の段
数の上から例えば 1/3 と 2/3 との段数の箇所にねじれ
角を有した伝熱管36を配置する。このため、上記実施
例と同様に、各伝熱管36の上段の伝熱管31から滴下
する吸収液が伝熱管31の中央部などで多くなった場合
にも、各伝熱管36から下段の伝熱管31へほぼ均一に
吸収液を滴下することができ、上記実施例と同様の作用
効果を得ることができる。又、さらに伝熱管31の段数
が増加した場合には伝熱管36を設ける段の数を例えば
全体の段数の例えば 1/4 ,1/2,3/4の段数の箇所に増
加することによって同様の作用効果を得ることができ
る。又、伝熱管31の管外表面が平滑であり、伝熱管の
段数が多い場合に、上記のように複数箇所に伝熱管36
を設けることによって同様の作用効果を得ることができ
る。
Further, from the absorber shown in FIG.
When there are a large number of stages (for example, 40 or more), the heat transfer tubes 36 having a helix angle are arranged at positions corresponding to, for example, 1/3 and 2/3 of the total number of stages. Therefore, similarly to the above-described embodiment, even when the amount of the absorbing liquid dripping from the upper heat transfer tube 31 of each heat transfer tube 36 becomes large in the central portion of the heat transfer tube 31, etc. The absorbing solution can be dripped almost uniformly into 31, and the same effect as that of the above embodiment can be obtained. Further, when the number of stages of the heat transfer tube 31 is further increased, the number of stages where the heat transfer tube 36 is provided is increased to, for example, 1/4, 1/2, 3/4 of the total number of stages. The effect of can be obtained. Further, when the outer surface of the heat transfer tube 31 is smooth and the number of stages of the heat transfer tube is large, the heat transfer tubes 36 are provided at a plurality of locations as described above.
The same effect can be obtained by providing.

【0045】[0045]

【発明の効果】本発明は以上のように構成された吸収式
冷凍機であり、管外面に長手方向に形成した突条の山部
と隣り合った突条の間の谷部を曲面とし、且つ谷部の曲
率半径を山部の曲立半径より大きくした吸収器用伝熱管
を有した吸収器を備えているので、伝熱管の外表面に滴
下した吸収液が谷部から山部を越えて次の谷部へスムー
ズに流れ、谷部での吸収液の入れ換えがスムーズに行わ
れ、吸収液を伝熱管の全周にわたって均一に流すことが
でき、又、谷部と山部とで発生したマランゴニー対流が
互いに干渉し合い、管軸方向に強力な撹乱作用が発生
し、伝熱管での熱交換率即ち伝熱性能が向上し、吸収器
での冷媒蒸気の吸収能力を向上することができ、蒸発器
での冷媒蒸気の発生量が増加して冷却能力が向上し、吸
収式冷凍機の運転効率を向上することができる。
The present invention is an absorption refrigerator having the above-described structure, in which the peaks of the projections formed in the longitudinal direction on the outer surface of the pipe and the valleys between the adjacent projections are curved surfaces. In addition, since an absorber having a heat transfer tube for the absorber in which the radius of curvature of the valley is larger than the radius of curvature of the peak is provided, the absorbing liquid dropped on the outer surface of the heat transfer tube crosses the valley from the valley. It smoothly flows to the next trough, the replacement of the absorbing liquid in the trough is performed smoothly, the absorbing liquid can be evenly flowed over the entire circumference of the heat transfer tube, and it also occurs in the trough and the peak. Marangoni convection interferes with each other to generate a strong disturbing action in the axial direction of the tube, improving the heat exchange rate in the heat transfer tube, that is, the heat transfer performance, and improving the absorption capacity of the refrigerant vapor in the absorber. , The amount of refrigerant vapor generated in the evaporator is increased, the cooling capacity is improved, and the operation efficiency of the absorption chiller is improved. It is possible to improve.

【0046】又、管外面に15°以下のねじれ角を成す
ような複数の突条を形成し、山部の曲率半径R1と谷部
の曲率半径R2との比率R2/R1が1より大きくなるよ
うに形成した吸収器用伝熱管を収納した吸収器を備えて
いるので、吸収液が谷部から山部を越えて次の谷部へス
ムーズに流れ、谷部での吸収液の入れ換えがスムーズに
行われ、又、谷部と山部とで発生したマランゴニー対流
が互いに干渉し合い、管軸方向に強力な撹乱作用が発生
し、更に、管外面の捩じれによって吸収液が管軸方向に
流れながら、下方の伝熱管に流下し、伝熱管の濡れ性を
向上することができ、この結果、伝熱管での伝熱性能が
大幅に向上し、吸収器での冷媒蒸気の吸収能力を向上す
ることができ、この結果、蒸発器での冷却能力が向上
し、吸収式冷凍機の運転効率を向上することができる。
Further, a plurality of ridges having a twist angle of 15 ° or less are formed on the outer surface of the pipe, and the ratio R 2 / R 1 of the radius of curvature R 1 of the crests to the radius of curvature R 2 of the valleys is Since it is equipped with an absorber that accommodates the heat transfer tubes for absorbers that are formed to be larger than 1, the absorbing liquid smoothly flows from the trough to the next trough over the trough, and The replacement is performed smoothly, and the Marangoni convection generated in the valley and the peak interferes with each other to generate a strong disturbing action in the axial direction of the pipe. While flowing in the direction, it can flow down to the lower heat transfer tube and improve the wettability of the heat transfer tube. As a result, the cooling capacity in the evaporator is improved, and the absorption chiller It is possible to rolling improve the efficiency.

【0047】又、複数段の吸収器用伝熱管を収納すると
共に、上段の吸収器用伝熱管と下段の吸収器用伝熱管と
の間に管外面に15°以下のねじれ角を成すような複数
の突条を形成し、この突条の山部と突条の間の谷部を曲
面とすると共に、谷部の曲率半径を山部の曲率半径より
大きくした吸収器用伝熱管を設けた吸収器を備えている
ので、伝熱管から滴下する吸収液が不均一になった場合
にも、その伝熱管より下段のねじれ角を有した伝熱管に
て吸収液が山部及び谷部に案内されて滴下量の少ない部
分へ流れ、吸収液がほぼ均一に下段の伝熱管に滴下し、
下段の伝熱管の外表面を均一に濡らすことができ、伝熱
性能が向上し、特に寸法が大きい伝熱管を備えた吸収器
での冷媒蒸気の吸収能力を向上することができ、吸収式
冷凍機の運転効率を向上することができる。
Further, while accommodating a plurality of stages of absorber heat transfer tubes, a plurality of protrusions are formed between the upper stage absorber heat transfer pipes and the lower stage absorber heat transfer pipes to form a twist angle of 15 ° or less on the outer surface of the pipe. A ridge is formed, and the valley between the ridge and the ridge is formed into a curved surface, and an absorber provided with a heat transfer tube for an absorber in which the radius of curvature of the valley is larger than the radius of curvature of the ridge is provided. Therefore, even if the absorbing liquid dripping from the heat transfer tube becomes non-uniform, the absorbing liquid is guided to the peaks and troughs by the heat transfer tube having a lower twist angle than the heat transfer tube Flow to the part where there is little
The outer surface of the lower heat transfer tube can be uniformly wetted, heat transfer performance is improved, and the absorption capacity of refrigerant vapor in an absorber equipped with a particularly large size heat transfer tube can be improved. The operating efficiency of the machine can be improved.

【0048】更に、管外面に形成された複数の突条の山
部及び谷部を曲面とすると共に、谷部の曲率半径を山部
の曲率半径より大きくし、且つ、管外表面を平滑にした
管板支持部を両端に形成し、管外表面を平滑にした管支
え支持部を中間部に形成した吸収器用伝熱管を設けた吸
収器を備えているので、伝熱管を管板及び支持板に管板
支持部及び管支え支持部を利用して容易に支持すること
ができ、又、管板と伝熱管の管板支持部とのシールを管
板支持部の拡管によって確実に行うことができ、吸収式
冷凍機の気密性を向上することができる。
Furthermore, the ridges and valleys of the plurality of ridges formed on the outer surface of the pipe are curved, the radius of curvature of the valley is made larger than the radius of curvature of the ridge, and the outer surface of the pipe is made smooth. Since the heat exchanger tubes are provided with the heat exchanger tubes having the tube plate support portions formed at both ends and the tube support support portion having the outer surface of the tube smoothed at the intermediate portion, the heat transfer tubes are supported by the tube sheet and the support. The plate can be easily supported by using the tube plate support part and the tube support support part, and the tube plate and the tube plate support part of the heat transfer tube can be reliably sealed by expanding the tube plate support part. Therefore, the airtightness of the absorption refrigerator can be improved.

【0049】又、突条の高さを管板支持部及び管支え支
持部に向け除々に低くしたので、山部或いは谷部の端に
亀裂などが発生することを回避でき、吸収式冷凍機の保
守点検作用の簡略化を図ることができる。
Further, since the height of the ridges is gradually lowered toward the tube plate support portion and the tube support support portion, it is possible to avoid the occurrence of cracks or the like at the ends of the mountain portion or the valley portion, and the absorption refrigerator. It is possible to simplify the operation of maintenance and inspection.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸収式冷凍機の概略回路構成図である。FIG. 1 is a schematic circuit configuration diagram of an absorption refrigerator.

【図2】蒸発吸収器胴の断面図である。FIG. 2 is a cross-sectional view of an evaporation absorber body.

【図3】伝熱管の正面図である。FIG. 3 is a front view of a heat transfer tube.

【図4】図3に示した伝熱管のA−A線断面図である。FIG. 4 is a cross-sectional view taken along the line AA of the heat transfer tube shown in FIG.

【図5】吸収液の膜が管外表面に形成された伝熱管断面
図である。
FIG. 5 is a cross-sectional view of a heat transfer tube in which a film of an absorbing liquid is formed on the outer surface of the tube.

【図6】吸収器の概略構成図である。FIG. 6 is a schematic configuration diagram of an absorber.

【図7】伝熱管の部分正面図である。FIG. 7 is a partial front view of a heat transfer tube.

【図8】吸収液流量と交換熱量との関係図である。FIG. 8 is a diagram showing the relationship between the absorption liquid flow rate and the heat exchange amount.

【図9】吸収器の概略構成図である。FIG. 9 is a schematic configuration diagram of an absorber.

【図10】蒸発吸収器胴の断面図である。FIG. 10 is a cross-sectional view of an evaporation absorber body.

【符号の説明】[Explanation of symbols]

1 蒸発吸収器胴 2 蒸発器 3 吸収器 4 高温再生器 11 低温再生器 12 凝縮器 30 散布装置 31 伝熱管 32 突条 33 山部 34 谷部 36 伝熱管 37 突条 38 山部 40 谷部 1 Evaporative absorber body 2 evaporator 3 absorber 4 High temperature regenerator 11 Low temperature regenerator 12 condenser 30 spraying devices 31 heat transfer tube 32 ridges 33 Yamabe 34 Tanibe 36 heat transfer tube 37 Ridge 38 Yamabe 40 Tanibe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸収器、再生器、凝縮器及び蒸発器を配
管接続して冷凍サイクルを形成した吸収式冷凍機におい
て、管外面に長手方向に複数の突条を形成し、この突条
の山部及び隣り合った突条の間の谷部を曲面とし、且
つ、谷部の曲率半径を山部の曲率半径より大きくし、再
生器からの吸収液が管外表面に滴下又は散布され、管内
の冷却水によって管外の吸収液を冷却する吸収器用伝熱
管を有した吸収器を備えたことを特徴とする吸収式冷凍
機。
1. An absorption refrigerating machine in which a refrigeration cycle is formed by connecting an absorber, a regenerator, a condenser and an evaporator by piping, and a plurality of ridges are formed in the longitudinal direction on the outer surface of the pipe. The ridge and the valley between adjacent ridges are curved, and the radius of curvature of the valley is larger than the radius of curvature of the ridge, and the absorbing liquid from the regenerator is dropped or sprayed on the outer surface of the tube. An absorption chiller comprising an absorber having a heat transfer tube for an absorber that cools an absorption liquid outside the pipe with cooling water inside the pipe.
【請求項2】 再生器、この再生器からの吸収液が管外
表面に滴下又は散布され、管内の冷却水によって管外の
吸収液を冷却する吸収器用伝熱管を収納した吸収器、凝
縮器及び蒸発器を配管接続して冷凍サイクルを形成した
吸収式冷凍機において、管外面に15°以下のねじれ角
を成すような複数の突条をそれらが連続した湾曲面形状
を与え、且つ、山部の曲率半径R1と谷部の曲率半径R2
とをそれらの比率R2/R1が1より大きくなるように形
成した吸収器用伝熱管を有した吸収器を備えたことを特
徴とする吸収式冷凍機。
2. A regenerator, an absorber and a condenser containing a heat transfer tube for an absorber in which the absorbing liquid from the regenerator is dropped or sprayed on the outer surface of the pipe and the absorbing liquid outside the pipe is cooled by cooling water inside the pipe. In an absorption refrigerator in which a refrigeration cycle is formed by connecting an evaporator to a pipe, a plurality of ridges having a twist angle of 15 ° or less are formed on the outer surface of the pipe so that they have a continuous curved surface shape, and Radius of curvature R 1 and radius of valley R 2
An absorption refrigerator having an absorber having a heat transfer tube for absorber in which the ratio R 2 / R 1 is larger than 1.
【請求項3】 再生器、この再生器からの吸収液が管外
表面に滴下又は散布され管内の冷却水によって管外の吸
収液を冷却する吸収器用伝熱管を有した吸収器、凝縮器
及び蒸発器を配管接続して冷凍サイクルを形成した吸収
式冷凍機において、複数段の吸収器用伝熱管を有すると
共に、上段に設けられた吸収器用伝熱管と下段に設けら
れた吸収器用伝熱管との間に、管外面に15°以下のね
じれ角を成すような複数の突条を形成し、この突条の山
部及び隣り合った突条の間の谷部を曲面とし、且つ、谷
部の曲率半径を山部の曲率半径より大きくした吸収器用
伝熱管を設けた吸収器を備えたことを特徴とする吸収式
冷凍機。
3. A regenerator, an absorber having a heat transfer tube for an absorber that cools the absorption liquid outside the pipe by cooling or dripping the absorption liquid from the regenerator on the outer surface of the pipe, a condenser, and In an absorption refrigerator that forms a refrigeration cycle by connecting an evaporator to a pipe, having a plurality of stages of heat transfer tubes for the absorber, and an absorber heat transfer tube provided in the upper stage and an absorber heat transfer tube provided in the lower stage In between, a plurality of ridges having a twist angle of 15 ° or less are formed on the outer surface of the pipe, and the peaks of the ridges and the valleys between adjacent ridges are curved surfaces, and An absorption type refrigerator comprising an absorber provided with a heat transfer tube for an absorber having a radius of curvature larger than that of a mountain portion.
【請求項4】 再生器、この再生器からの吸収液が管外
表面に滴下又は散布され、管内の冷却水によって管外の
吸収液を冷却する吸収器用伝熱管を有した吸収器、凝縮
器及び蒸発器を配管接続して冷凍サイクルを形成した吸
収式冷凍機において、相対向した1対の管板と、これら
の管板の間に設けられた管支えと、管外面に複数の突条
が形成され、突条の山部及び谷部を曲面とすると共に谷
部の曲率半径を山部の曲率半径より大きくし、且つ、管
外面に平滑にした管板支持部を両端に形成し、管外面を
平滑にした管支え支持部を中間部に形成した吸収器用伝
熱管を設けた吸収器を備えたことを特徴とする吸収式冷
凍機。
4. A regenerator, an absorber having a heat transfer tube for an absorber, in which the absorbing liquid from the regenerator is dripped or sprayed on the outer surface of the pipe, and the absorbing liquid outside the pipe is cooled by cooling water in the pipe, a condenser. In an absorption refrigerator in which a refrigeration cycle is formed by connecting an evaporator to a pipe, a pair of tube plates facing each other, a tube support provided between these tube plates, and a plurality of protrusions formed on the outer surface of the tube. In addition, the peaks and valleys of the ridges are curved, the radius of curvature of the valleys is made larger than that of the peaks, and smoothed tube plate support portions are formed on both ends of the tube outer surface. An absorption refrigerator having an absorber provided with a heat transfer tube for an absorber in which a tube support supporting portion having a smooth surface is formed in an intermediate portion.
【請求項5】 上記突条の高さを上記管板支持部及び管
支え支持部に向かい徐々に低くしたことを特徴とする請
求項4の吸収式冷凍機。
5. The absorption refrigerator according to claim 4, wherein the height of the projection is gradually reduced toward the tube sheet support portion and the tube support support portion.
JP16836791A 1991-07-09 1991-07-09 Absorption refrigerating apparatus Pending JPH0518632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16836791A JPH0518632A (en) 1991-07-09 1991-07-09 Absorption refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16836791A JPH0518632A (en) 1991-07-09 1991-07-09 Absorption refrigerating apparatus

Publications (1)

Publication Number Publication Date
JPH0518632A true JPH0518632A (en) 1993-01-26

Family

ID=15866779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16836791A Pending JPH0518632A (en) 1991-07-09 1991-07-09 Absorption refrigerating apparatus

Country Status (1)

Country Link
JP (1) JPH0518632A (en)

Similar Documents

Publication Publication Date Title
JPH09152290A (en) Absorption refrigerating machine
JPS6342291Y2 (en)
JPH07167530A (en) Heat transfer tube for absorber
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JPH09152289A (en) Absorption refrigerating machine
JP3138010B2 (en) Absorption refrigerator
JPH0518632A (en) Absorption refrigerating apparatus
JP3091071B2 (en) Heat exchangers and absorption air conditioners
JP3295182B2 (en) Absorption refrigerator
JP3712775B2 (en) Plate evaporator / absorber for absorption refrigerator
JPH05256536A (en) Absorption refrigerating machine
JP3266886B2 (en) Heat transfer tube
JP2779565B2 (en) Absorption refrigerator
EP0082018B1 (en) Absorption refrigeration system
JP2001041608A (en) Evaporator and absorber for absorption refrigerating machine
KR0138193B1 (en) Evaporating / heat conduction apparatus of absorptive airconditioner
JP3475003B2 (en) Plate evaporator for absorption refrigerator
JPH04126964A (en) Absorption device of absorption type freezing cycle
JPH11108501A (en) Evaporator for absorption-type refrigerating machine
JPH05312434A (en) Low temperature regenerator of absorption water cooling/heating device
JPH058424Y2 (en)
JP2979379B2 (en) Absorption refrigerator heat exchanger
JPH04369391A (en) Structure of heat transfer pipe for boiling
KR0127530Y1 (en) Concentrator for absorption refrigerating machine
JP3617724B2 (en) Absorption refrigeration system