JPH07267613A - Production of fine complex ceramic power, apparatus for production, the same ceramic powder and solid electrolytic type fuel cell containing the same ceramic powder as electrode material - Google Patents

Production of fine complex ceramic power, apparatus for production, the same ceramic powder and solid electrolytic type fuel cell containing the same ceramic powder as electrode material

Info

Publication number
JPH07267613A
JPH07267613A JP6082399A JP8239994A JPH07267613A JP H07267613 A JPH07267613 A JP H07267613A JP 6082399 A JP6082399 A JP 6082399A JP 8239994 A JP8239994 A JP 8239994A JP H07267613 A JPH07267613 A JP H07267613A
Authority
JP
Japan
Prior art keywords
mist
ceramic powder
powder
composite ceramic
fine composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6082399A
Other languages
Japanese (ja)
Other versions
JP3160147B2 (en
Inventor
Kazumi Kodera
佳積 小寺
Takehisa Fukui
武久 福井
Tatsuya Yamada
達也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Original Assignee
FINE CERAMICS CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER filed Critical FINE CERAMICS CENTER
Priority to JP08239994A priority Critical patent/JP3160147B2/en
Publication of JPH07267613A publication Critical patent/JPH07267613A/en
Application granted granted Critical
Publication of JP3160147B2 publication Critical patent/JP3160147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain fine complex ceramic powder which is solid spherical secondary particles formed by aggregating primary particles of materials by atomizing a mixture solution of plural materials into a mist, drying the resultant mist at a lower temperature than the thermal decomposition temperature of the materials and thermally decomposing the mist. CONSTITUTION:This method for producing fine complex ceramic powder is to introduce a material mixture solution (S) of two or more kinds into an atomizing chamber 2, operate ultrasonic oscillators 3 and 3, prepare a mist (M) having 1-20mum particle diameter, preheat the mist at 100 deg.C in the atomizing chamber 2, admit air which is a carrier gas from a gas inflow port 4 in the upper part of the atomizing chamber 2, move the preheated mist (M) in the interior of a quartz tube 5 communicating with the atomizing chamber 2, respectively regulate the heat source temperatures of heating zones (7A) and (7B) in an electric furnace 6 to 200 and 450 deg.C, initially gently dry the mist (M) by heating, regulate the heat source temperature of a heating zone (7C) to 800 deg.C which is the thermal decomposition temperature of the materials, thermally decompose the mist (M), successively move the mist (M) from the heating zones (7A) to (7B), (7C) and (7D), powder the mist, collect the resultant powder in an electric dust collector 8, calcine the powder at 1000 deg.C for 4 hr and pulverize the calcined powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細複合セラミックス粉
末の製造方法、製造装置、微細複合セラミックス粉末及
び前記微細複合セラミックス粉末を電極材料としたこと
を特徴とする固体電解質型燃料電池(以下、SOFCと
も記載する)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fine composite ceramic powder, a production apparatus, a fine composite ceramic powder, and a solid oxide fuel cell (hereinafter referred to as SOFC) characterized by using the fine composite ceramic powder as an electrode material. Also described)).

【0002】[0002]

【従来の技術】微細複合セラミックス粉末では二種類以
上の材料の一次粒子が混合状態にて集まり二次粒子を形
成している。この微細複合セラミックス粉末の従来の製
造方法としては、二種類以上の材料の粗い粉末を粉砕機
を用いてより細かく粉砕し、得られた二種類以上の材料
の粉砕物をボ−ルミルで攪拌混合し、仮焼、粉砕する方
法や二種類以上の材料粉末を溶液化し、その液滴を加熱
炉中に飛散させ、熱分解し、仮焼後粉砕して、微細な二
次粒子とする滴下熱分解法等がある。これらの従来の製
造方法により得られる微細複合セラミックス粉末の中に
はSOFCの電極材料に使用されているものがある。
2. Description of the Related Art In fine composite ceramic powder, primary particles of two or more kinds of materials are gathered in a mixed state to form secondary particles. As a conventional method for producing this fine composite ceramic powder, coarse powders of two or more kinds of materials are finely pulverized using a pulverizer, and the obtained pulverized materials of two or more types of materials are stirred and mixed with a ball mill. Calcination, calcination, pulverization or solution of two or more kinds of material powder, and the droplets are scattered in a heating furnace, pyrolyzed, calcined and pulverized to form fine secondary particles. There are decomposition methods. Some of the fine composite ceramic powders obtained by these conventional manufacturing methods are used as electrode materials for SOFCs.

【0003】[0003]

【発明が解決しようとする課題】しかし従来の製造方法
により得られる二次粒子は、材料の粒子である一次粒子
が凝集して形成される塊状物を機械的に粉砕して製造さ
れるため、得られる二次粒子は不定形状であり、球形状
のものが得られ難かった。そして、従来の製造方法によ
り得られるセラミックス粉末をSOFCの電極材料に使
用した場合、その電気的性質が不十分であった。そこで
本発明の課題は複数材料の一次粒子が集合して形成され
る球形状の中実な二次粒子である微細複合セラミックス
粉末、その粉末の製造に適した製造方法、その粉末の製
造方法に適した製造装置及びこの微細複合セラミックス
粉末を電極材料とした固体電解質型燃料電池を提供する
ことにある。
However, the secondary particles obtained by the conventional production method are produced by mechanically crushing the agglomerates formed by agglomeration of the primary particles, which are the particles of the material, The secondary particles obtained had an irregular shape, and it was difficult to obtain spherical particles. And when the ceramic powder obtained by the conventional manufacturing method was used for the electrode material of SOFC, the electrical property was inadequate. Therefore, an object of the present invention is to provide a fine composite ceramic powder that is a spherical solid secondary particle formed by aggregating primary particles of a plurality of materials, a manufacturing method suitable for manufacturing the powder, and a manufacturing method of the powder. An object of the present invention is to provide a suitable manufacturing apparatus and a solid oxide fuel cell using the fine composite ceramic powder as an electrode material.

【0004】[0004]

【課題を解決するための手段】上記課題解決のために請
求項1に記載の微細複合セラミックス粉末の製造方法
は、二種類以上の材料が混合された溶液をミスト化し、
このミストを前記材料が熱分解する温度よりも低い温度
にて乾燥する第一工程及びこの第一工程に続いて前記材
料を熱分解する第二工程を有することを特徴とする。ま
た請求項2に記載の微細複合セラミックス粉末の製造装
置は二種類以上の材料が混合された溶液をミスト化する
手段及びこのミストを移動させる手段及び前記ミストの
移動通路を有し、前記移動通路の長手方向に複数個の熱
発生手段が配置されていることを特徴とする。そして請
求項3に記載の微細複合セラミックス粉末は請求項1に
記載の製造方法により製造される微細複合セラミックス
粉末であって、二種類以上の材料から生じた二種類以上
の一次粒子と、これらの二種類以上の一次粒子が略均一
に分散した状態で集合して生成された中実で球形の二次
粒子とを有することを特徴とする。また請求項4に記載
の固体電解質型燃料電池は、請求項3に記載の微細複合
セラミックス粉末を電極材料としたことを特徴とする。
In order to solve the above-mentioned problems, a method for producing a fine composite ceramic powder according to claim 1 is to mist a solution in which two or more kinds of materials are mixed,
It is characterized by comprising a first step of drying the mist at a temperature lower than a temperature at which the material is thermally decomposed and a second step of thermally decomposing the material subsequent to the first step. Further, the apparatus for producing a fine composite ceramic powder according to claim 2 has a means for forming a mist of a solution in which two or more kinds of materials are mixed, a means for moving the mist, and a moving passage for the mist. Is characterized in that a plurality of heat generating means are arranged in the longitudinal direction. The fine composite ceramic powder according to claim 3 is the fine composite ceramic powder produced by the production method according to claim 1, and comprises two or more types of primary particles generated from two or more types of materials, and these The present invention is characterized by having solid and spherical secondary particles produced by aggregating two or more types of primary particles in a substantially uniformly dispersed state. A solid oxide fuel cell according to a fourth aspect is characterized in that the fine composite ceramic powder according to the third aspect is used as an electrode material.

【0005】前記材料が混合された溶液は任意の材料を
任意の溶媒に溶かして得られる溶液又はゾル又は溶液及
びゾルの混合溶液を意味し、例えばSOFCの空気極に
使用する粉末の材料としては、La、Sr、Mnのイオ
ンを含む水溶液及びYSZ(イットリアを用いて安定化
した酸化ジルコニウム)又はPSZ(部分安定化酸化ジ
ルコニウム)が挙げられる。イットリア以外の例えば酸
化カルシウムを用いて安定化した酸化ジルコニウムも使
用できる。又はLa、Mnのイオンを含む水溶液及びY
SZ又はPSZの組み合わせ、又はLa、Coのイオン
を含む水溶液及びYSZ又はPSZの組み合わせが挙げ
られる。そしてSOFCの燃料極に使用する粉末の材料
としては、例えば、上記のYSZ又はPSZとNiの塩
の組み合わせ又はYSZ又はPSZとNiの塩及びMg
の塩の組み合わせが挙げられる。これらの材料を溶解
し、溶液またはゾルとするために使用する溶媒は有機又
は無機のアルカリまたは酸の水溶液、水等、材料を溶解
し、溶液またはゾルとすることのできる種々の適切な溶
媒を使用できる。一般にゾルとは液体を分散媒とし固体
を分散粒子とするコロイドのことで、分散粒子が普通の
光学顕微鏡では認めらないが、原子或いは低分子よりは
大きい粒子として分散しているものを言うが、本発明に
おけるゾルはこれに限るものではなく、光学顕微鏡で認
められる粒子を含むもの、あるいは超微粒子を水などの
液体と混合して懸濁したスラリ−であって、容易には沈
殿物を生じないものであっても良く、これらを含めた広
い意味でのゾルとする。またSOFCの電解質に使用す
る粉末の材料としては、例えば、上記のYSZ又はPS
Z及びAl2 3 又はMgOの組み合わせが挙げられ
る。これらの材料は適切な各量を選ぶことができ、任意
の材料を任意の組み合わせで使用することにより種々の
組成の微細複合セラミックス粉末を得ることができる。
The solution in which the above materials are mixed means a solution or a sol obtained by dissolving any material in any solvent, or a mixed solution of the solution and the sol. For example, as a powder material used for the air electrode of SOFC, , La, Sr and Mn ions, and YSZ (zirconium oxide stabilized with yttria) or PSZ (zirconium oxide partially stabilized). Other than yttria, zirconium oxide stabilized with, for example, calcium oxide can also be used. Alternatively, an aqueous solution containing La and Mn ions and Y
Examples thereof include a combination of SZ or PSZ, or an aqueous solution containing La and Co ions and YSZ or PSZ. The powder material used for the SOFC fuel electrode is, for example, a combination of the above YSZ or PSZ and Ni salts, or a YSZ or PSZ and Ni salt and Mg.
And a combination of salts. The solvent used for dissolving these materials to form a solution or sol may be an organic or inorganic aqueous solution of alkali or acid, water, etc., and various suitable solvents capable of dissolving the materials to form a solution or sol may be used. Can be used. Generally, a sol is a colloid in which a liquid is a dispersion medium and a solid is a dispersed particle, and although dispersed particles cannot be recognized by an ordinary optical microscope, they are dispersed as particles larger than atoms or small molecules. The sol in the present invention is not limited to this, and it is a slurry containing particles recognized by an optical microscope, or a slurry obtained by mixing ultrafine particles with a liquid such as water and suspending them, and easily forming a precipitate. It does not matter if it does not occur, and it is a sol in a broad sense that includes these. The powder material used for the SOFC electrolyte is, for example, YSZ or PS described above.
Combinations of Z and Al 2 O 3 or MgO are mentioned. Appropriate amounts of these materials can be selected, and fine composite ceramic powders having various compositions can be obtained by using any materials in any combination.

【0006】前記熱分解とは酸化等の化学変化及び/又
は非晶質を結晶化することを意味し、結晶化したことは
各材料のX線回折のピ−クが分離せず、一本化すること
により確認することができる。
The thermal decomposition means a chemical change such as oxidation and / or crystallization of an amorphous substance. The crystallization means that the peaks of the X-ray diffraction of each material do not separate, It can be confirmed by

【0007】前記材料の粒子から生じた一次粒子とは材
料の粒子から酸化等の化学的変化及び/又は、結晶化等
の物理的変化を経て得られた粒子であり、前記二次粒子
はこの一次粒子が集まって形成されている粒子である。
この二次粒子が中実であるとは、二次粒子内部にも一次
粒子が集まって存在している状態を意味する。
The primary particles generated from the particles of the material are particles obtained from the particles of the material through a chemical change such as oxidation and / or a physical change such as crystallization, and the secondary particles are It is a particle formed by collecting primary particles.
The fact that the secondary particles are solid means that the primary particles are also present inside the secondary particles.

【0008】前記電極とは燃料極及び/又は空気極を意
味し、燃料極及び空気極の両極が請求項3に記載の微細
複合セラミックス粉末を電極材料としているSOFC、
燃料極又は空気極の片方のみが請求項3に記載の微細複
合セラミックス粉末を電極材料としているSOFCの両
方の場合を含む。
The electrode means a fuel electrode and / or an air electrode, and both the fuel electrode and the air electrode are SOFCs using the fine composite ceramic powder according to claim 3 as an electrode material.
Only one of the fuel electrode or the air electrode includes both cases of SOFC using the fine composite ceramic powder according to claim 3 as an electrode material.

【0009】[0009]

【作用】請求項1に記載の微細複合セラミックス粉末の
製造方法によると、図1に示されるようにミストMは球
形であり、この一個のミストM中に二種類以上の材料の
粒子P1,P2が良好に分散して存在する。ミストMを
乾燥する第一工程により、ミストMの表面から水分又は
揮発成分が蒸発し、二種類以上の材料の粒子は元のミス
トMよりも径の小さい粒子R内に良好に分散し存在する
と考えられる。そして、この第一工程の後に第二工程で
材料を加熱することにより、材料の粒子P1,P2は熱
分解され、粒子Rはさらに径が小さくなり、熱分解した
二種類以上の材料の一次粒子P1及びP2が良好に分散
した球形であり中実の二次粒子TSとなると考えられ
る。
According to the method for producing a fine composite ceramic powder as set forth in claim 1, the mist M is spherical as shown in FIG. 1, and particles P1 and P2 of two or more kinds of materials are contained in one mist M. Exist well dispersed. By the first step of drying the mist M, water or volatile components are evaporated from the surface of the mist M, and particles of two or more kinds of materials are well dispersed and exist in the particles R having a smaller diameter than the original mist M. Conceivable. By heating the material in the second step after the first step, the particles P1 and P2 of the material are thermally decomposed, the particle R is further reduced in diameter, and the thermally decomposed primary particles of two or more kinds of materials. It is considered that P1 and P2 have a well-dispersed spherical shape and become solid secondary particles TS.

【0010】また請求項2に記載の微細複合セラミック
ス粉末の製造装置によると、二種類以上の材料溶液をミ
スト化する手段により、材料溶液のミストを得て、これ
をミストを移動させる手段によりミストの移動通路を移
動させる。この移動通路はその長手方向に複数個の熱発
生手段が配置されているので、ミストの移動通路の入り
口に近い方の熱発生手段の温度を材料が熱分解する温度
よりも低い温度にてミストを乾燥する温度とし、ミスト
の移動通路の入り口から遠い方の他の熱発生手段の温度
を材料が熱分解する温度とすることにより、請求項1に
記載の微細複合セラミックス粉末の製造方法を容易に実
施することができる。
Further, according to the apparatus for producing a fine composite ceramic powder of claim 2, a mist of the material solution is obtained by means of misting two or more kinds of material solutions, and the mist is moved by means of moving the mist. Move the moving passage of. Since a plurality of heat generating means are arranged in the longitudinal direction of this moving passage, the temperature of the heat generating means near the entrance of the moving passage of the mist is lower than the temperature at which the material is thermally decomposed. The method for producing the fine composite ceramic powder according to claim 1, wherein the temperature is a drying temperature, and the temperature of another heat generating means farther from the entrance of the moving passage of the mist is a temperature at which the material is thermally decomposed. Can be carried out.

【0011】そして請求項3に記載の微細複合セラミッ
クス粉末によると、請求項1に記載の製造方法により、
従来の不定形な二次粒子とは異なる球形の二次粒子が容
易に得られ、二次粒子が球形であることから、従来の微
細複合セラミックス粉末とは異なる性質を有する微細複
合セラミックス粉末とされる。また請求項4に記載の固
体電解質型燃料電池によると、請求項3に記載の微細複
合セラミックス粉末を電極材料とするので、球形の二次
粒子同志の接触部位は不定形状の微粒子同志の接触部位
よりもより大きいことから、内部抵抗が低減されると考
えられる。また二次粒子は材料溶液から生じた二種類以
上の一次粒子が略均一に分散した状態で集合して生成さ
れた中実の粒子であることからも良好な電気特性が期待
される。
According to the fine composite ceramic powder of claim 3, the manufacturing method of claim 1 provides
Spherical secondary particles different from conventional amorphous secondary particles are easily obtained, and since the secondary particles are spherical, it is regarded as a fine composite ceramic powder having properties different from those of the conventional fine composite ceramic powder. It Further, according to the solid oxide fuel cell of claim 4, since the fine composite ceramic powder of claim 3 is used as an electrode material, the contact part of the spherical secondary particles is the contact part of the irregular-shaped fine particles. Therefore, it is considered that the internal resistance is reduced. Also, since the secondary particles are solid particles produced by assembling two or more kinds of primary particles generated from the material solution in a substantially uniformly dispersed state, good electrical characteristics are expected.

【0012】[0012]

【実施例】【Example】

実施例1 空気極に使用する微細複合セラミックス粉末の製造。 La2 3 11.72g、MnO2 8.64g及びSrCO3
2.657gの粉末を純水10ミリリットル中に混合
し、さらに濃硝酸100ミリリットルを混合し、さらに
過酸化水素水100ミリリットルを混合し、150℃〜
200℃にて1時間攪拌し、材料溶液Iを得た。材料溶
液IIとしては8モル%のYSZゾル63.4gを使用し
た。上記の材料溶液I及び材料溶液IIを混合し、純水を
加えて、全量を1リットルとし、これを混合攪拌して得
られる材料混合液Sを得た。図2に示される微細複合セ
ラミックス粉末の製造装置1を用いてこの材料混合液S
から後述のように微細複合セラミックス粉末を製造し
た。製造装置1は図2に示されるように、霧化室2、霧
化室2と連通するミストの移動通路である石英管5、こ
の石英管5が一定の長さをもってその内部を通る電気炉
6及び電気炉6から伸長された石英管5に連続される電
気集塵器8を有する。霧化室2の下方には材料溶液をミ
スト化する手段である超音波振動子3,3が設置され、
霧化室2の上部にはガス流入口4が設置され、このガス
流入口4からキャリヤ−ガスを流入することによりミス
トを移動させる手段が実現される。霧化室2及び電気集
塵器8の内部の温度は図示しない温度調節器により調節
可能とされている。電気炉6には石英管5の左右の相対
位置に各一個の電気熱発生装置が設置された加熱ゾ−ン
が四個、石英管5の長さ方向に等間隔に設置されてい
る。石英管5の長さは115cmであり、直径は40mmで
ある。これらの四組の加熱ゾ−ンを霧化室2からのミス
トMが移動する順に加熱ゾ−ン7A,7B,7C,7D
とする。
Example 1 Production of fine composite ceramic powder used for an air electrode. La 2 O 3 11.72 g, MnO 2 8.64 g and SrCO 3
2.657 g of powder is mixed in 10 ml of pure water, 100 ml of concentrated nitric acid, 100 ml of hydrogen peroxide, and 150 ° C-
It stirred at 200 degreeC for 1 hour, and obtained the material solution I. As the material solution II, 63.4 g of 8 mol% YSZ sol was used. The above material solution I and the material solution II were mixed, pure water was added to make the total amount 1 liter, and this was mixed and stirred to obtain a material mixed solution S. Using the apparatus 1 for producing a fine composite ceramic powder shown in FIG.
A fine composite ceramic powder was produced as described below. As shown in FIG. 2, the manufacturing apparatus 1 includes an atomization chamber 2, a quartz tube 5 which is a passage for a mist communicating with the atomization chamber 2, and an electric furnace in which the quartz tube 5 passes through the quartz tube 5 with a certain length. 6 and an electrostatic precipitator 8 connected to a quartz tube 5 extended from the electric furnace 6. Below the atomization chamber 2, ultrasonic transducers 3 which are means for mistizing the material solution are installed.
A gas inlet 4 is installed in the upper part of the atomization chamber 2, and a means for moving the mist by introducing the carrier gas from the gas inlet 4 is realized. The temperature inside the atomization chamber 2 and the electric dust collector 8 can be adjusted by a temperature controller (not shown). In the electric furnace 6, four heating zones each having one electric heat generator installed at the left and right relative positions of the quartz tube 5 are installed at equal intervals in the length direction of the quartz tube 5. The quartz tube 5 has a length of 115 cm and a diameter of 40 mm. These four sets of heating zones are heated zones 7A, 7B, 7C, 7D in the order in which the mist M from the atomizing chamber 2 moves.
And

【0013】材料混合液Sを霧化室2内に入れ、超音波
振動子3,3を作動させて、微細なミストMを作成し
た。このミストMの粒径は1μm〜20μm、平均粒径は
10μmであった。このミストMを霧化室2内において
100℃に予熱した。次に霧化室2の上部のガス流入口
4からキャリヤ−ガスとして空気を3cm/sの速度で流入
することにより、予熱されたミストMは霧化室2と連通
する石英管5内部を移動し、電気炉6内の石英管5へ移
動する。
The material mixture S was put in the atomizing chamber 2 and the ultrasonic vibrators 3 were operated to form a fine mist M. The mist M had a particle size of 1 μm to 20 μm and an average particle size of 10 μm. This mist M was preheated to 100 ° C. in the atomization chamber 2. Next, air is introduced as a carrier gas at a rate of 3 cm / s from the gas inlet 4 at the top of the atomization chamber 2, so that the preheated mist M moves inside the quartz tube 5 communicating with the atomization chamber 2. Then, it moves to the quartz tube 5 in the electric furnace 6.

【0014】電気炉6内の加熱ゾ−ン7A及び加熱ゾ−
ン7Bの熱源の温度を各々200℃及び450℃とする
ことにより最初は穏やかにミストMを加熱し、ミストM
を乾燥させた。そして加熱ゾ−ン7Cの熱源の温度を材
料が熱分解する温度である800℃とし、加熱ゾ−ン7
Dの熱源の温度は1000℃とすることにより、乾燥させた
後にミストMを熱分解させた。加熱ゾ−ン7A,7B,
7C,7Dを順に移動し、乾燥後に熱分解されたミスト
Mは粉末とされ、この粉末はキャリヤ−ガスにより石英
管5内を電気炉6外へさらに移動し、電気集塵器8によ
り冷却され、捕集される。ミストMが霧化室2から石英
管5内を移動し、捕集されるまでに要する時間は約30
秒であった。このように捕集された粉末を1000℃にて4
時間仮焼し、再結晶化した後、軽く解きほぐして砕くこ
とにより本例の空気極に使用する微細複合セラミックス
粉末を得た。
A heating zone 7A and a heating zone in the electric furnace 6.
Mist M is heated gently at first by setting the temperature of the heat source of the 7B to 200 ° C and 450 ° C, respectively.
Was dried. Then, the temperature of the heat source of the heating zone 7C is set to 800 ° C., which is the temperature at which the material is thermally decomposed, and the heating zone 7C is heated.
By setting the temperature of the heat source of D to 1000 ° C., the mist M was pyrolyzed after being dried. Heating zones 7A, 7B,
7C and 7D are sequentially moved, and the mist M pyrolyzed after drying is made into powder, and this powder is further moved to the outside of the electric furnace 6 inside the quartz tube 5 by the carrier gas and cooled by the electric dust collector 8. , Collected. The time required for the mist M to move from the atomization chamber 2 into the quartz tube 5 and be collected is about 30.
It was seconds. The powder thus collected is heated at 1000 ° C for 4
After calcination for a time, recrystallization, lightly loosening and crushing, a fine composite ceramic powder used in the air electrode of this example was obtained.

【0015】上記の微細複合セラミックス粉末の微構造
を走査型電子顕微鏡(以下SEMと記載する)及びエネ
ルギ−分散型X線分析装置(以下EDXと記載する)を
用いて観察した。図3は仮焼前の粉末のSEM写真、図
4は仮焼後の粉末のSEM写真(倍率1万倍)、図5は
仮焼後の粉末のSEM写真(倍率6万倍)である。図3
ないし図5に示されるように、50nm〜200nmの直径
を有する一次粒子が集って形成された直径0.1μm〜
数μm、平均粒子径約0.5μm〜0.8μmの二次粒
子が得られた。これらの一次粒子はEDXの結果から
(La0.8 Sr0.2 0.9 MnO3 及びYSZであり、
これらの一次粒子は微粒子内に均一に高分散して、中実
な二次粒子を形成していることがわかった。またレ−ザ
−回折散乱による方法で、仮焼後の粉末の二次粒子の直
径及び個数を測定した。その結果を図6に示す。図6
中、棒グラフは一定の平均の直径を有する粒子の個数の
%を示し、線グラフは二次粒子の累計個数の%を示して
いる。左側の縦軸は粒子の累計個数の%を示し、左側の
縦軸は粒子の個数の%を示し、横軸は粒子の直径(数値
単位μm)を示している。図6に示されるように粒径は
正規分布を示し、かつ非常に狭い範囲に分布している。
例えば平均粒子径0.5μmの場合90%粒子径は1.
15μmであった。
The microstructure of the above-mentioned fine composite ceramic powder was observed using a scanning electron microscope (hereinafter referred to as SEM) and an energy-dispersive X-ray analyzer (hereinafter referred to as EDX). 3 is a SEM photograph of the powder before calcination, FIG. 4 is a SEM photograph of the powder after calcination (magnification: 10,000 times), and FIG. 5 is a SEM photograph of the powder after calcination (magnification: 60,000 times). Figure 3
As shown in FIG. 5, a diameter of 0.1 μm formed by collecting primary particles having a diameter of 50 nm to 200 nm.
Secondary particles having a particle size of several μm and an average particle size of about 0.5 μm to 0.8 μm were obtained. These primary particles are (La 0.8 Sr 0.2 ) 0.9 MnO 3 and YSZ from the EDX results,
It was found that these primary particles were uniformly and highly dispersed in the fine particles to form solid secondary particles. The diameter and number of secondary particles of the powder after calcination were measured by a method using laser diffraction scattering. The result is shown in FIG. Figure 6
In the figure, a bar graph shows% of the number of particles having a constant average diameter, and a line graph shows% of the cumulative number of secondary particles. The vertical axis on the left side shows% of the cumulative number of particles, the vertical axis on the left side shows% of the number of particles, and the horizontal axis shows the diameter of the particles (numerical unit: μm). As shown in FIG. 6, the particle size has a normal distribution and is distributed in a very narrow range.
For example, when the average particle size is 0.5 μm, the 90% particle size is 1.
It was 15 μm.

【0016】実施例2 燃料極に使用する微細複合セラミックス粉末の製造。 Ni(CH3 COO)2 ・4H2 O 49.74g及び
Mg(CH3 COO)2 ・4H2 O 10.72gを純
水1リットルに溶解し、原料溶液Iを作成した。原料溶
液IIとしては8モル%のYSZゾル37.75gを使用
した。これらの原料溶液I及び原料溶液IIを混合し、純
水を加えて、全量を1リットルとし、これを混合攪拌し
て得られる原料混合液Sを図1に示される製造装置1の
霧化室2内に入れ、以後は実施例1と同様にミストMを
作成し、このミストMを最初は穏やかに加熱することに
より乾燥させた後にミストMを急速に熱分解温度とする
ことにより、ミストMを熱分解させた。そして実施例1
と同様に電気集塵器8により冷却、捕集された粉末を仮
焼、解砕し、本例の燃料極に使用する微細複合セラミッ
クス粉末を得た。本実施例により得られた微細複合セラ
ミックス粉末を実施例1と同様にSEM及びEDXによ
り調べた。その結果、実施例1で得られた微細複合セラ
ミックス粉末と同様に50nm〜200nmの直径を有する
(Ni,Mg)O及びYSZの二種類の一次粒子が集っ
て形成された直径0.1μm〜数μm、平均粒子径約
0.5μm〜0.8μmの中実な二次粒子が得られた。
これらの二種類の一次粒子は二次粒子内に均一に高分散
して、中実な二次粒子を形成していることがわかった。
また実施例1と同様にレ−ザ−回折散乱による方法で、
仮焼後の粉末の粒子の直径及び個数を測定したところ、
実施例1と同様に平均粒子径約0.5μm〜0.8μm
の微粒子が得られ、粒度も非常に狭い範囲に分布してい
た。
Example 2 Production of fine composite ceramic powder used for fuel electrode. 49.74 g of Ni (CH 3 COO) 2 .4H 2 O and 10.72 g of Mg (CH 3 COO) 2 .4H 2 O were dissolved in 1 liter of pure water to prepare a raw material solution I. As the raw material solution II, 37.75 g of 8 mol% YSZ sol was used. The raw material solution I and the raw material solution II are mixed, pure water is added to bring the total amount to 1 liter, and the raw material mixed solution S obtained by mixing and stirring this is the atomizing chamber of the manufacturing apparatus 1 shown in FIG. Mist M is prepared in the same manner as in Example 1 and thereafter, the mist M is first heated gently to dry it, and then the mist M is rapidly brought to the thermal decomposition temperature. Was pyrolyzed. And Example 1
Similarly to the above, the powder collected by cooling with the electrostatic precipitator 8 was calcined and crushed to obtain a fine composite ceramic powder used in the fuel electrode of this example. The fine composite ceramic powder obtained in this example was examined by SEM and EDX in the same manner as in Example 1. As a result, similar to the fine composite ceramic powder obtained in Example 1, a diameter of 0.1 μm formed by gathering two kinds of primary particles of (Ni, Mg) O and YSZ having a diameter of 50 nm to 200 nm Solid secondary particles having a particle size of several μm and an average particle size of about 0.5 μm to 0.8 μm were obtained.
It was found that these two types of primary particles were uniformly dispersed in the secondary particles to form solid secondary particles.
Further, as in Example 1, by the method by laser diffraction scattering,
When the diameter and number of particles of the powder after calcination were measured,
Similar to Example 1, the average particle size is about 0.5 μm to 0.8 μm.
Fine particles were obtained and the particle size was distributed in a very narrow range.

【0017】実施例3 実施例1及び実施例2にて得られた微細複合セラミック
ス粉末を用いて、以下の様に固体電解質型燃料電池用の
電極を作成した。実施例2で得られた微細複合セラミッ
クス粉末2gにバインダ−としてポリエチレングリコ−
ル0.6g及び分散剤としてエタノ−ル6gを添加し、
アルミナ自動乳鉢で約15分間混合し、エタノ−ルを蒸
発させた後、8モル%YSZペレット(直径13mm、厚さ
1mm)上にスクリ−ン(#(メッシュ)200 )印刷し、こ
れを1400℃、2時間の条件で焼き付けた。この場合の燃
料極肉厚は15μmであった。次に実施例1で得られた微
細複合セラミックス粉末2gにバインダ−としてポリエ
チレングリコ−ル0.6g及び分散剤としてエタノ−ル6g
を添加し、アルミナ自動乳鉢で約15分間混合し、エタノ
−ルを蒸発させた後、YSZペレットの裏面にスクリ−
ン(#(メッシュ)200 )印刷し、これを1200℃、4時
間の条件で焼き付け、空気極とした。最後に参照極を10
00℃、2時間の条件で焼き付け、本例の性能評価セルを
得た。焼き付けの際の昇温条件は全て200 ℃/hとし
た。
Example 3 Using the fine composite ceramic powder obtained in Examples 1 and 2, an electrode for a solid oxide fuel cell was prepared as follows. Polyethylene glycol as a binder was added to 2 g of the fine composite ceramic powder obtained in Example 2.
And 0.6 g of ethanol as a dispersant,
After mixing in an alumina automatic mortar for about 15 minutes to evaporate ethanol, 8 mol% YSZ pellets (diameter 13 mm, thickness
A screen (# (mesh) 200) was printed on 1 mm), and this was baked at 1400 ° C. for 2 hours. In this case, the fuel electrode wall thickness was 15 μm. Next, to 2 g of the fine composite ceramic powder obtained in Example 1, 0.6 g of polyethylene glycol as a binder and 6 g of ethanol as a dispersant.
Was added and mixed in an alumina automatic mortar for about 15 minutes to evaporate ethanol, and then screened on the back surface of the YSZ pellets.
(# (Mesh) 200) was printed, and this was baked at 1200 ° C. for 4 hours to form an air electrode. Finally set the reference pole to 10
Baking was performed under the conditions of 00 ° C. for 2 hours to obtain a performance evaluation cell of this example. The temperature rising conditions during baking were all 200 ° C./h.

【0018】比較例1 実施例1と同じ原料溶液I及び原料溶液IIを同様に混合
し、純水で1リットルとし、混合攪拌して得られる原料
混合液Sを図1に示される製造装置1を使用し、加熱ゾ
−ン7Aの温度を700 ℃及び7Bの温度を800 ℃、加熱
ゾ−ン7Cの温度を900 ℃及び7Dの温度を1000℃とし
た以外は実施例1と同条件でミスト化した原料混合液S
を熱分解し、微細複合セラミックス粉末を得た。この比
較例1の粉末を実施例1と同様にSEM及びEDXによ
り調べた。図7は仮焼前の粉末のSEM写真、図8は仮
焼後の粉末のSEM写真(倍率1万倍)である。図7及
び図8に示されるように、二次粒子の径が実施例1で得
られた粒子よりも大きい粒子が多数存在し、粒度も広い
範囲に分布していた。図8においてこれらの大きい二次
粒子が砕かれた状態及びEDXの結果から示されるよう
にこれらの大きい二次粒子は中空であった。この理由は
図9に示されるように、ミストMを急激な温度勾配で加
熱したことにより、ミストMの表面のみならず、ミスト
Mの内部からも水分の蒸発が生じるため、ミストMの内
部に存在した材料の粒子P1,P2がミストMの表面部
分に集まり、固相の殻Kが生じるために中空の二次粒子
KSが形成すると考えられる。
Comparative Example 1 The same raw material solution I and raw material solution II as in Example 1 were mixed in the same manner, made up to 1 liter with pure water, and the raw material mixture S obtained by mixing and stirring was used in the production apparatus 1 shown in FIG. Under the same conditions as in Example 1 except that the temperature of the heating zone 7A was 700 ° C, the temperature of 7B was 800 ° C, the temperature of the heating zone 7C was 900 ° C, and the temperature of 7D was 1000 ° C. Mist-formed raw material mixture S
Was pyrolyzed to obtain a fine composite ceramic powder. The powder of Comparative Example 1 was examined by SEM and EDX in the same manner as in Example 1. FIG. 7 is a SEM photograph of the powder before calcination, and FIG. 8 is a SEM photograph of the powder after calcination (magnification: 10,000 times). As shown in FIGS. 7 and 8, there were many particles having a secondary particle size larger than that of the particles obtained in Example 1, and the particle size was distributed over a wide range. These large secondary particles were hollow as shown in the broken state of the large secondary particles in FIG. 8 and the results of EDX. The reason for this is that, as shown in FIG. 9, by heating the mist M with a sharp temperature gradient, evaporation of water occurs not only from the surface of the mist M but also from the inside of the mist M, so that the inside of the mist M is evaporated. It is considered that the existing particles P1 and P2 of the material gather on the surface portion of the mist M and form the solid-phase shell K, so that the hollow secondary particles KS are formed.

【0019】比較例2 実施例1及び2と各々同じ原料溶液I及び原料溶液IIを
各々実施例1及び2と同条件にて混合攪拌して得られる
原料混合液を750 ℃に保った石英管中に約2ミリリット
ル/分の速度でて滴下熱分解し、得られた各粉末を粗く
粉砕した後に実施例1及び2と同条件にて各々仮焼し、
粉砕してセラミックス粉末を得た。図10はこのセラミ
ックス粉末のSEM写真(倍率1万倍)である。図10
に示されるように、比較例2の粉末は実施例1の粉末
(図3ないし図5参照)とは大きく構成が異なり、粒子
形が球形ではなく、不定形であった。また実施例1と同
様にレ−ザ−回折散乱による方法で、仮焼後の粉末の粒
子の直径及び個数を測定したところ、図11に示される
ように実施例1の粉末よりも粒度はより大きく、かつ広
い範囲に分布していた。この比較例2のセラミックス粉
末を用いて実施例3と同様に比較例の性能評価セルを作
成し、以下の試験例に使用した。
Comparative Example 2 A quartz tube in which a raw material mixed solution obtained by mixing and stirring the same raw material solution I and raw material solution II as in Examples 1 and 2 under the same conditions as in Examples 1 and 2 was maintained at 750 ° C. Pyrolysis was carried out at a rate of about 2 ml / min, and the obtained powders were roughly crushed and then calcined under the same conditions as in Examples 1 and 2,
It was crushed to obtain a ceramic powder. FIG. 10 is an SEM photograph (magnification: 10,000 times) of this ceramic powder. Figure 10
As shown in (1), the powder of Comparative Example 2 had a large difference from the powder of Example 1 (see FIGS. 3 to 5), and the particle shape was not spherical but amorphous. Further, when the diameter and number of particles of the powder after calcination were measured by the method by laser diffraction scattering as in Example 1, the particle size was higher than that of the powder of Example 1 as shown in FIG. It was large and distributed over a wide range. Using the ceramic powder of Comparative Example 2, a performance evaluation cell of Comparative Example was prepared in the same manner as in Example 3 and used in the following test examples.

【0020】試験例 本例の性能評価セル及び比較例2の性能評価セルの電気
性能を比較するため以下の試験を行った。まず電流遮断
法により、両者の電流密度200mA/cm2 における空気極及
び燃料極の抵抗分極を測定した。電解質の抵抗分極を別
に測定し、空気極及び燃料極の各々の抵抗分極から電解
質の抵抗分極の1/2を差し引くことにより、電解質の
抵抗分極を除いた空気極及び燃料極の各々の電圧損失を
得た。このようにして得られた空気極の電圧損失の結果
を図12に、燃料極の電圧損失の結果を図13に示す。
図12及び図13中、縦軸は電圧損失(数値単位mV)
を示し、棒グラフAは比較例のセルについての結果であ
り、棒グラフBは本例のセルについての結果である。ま
た棒グラフA、B中、白抜きの部分は抵抗分極の値を示
し、斜線部分は活性化分極の値を示している。図12及
び図13に示されるように本発明の微細複合セラミック
ス粉末の製造方法により得られる電極の電圧損失は滴下
熱分解法で得られるものに対し、減少し、特に図12に
示されるように空気極の電圧損失の抵抗分極は大幅に減
少した。
Test Example The following test was conducted to compare the electrical performances of the performance evaluation cell of this example and the performance evaluation cell of Comparative Example 2. First, the resistance polarization of the air electrode and the fuel electrode at both current densities of 200 mA / cm 2 was measured by the current interruption method. Measure the resistance polarization of the electrolyte separately and subtract 1/2 of the resistance polarization of the electrolyte from the resistance polarization of each of the air electrode and the fuel electrode to obtain the voltage loss of each of the air electrode and the fuel electrode excluding the resistance polarization of the electrolyte. Got The result of the voltage loss of the air electrode thus obtained is shown in FIG. 12, and the result of the voltage loss of the fuel electrode is shown in FIG.
In FIGS. 12 and 13, the vertical axis represents voltage loss (numerical unit: mV).
Bar graph A is the result for the cell of the comparative example, and bar graph B is the result for the cell of this example. Further, in the bar graphs A and B, the white portions show the values of resistance polarization, and the shaded portions show the values of activation polarization. As shown in FIGS. 12 and 13, the voltage loss of the electrode obtained by the method for producing a fine composite ceramic powder of the present invention is smaller than that obtained by the dropping pyrolysis method, and particularly as shown in FIG. The resistance polarization of the cathode voltage loss was greatly reduced.

【0021】次に両セルについてガルバノスタットを用
いて定電流を取り出した際の電圧を測定することによ
り、電流密度と出力密度との関係を調べた。この結果を
図14に示す。図14中、縦軸は出力密度(数値単位 W
/cm 2 )を示し、横軸は電流密度(数値単位 mA/cm2
を示す。またグラフIは本例のセルについての、グラフ
IIは比較例のセルについての結果を各々示している。図
14に示されるように滴下熱分解法で得られる比較例の
電極では、セル(電解質8 モル% YSZ 1mmt )の出力
密度は電流密度500 mA/cm 2 で、0.24 W/cm 2 となり、
それ以後はほぼ一定になる傾向にあるのに対し、本発明
の微細複合セラミックス粉末の製造方法により得られる
本例の電極を用いた場合の出力密度は電流密度500 mA/c
m 2 で、0.3 W/cm2 を越え、さらに増加する傾向にあっ
た。
Next, the relationship between the current density and the output density was investigated by measuring the voltage when a constant current was taken out using a galvanostat for both cells. The result is shown in FIG. In FIG. 14, the vertical axis represents the power density (number unit: W
/ cm 2 ), and the horizontal axis shows the current density (numerical unit: mA / cm 2 ).
Indicates. Graph I is the graph for the cell of this example.
II shows the results for the cells of the comparative examples. As shown in FIG. 14, in the electrode of the comparative example obtained by the dropping pyrolysis method, the power density of the cell (electrolyte 8 mol% YSZ 1 mmt) was 0.24 W / cm 2 at a current density of 500 mA / cm 2 .
After that, it tends to be almost constant, whereas the output density when using the electrode of this example obtained by the method for producing a fine composite ceramic powder of the present invention is a current density of 500 mA / c.
In m 2, it exceeded 0.3 W / cm 2 and tended to further increase.

【0022】以上の試験例に示されるように実施例1及
び実施例2の微細複合セラミックス粉末を電極材料とし
たSOFCの電極はその内部抵抗が減少し、電気特性を
向上させることができた。又、本例の微細複合セラミッ
クス粉末は個々の二次粒子内で各材料原子の一次粒子が
略均一に高分散しているのでSOFCを高温で長時間運
転した場合に生ずる各原子の微粒子間の焼結による性能
劣化を抑制することが可能である。
As shown in the above test examples, the SOFC electrodes using the fine composite ceramic powders of Example 1 and Example 2 as the electrode material had a reduced internal resistance and improved electrical characteristics. Further, in the fine composite ceramic powder of this example, the primary particles of each material atom are highly uniformly dispersed in each secondary particle. Therefore, when the SOFC is operated at high temperature for a long time, fine particles of each atom are generated. Performance deterioration due to sintering can be suppressed.

【0023】さらに燃料電池の電解質として、一般には
YSZが使用されており、強度不足のため、大型化の阻
害要因となっているが、本発明方法により、YSZと A
l2O3 、MgO 、SiC と等の複合材を製造すると、高強度
の電解質材料を得ることができる。
Further, YSZ is generally used as the electrolyte of the fuel cell, and due to lack of strength, it is an obstacle to the increase in size.
When a composite material such as l 2 O 3 , MgO, or SiC is manufactured, a high-strength electrolyte material can be obtained.

【0024】[0024]

【発明の効果】請求項1に記載の微細複合セラミックス
粉末の製造方法によると、ミストが球形状であり、この
ミストを乾燥後、熱分解することにより、球形状の二次
粒子を有する微細複合セラミックス粉末を容易に製造す
ることができる。請求項2に記載の微細複合セラミック
ス粉末の製造装置によると、請求項1に記載の微細複合
セラミックス粉末の製造方法を容易に実施できる。請求
項3に記載の微細複合セラミックス粉末によると、従来
の製造方法によっては得られ難かった球形状の二次粒子
が得られる。従って、触媒、燃料電池電極等の新しい材
料が提供される。請求項3に記載の固体電解質型燃料電
池によると、従来の固体電解質型燃料電池よりも電気特
性を向上させることができるので、高い発電効率を有す
る将来の新しい電池である燃料電池の実用化に大きく貢
献する。
According to the method for producing a fine composite ceramic powder according to claim 1, the mist has a spherical shape, and the fine mist having spherical secondary particles is obtained by drying and then thermally decomposing the mist. Ceramic powder can be easily manufactured. According to the apparatus for producing a fine composite ceramic powder described in claim 2, the method for producing a fine composite ceramic powder according to claim 1 can be easily implemented. According to the fine composite ceramic powder of the third aspect, spherical secondary particles which are difficult to obtain by the conventional manufacturing method can be obtained. Therefore, new materials such as catalysts, fuel cell electrodes, etc. are provided. According to the solid oxide fuel cell of claim 3, the electric characteristics can be improved as compared with the conventional solid oxide fuel cell, so that the fuel cell, which is a future new battery having high power generation efficiency, can be put to practical use. Make a big contribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の微細複合セラミックス粉末の製造過程
の説明図である。
FIG. 1 is an explanatory view of a manufacturing process of a fine composite ceramic powder of the present invention.

【図2】実施例1における微細複合セラミックス粉末の
製造装置の説明図である。
2 is an explanatory view of an apparatus for producing fine composite ceramic powder in Example 1. FIG.

【図3】実施例1の微細複合セラミックス粉末の電子顕
微鏡写真である。
FIG. 3 is an electron micrograph of the fine composite ceramic powder of Example 1.

【図4】である。実施例1の微細複合セラミックス粉末
の電子顕微鏡写真である。
FIG. 3 is an electron micrograph of the fine composite ceramic powder of Example 1.

【図5】実施例1の微細複合セラミックス粉末の電子顕
微鏡写真である。
5 is an electron micrograph of the fine composite ceramic powder of Example 1. FIG.

【図6】実施例1の微細複合セラミックス粉末の粒度分
布図である。
6 is a particle size distribution chart of the fine composite ceramic powder of Example 1. FIG.

【図7】比較例1の微細複合セラミックス粉末の電子顕
微鏡写真である。
7 is an electron micrograph of the fine composite ceramic powder of Comparative Example 1. FIG.

【図8】比較例1の微細複合セラミックス粉末の電子顕
微鏡写真である。
8 is an electron micrograph of the fine composite ceramic powder of Comparative Example 1. FIG.

【図9】比較例1の微細複合セラミックス粉末の製造過
程の説明図である。
FIG. 9 is an explanatory diagram of a manufacturing process of the fine composite ceramic powder of Comparative Example 1.

【図10】比較例2の微細複合セラミックス粉末の電子
顕微鏡写真である。
FIG. 10 is an electron micrograph of the fine composite ceramic powder of Comparative Example 2.

【図11】比較例2の微細複合セラミックス粉末の粒度
分布図である。
11 is a particle size distribution chart of the fine composite ceramic powder of Comparative Example 2. FIG.

【図12】実施例3と比較例のセルの空気極における電
圧損失比較図である。
FIG. 12 is a voltage loss comparison diagram at the air electrodes of the cells of Example 3 and the comparative example.

【図13】実施例3と比較例のセルの燃料極における電
圧損失比較図である。
FIG. 13 is a voltage loss comparison diagram at the fuel electrodes of the cells of Example 3 and the comparative example.

【図14】実施例3と比較例のセルの電流密度と出力密
度の関係図である。
FIG. 14 is a graph showing the relationship between the current density and the output density of the cells of Example 3 and Comparative Example.

【符号の説明】[Explanation of symbols]

1 製造装置 2 霧化室 3 超音波振動子 4 ガス流入口 5 石英管 6 電気炉 7A,7B,7C,7D 加熱ゾ−ン 8 電気集塵器 M ミスト S 原料混合液 P1 材料の粒子 P2 材料の粒子 TS 中実の二次粒子 1 Manufacturing Equipment 2 Atomization Chamber 3 Ultrasonic Transducer 4 Gas Inlet 5 Quartz Tube 6 Electric Furnace 7A, 7B, 7C, 7D Heating Zone 8 Electrostatic Precipitator M Mist S Raw Material Mixture P1 Material Particles P2 Material Particles TS Solid secondary particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/626 35/495 H01M 4/48 4/86 T ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C04B 35/626 35/495 H01M 4/48 4/86 T

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二種類以上の材料が混合された溶液をミ
スト化し、このミストを前記材料が熱分解する温度より
も低い温度にて乾燥する第一工程及びこの第一工程に続
いて前記材料を熱分解する第二工程を有することを特徴
とする微細複合セラミックス粉末の製造方法。
1. A first step of forming a mist of a solution in which two or more kinds of materials are mixed, and drying the mist at a temperature lower than a temperature at which the material is pyrolyzed, and the material following the first step. A method for producing a fine composite ceramic powder, which comprises a second step of thermally decomposing the above.
【請求項2】 二種類以上の材料が混合された溶液をミ
スト化する手段及びこのミストを移動させる手段及び前
記ミストの移動通路を有し、前記移動通路の長手方向に
複数個の熱発生手段が配置されていることを特徴とする
微細複合セラミックス粉末の製造装置。
2. A means for mistizing a solution in which two or more kinds of materials are mixed, a means for moving the mist, and a moving passage for the mist, and a plurality of heat generating means in the longitudinal direction of the moving passage. An apparatus for producing a fine composite ceramic powder, characterized in that
【請求項3】 請求項1に記載の製造方法により製造さ
れる微細複合セラミックス粉末であって、二種類以上の
材料から生じた二種類以上の一次粒子と、これらの二種
類以上の一次粒子が略均一に分散した状態で集合して生
成された中実で球形の二次粒子とを有することを特徴と
する微細複合セラミックス粉末。
3. The fine composite ceramic powder produced by the production method according to claim 1, comprising two or more types of primary particles generated from two or more types of materials, and two or more types of these primary particles. A fine composite ceramic powder characterized by having solid and spherical secondary particles produced by aggregating in a substantially uniformly dispersed state.
【請求項4】 請求項3に記載の微細複合セラミックス
粉末を電極材料としたことを特徴とする固体電解質型燃
料電池。
4. A solid oxide fuel cell, comprising the fine composite ceramic powder according to claim 3 as an electrode material.
JP08239994A 1994-03-28 1994-03-28 Method and apparatus for producing fine composite ceramic powder, solid oxide fuel cell using said ceramic powder and said ceramic powder as electrode material Expired - Fee Related JP3160147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08239994A JP3160147B2 (en) 1994-03-28 1994-03-28 Method and apparatus for producing fine composite ceramic powder, solid oxide fuel cell using said ceramic powder and said ceramic powder as electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08239994A JP3160147B2 (en) 1994-03-28 1994-03-28 Method and apparatus for producing fine composite ceramic powder, solid oxide fuel cell using said ceramic powder and said ceramic powder as electrode material

Publications (2)

Publication Number Publication Date
JPH07267613A true JPH07267613A (en) 1995-10-17
JP3160147B2 JP3160147B2 (en) 2001-04-23

Family

ID=13773520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08239994A Expired - Fee Related JP3160147B2 (en) 1994-03-28 1994-03-28 Method and apparatus for producing fine composite ceramic powder, solid oxide fuel cell using said ceramic powder and said ceramic powder as electrode material

Country Status (1)

Country Link
JP (1) JP3160147B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038133A1 (en) * 1997-02-27 1998-09-03 Valence Technology, Inc. Novel method for preparing lithium manganese oxide compounds
CN1091545C (en) * 1996-08-13 2002-09-25 株式会社村田制作所 Mannufacturing method of lithium complex oxide comprising cobalt or nickel
JP2006147569A (en) * 2004-11-17 2006-06-08 Samsung Sdi Co Ltd Lithium ion secondary battery
US7132094B2 (en) 2003-04-17 2006-11-07 Yazaki Corporation Method of producing hollow alumina particle
JP2007115536A (en) * 2005-10-20 2007-05-10 Tokyo Electric Power Co Inc:The Manufacturing method of electrode for porous solid oxide fuel cell
JP2008071668A (en) * 2006-09-15 2008-03-27 Tokyo Electric Power Co Inc:The Composite particle powder and its manufacturing method, electrode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel battery cell
JP2010138019A (en) * 2008-12-10 2010-06-24 Sumitomo Osaka Cement Co Ltd Composite ceramic powder and method for producing the same, and solid oxide fuel cell
JP2010282932A (en) * 2009-06-08 2010-12-16 Tokyo Electric Power Co Inc:The Electrode for solid oxide fuel cell, and cell of solid oxide fuel cell
JP2011190148A (en) * 2010-03-15 2011-09-29 Sumitomo Osaka Cement Co Ltd Composite ceramic powder and method for producing the same, and solid oxide fuel cell
JP2012514827A (en) * 2009-01-05 2012-06-28 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Method for producing nickel cermet electrode
JP2012133893A (en) * 2010-12-17 2012-07-12 Noritake Co Ltd Composite particle for fuel electrode of sofc and method for producing composite particle
JP2015201440A (en) * 2014-03-31 2015-11-12 Dowaエレクトロニクス株式会社 Composite oxide powder for fuel battery air electrode, manufacturing method for the same, fuel battery air electrode and fuel battery
JP2015229622A (en) * 2014-06-06 2015-12-21 太平洋セメント株式会社 Production apparatus of hollow particle
CN108592641A (en) * 2018-05-07 2018-09-28 索通发展股份有限公司 A kind of pre-heated electric forge furnace

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091545C (en) * 1996-08-13 2002-09-25 株式会社村田制作所 Mannufacturing method of lithium complex oxide comprising cobalt or nickel
WO1998038133A1 (en) * 1997-02-27 1998-09-03 Valence Technology, Inc. Novel method for preparing lithium manganese oxide compounds
US7132094B2 (en) 2003-04-17 2006-11-07 Yazaki Corporation Method of producing hollow alumina particle
US7964311B2 (en) 2004-11-17 2011-06-21 Samsung Sdi Co., Ltd Lithium ion secondary battery
JP2006147569A (en) * 2004-11-17 2006-06-08 Samsung Sdi Co Ltd Lithium ion secondary battery
US8192873B2 (en) 2004-11-17 2012-06-05 Samsung Sdi Co., Ltd. Lithium ion secondary battery
US8101301B2 (en) 2004-11-17 2012-01-24 Samsung Sdi Co., Ltd. Lithium ion secondary battery
JP4499020B2 (en) * 2004-11-17 2010-07-07 三星エスディアイ株式会社 Lithium ion secondary battery
JP2007115536A (en) * 2005-10-20 2007-05-10 Tokyo Electric Power Co Inc:The Manufacturing method of electrode for porous solid oxide fuel cell
JP2008071668A (en) * 2006-09-15 2008-03-27 Tokyo Electric Power Co Inc:The Composite particle powder and its manufacturing method, electrode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel battery cell
JP2010138019A (en) * 2008-12-10 2010-06-24 Sumitomo Osaka Cement Co Ltd Composite ceramic powder and method for producing the same, and solid oxide fuel cell
JP2012514827A (en) * 2009-01-05 2012-06-28 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Method for producing nickel cermet electrode
JP2010282932A (en) * 2009-06-08 2010-12-16 Tokyo Electric Power Co Inc:The Electrode for solid oxide fuel cell, and cell of solid oxide fuel cell
JP2011190148A (en) * 2010-03-15 2011-09-29 Sumitomo Osaka Cement Co Ltd Composite ceramic powder and method for producing the same, and solid oxide fuel cell
JP2012133893A (en) * 2010-12-17 2012-07-12 Noritake Co Ltd Composite particle for fuel electrode of sofc and method for producing composite particle
JP2015201440A (en) * 2014-03-31 2015-11-12 Dowaエレクトロニクス株式会社 Composite oxide powder for fuel battery air electrode, manufacturing method for the same, fuel battery air electrode and fuel battery
JP2015229622A (en) * 2014-06-06 2015-12-21 太平洋セメント株式会社 Production apparatus of hollow particle
CN108592641A (en) * 2018-05-07 2018-09-28 索通发展股份有限公司 A kind of pre-heated electric forge furnace

Also Published As

Publication number Publication date
JP3160147B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
JP3193294B2 (en) Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same
US10749173B2 (en) Process for the preparation of lithium titanium spinel and its use
JP3160147B2 (en) Method and apparatus for producing fine composite ceramic powder, solid oxide fuel cell using said ceramic powder and said ceramic powder as electrode material
JP5612392B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP4037899B2 (en) Powdered metal oxide mother particles, powdered metal oxide child particles, method for producing powdered metal oxide particles, powdered composite particles, and electrode for solid oxide fuel cell
US11342581B2 (en) Ceramic powder material, method for producing ceramic powder material, and battery
KR20150132375A (en) Method for the use of slurries in spray pyrolysis for the production of non-hollow, porous particles
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
JP2015041597A (en) Complex oxide powder for solid oxide type fuel batteries, and manufacturing method thereof
JP2022523304A (en) Ceramic composite oxide
JP6673511B1 (en) Powder for solid oxide fuel cell air electrode and method for producing the same
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2010059046A (en) Nickel oxide-stabilized zirconia composite oxide, method for producing the same, and anode for solid oxide type fuel cell comprising the composite oxide
JP2010282932A (en) Electrode for solid oxide fuel cell, and cell of solid oxide fuel cell
JP6690795B1 (en) Powder for solid oxide fuel cell air electrode and method for producing the same
KR100800289B1 (en) The processing method of co-synthesis nanosized LSM-YSZ composites with enhanced electrochanmical property for solid oxide fuel cell, and the nanosized LSM-YSZ composites synthesized by the above processing method
Ismail et al. Preparation of nano-structured cathode for proton-conducting fuel cell by dispersing agent-assisted sol-gel method
JP6787537B1 (en) Ytterbium-added barium zirconate particles and their manufacturing method
JP2018166100A (en) Manufacturing method of negative electrode active material for lithium ion secondary battery
JP2005139024A (en) Mixed conductive ceramic material and solid oxide type fuel cell using this material
CN116454337B (en) Zirconia-based electrolyte and preparation method and application thereof
EP4382486A1 (en) Perovskite composite oxide powder, air electrode for solid oxide fuel cells using same, and solid oxide fuel cell
Kinoshita et al. Synthesis of porous particles of SOFC anode and cathode materials by citric acid-addition ultrasonic spray pyrolysis (CA-USP)
Kinoshita et al. Submicron Particle Synthesis of Gd0. 1Ce0. 9O1. 95, NiO–Gd0. 1Ce0. 9O1. 95 and La0. 8Sr0. 2CoO3 by Ultrasonic Spray Pyrolysis
Hadji et al. Effect of the Complexing Agent in the Pechini Method on the Structural and Electrical Properties of an Ionic Conductor of Formula (x= 0, 0.05, 0.1, 0.15) La SrxAlO3− δ

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees