JP2015201440A - Composite oxide powder for fuel battery air electrode, manufacturing method for the same, fuel battery air electrode and fuel battery - Google Patents

Composite oxide powder for fuel battery air electrode, manufacturing method for the same, fuel battery air electrode and fuel battery Download PDF

Info

Publication number
JP2015201440A
JP2015201440A JP2015068081A JP2015068081A JP2015201440A JP 2015201440 A JP2015201440 A JP 2015201440A JP 2015068081 A JP2015068081 A JP 2015068081A JP 2015068081 A JP2015068081 A JP 2015068081A JP 2015201440 A JP2015201440 A JP 2015201440A
Authority
JP
Japan
Prior art keywords
air electrode
composite oxide
fuel cell
oxide powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015068081A
Other languages
Japanese (ja)
Other versions
JP6664881B2 (en
Inventor
慎太郎 小川
Shintaro Ogawa
慎太郎 小川
酒井 敏行
Toshiyuki Sakai
敏行 酒井
晶 永富
Akira Nagatomi
晶 永富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54552492&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015201440(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015068081A priority Critical patent/JP6664881B2/en
Publication of JP2015201440A publication Critical patent/JP2015201440A/en
Application granted granted Critical
Publication of JP6664881B2 publication Critical patent/JP6664881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite oxide powder for a fuel battery air electrode that has excellent air permeability, provides uniform gas flow and forms many three-layer interfaces efficiently at a stage that a sintered body as an air electrode of a fuel battery is formed, thereby increasing the power generation efficiency and exerting high electrical conductivity, a manufacturing method for the composite oxide powder, and an air electrode and a fuel battery that use the composite oxide powder for a fuel battery air electrode.SOLUTION: To provide a composite oxide powder for a fuel battery air electrode that has excellent air permeability, provides uniform gas flow and forms many three-layer interfaces efficiently at a stage that a sintered body as an air electrode of a fuel battery is formed, thereby increasing the power generation efficiency and exerting high electrical conductivity, a manufacturing method for the composite oxide powder, and an air electrode and a fuel battery that use the composite oxide powder for a fuel battery air electrode. Composite oxide powder for a fuel battery air electrode is composite oxide represented by a general formula of ABO(A element is one or more elements selected from the group consisting of La, Sr and Ca, and B element is one or more elements selected from the group consisting of Mn, Co, Fe and Ni), and circularity ranges from not less than 1.0 to not more than 1.5.

Description

本発明は、固体電解質型燃料電池(本発明において「SOFC」と記載する場合がある。)の空気電極へ好適に用いられる、燃料電池空気電極用複合酸化物粉末とその製造方法、当該燃料電池空気電極用複合酸化物粉末を用いた燃料電池空気電極並びに燃料電池に係る。   The present invention relates to a composite oxide powder for a fuel cell air electrode, a method for producing the same, and the fuel cell, preferably used for an air electrode of a solid oxide fuel cell (may be described as “SOFC” in the present invention). The present invention relates to a fuel cell air electrode and a fuel cell using a composite oxide powder for an air electrode.

一般的なSOFCを例として参照しながら、SOFCの空気電極について、簡単に説明する。
SOFCは、一般的に、多孔質支持管−空気電極−固体電解質−燃料電極−インターコネクターで構成されるセルから構成されている。そして、当該空気電極層へ空気(酸素)を流し、燃料電極層側へ燃料ガスを流すことで、当該固体電解質層内で化学的燃焼が起こり、当該空気電極と当該燃料電極との間で発電が行われるものである。
The SOFC air electrode will be briefly described with reference to a general SOFC as an example.
The SOFC is generally composed of a cell composed of a porous support tube, an air electrode, a solid electrolyte, a fuel electrode, and an interconnector. Then, air (oxygen) is allowed to flow through the air electrode layer, and fuel gas is allowed to flow toward the fuel electrode layer, thereby causing chemical combustion in the solid electrolyte layer and generating power between the air electrode and the fuel electrode. Is done.

特許文献1には、上述した空気電極用の材料として、粒度分布5〜150μmの粗粒粉100質量部に対し、0.1〜5μmの微粒粉0.5〜40質量部を混合して、成型、焼結することで、空気電極の必要特性である通気性・強度・導電性を兼ね備えたLaSrMnO焼結体を得られることが提案されている。
また特許文献2には、空気電極用の材料である粗粒粉の製造方法として、金属塩の溶液を噴霧乾燥し、焼成する製造方法が提案されている。
In Patent Literature 1, as a material for the air electrode described above, 0.1 to 5 μm of fine powder 0.5 to 40 parts by weight is mixed with 100 parts by weight of coarse powder of particle size distribution 5 to 150 μm, It has been proposed that a LaSrMnO 3 sintered body having air permeability, strength, and conductivity, which are necessary characteristics of an air electrode, can be obtained by molding and sintering.
Further, Patent Document 2 proposes a manufacturing method for spray-drying and firing a metal salt solution as a method for manufacturing coarse powder that is a material for an air electrode.

特開平7−215764号公報Japanese Patent Laid-Open No. 7-215764 特開2012−138256号公報JP 2012-138256 A

燃料電池の空気電極が満たすべき特性として、化学的安定性、通気性、導電性、高触媒作用、機械的特性、原料コスト等が考えられる。本発明者らは、研究および検討の結果、通気性および導電性のさらなる向上が肝要であることに想到した。   As characteristics to be satisfied by the air electrode of the fuel cell, chemical stability, air permeability, conductivity, high catalytic action, mechanical characteristics, raw material cost, and the like can be considered. As a result of research and examination, the present inventors have come up with the idea that further improvement in air permeability and conductivity is essential.

本発明者らが知見した課題について具体的に説明する。
第1の課題は、金属塩の溶融溶液の噴霧乾燥法など従来の技術で製造された粒子径が20μm程度の空気電極粉末は、サブミクロンから数ミクロンの細かな一次粒子の集合体であって粒子形状が不揃いである。この為、空気電極たる焼結体となった段階において、通気に必要な気孔の分布が不均一となってしまうことである。気孔の分布が不均一となる結果、空気電極内における粒子間のガスの流れが不均一となる。さらに、当該粒子と電解質層との間の均一な空孔である3層界面(空気電極、電解質、気相の3相が接する場所である。)が効率的に形成されない為、発電効率が低下してしまうことである。
The problems found by the present inventors will be specifically described.
The first problem is that the air electrode powder having a particle size of about 20 μm manufactured by a conventional technique such as a spray drying method of a molten metal salt solution is an aggregate of fine primary particles of submicron to several microns. The particle shape is uneven. For this reason, in the stage which became the sintered compact which is an air electrode, it is that the distribution of the hole required for ventilation | gas_flow becomes non-uniform | heterogenous. As a result of the non-uniform distribution of the pores, the gas flow between the particles in the air electrode becomes non-uniform. Furthermore, since the three-layer interface (where the air electrode, the electrolyte, and the gas phase are in contact with each other) that is a uniform pore between the particles and the electrolyte layer is not efficiently formed, power generation efficiency is reduced. It is to do.

第2の課題は、従来技術で製造された空気電極の原料である粗粒粉は、粒子内部に過剰な空孔が多数の存在することを知見したことである。当該過剰な空孔が多数存在する為、空気電極たる焼結体となった段階でも、当該空孔が存在したままとなり、電流パスが妨げられ、空気電極の導電率が低下してしまうことである。   The second problem is that the coarse powder, which is a raw material of the air electrode manufactured by the conventional technique, has found that a large number of excessive pores exist inside the particles. Since there are a large number of the excess pores, even when the sintered body is the air electrode, the pores still exist, the current path is hindered, and the conductivity of the air electrode is reduced. is there.

本発明は、上述した状況の下に為されたものであり、その解決しようとする課題は、燃料電池の空気電極たる焼結体となった段階において、通気性が良くガスの流れが均一となり、多数の3層界面が効率的に形成されることで発電効率に優れ、且つ、高い導電率を発揮する燃料電池空気電極用複合酸化物粉末とその製造方法、当該燃料電池空気電極用複合酸化物粉末を用いた燃料電池空気電極並びに燃料電池とを、提供することを目的とする。   The present invention has been made under the above-described circumstances, and the problem to be solved is that the gas flow is uniform and the gas flow becomes uniform at the stage where the sintered body is the air electrode of the fuel cell. , A fuel cell air electrode composite oxide powder that is excellent in power generation efficiency and exhibits high conductivity by efficiently forming a large number of three-layer interfaces, and a method for producing the same, and the fuel cell air electrode composite oxide An object of the present invention is to provide a fuel cell air electrode and a fuel cell using a material powder.

上述の課題を解決する為、本発明者らは鋭意研究を行った。
そして、上述した第1の課題である空気電極内におけるガスの流れの均一化を実現するには、燃料電池空気電極用複合酸化物粉末を構成する粒子の真円度を高めれば良いことに想到した。即ち、燃料電池空気電極用複合酸化物粉末を構成する粒子の真円度を高めることにより、これらの粒子が最密充填されたときに、当該粒子間、および、当該粒子と電解質層との間の均一な空孔である3層界面が、効率的に多数形成されることに想到したものである。
また、上述した第2の課題である空気電極の原料粗粒粉における粒子内部の過剰な空孔の存在を回避するには、当該粒子内部の充填率を80%以上とすれば良いことにも想到したものである。
In order to solve the above-mentioned problems, the present inventors have conducted intensive research.
Then, in order to realize the uniform gas flow in the air electrode, which is the first problem described above, it is thought that the roundness of the particles constituting the composite oxide powder for a fuel cell air electrode may be increased. did. That is, by increasing the roundness of the particles constituting the composite oxide powder for a fuel cell air electrode, when these particles are packed most closely, between the particles and between the particles and the electrolyte layer It is conceived that a large number of three-layer interfaces, which are uniform pores, are efficiently formed.
Moreover, in order to avoid the presence of excessive voids inside the particles in the air electrode raw material coarse powder, which is the second problem described above, the filling rate inside the particles may be 80% or more. It has been conceived.

即ち、上述の課題を解決する為の、第1の発明は、
一般式ABOで表記される複合酸化物(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Fe、Niから選択される一種以上の元素である。)であって、
真円度が1.0以上1.5以下であることを特徴とする燃料電池空気電極用複合酸化物粉末である。
第2の発明は、
一般式ABOで表記される複合酸化物(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Fe、Niから選択される一種以上の元素である。)であって、
円形度が1.0以上1.5以下であることを特徴とする燃料電池空気電極用複合酸化物粉末である。
第3の発明は、
BETの値が、0.5m/g以下であることを特徴とする第1または第2の発明に記載の燃料電池空気電極用複合酸化物粉末である。
第4の発明は、
累積粒径D50が20μm以上30μm以下であることを特徴とする第1から第3の発明のいずれかに記載の燃料電池空気電極用複合酸化物粉末である。
第5の発明は、
一般式ABOで表記される複合酸化物(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Feから選択される一種以上の元素である。)であって、
真円度が1.0以上1.5以下、且つ、累積粒径D50が20μm以上30μm以下であることを特徴とする燃料電池空気電極用複合酸化物粉末である。
第6の発明は、
一般式ABOで表記される複合酸化物(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Feから選択される一種以上の元素である。)であって、
円形度が1.0以上1.5以下、且つ、累積粒径D50が20μm以上30μm以下であることを特徴とする燃料電池空気電極用複合酸化物粉末である。
第7の発明は、
BETの値が、0.5m/g以下であることを特徴とする第5または第6の発明に記載の燃料電池空気電極用複合酸化物粉末である。
第8の発明は、
第1から第7の発明のいずれかに記載の燃料電池空気電極用複合酸化物粉末であって、
当該粉末に含まれる粒子内部の充填率が80%以上あることを特徴とする燃料電池空気電極用複合酸化物粉末である。
第9の発明は、
原料スラリーを噴霧乾燥して造粒粉を得、当該造粒粉を焼成、解粒することで、燃料電池空気電極用複合酸化物粉末を得る際に、当該原料スラリーにおける粉末の固形分濃度を25質量%以上とし、原料スラリーの累積粒径D50を0.8μm以上3.0μm以下とし、開放系にて焼成が行われることを特徴とする燃料電池空気電極用複合酸化物粉末の製造方法である。
第10の発明は、
前記原料スラリーにおける粉末の固形分濃度を50質量%以上とすることを特徴とする第9の発明に記載の燃料電池空気電極用複合酸化物粉末の製造方法である。
第11の発明は、
第1から第8の発明のいずれかに記載の燃料電池空気電極用複合酸化物粉末を含むことを特徴とする燃料電池空気電極である。
第12の発明は、
第1から第8の発明のいずれかに記載の燃料電池空気電極用複合酸化物粉末を含むことを特徴とする燃料電池である。
That is, the first invention for solving the above-mentioned problem is
A composite oxide represented by the general formula ABO 3 (where A element is one or more elements selected from La, Sr, and Ca, and B element is one or more elements selected from Mn, Co, Fe, and Ni) Element)
The composite oxide powder for a fuel cell air electrode has a roundness of 1.0 to 1.5.
The second invention is
A composite oxide represented by the general formula ABO 3 (where A element is one or more elements selected from La, Sr, and Ca, and B element is one or more elements selected from Mn, Co, Fe, and Ni) Element)
The composite oxide powder for a fuel cell air electrode has a circularity of 1.0 or more and 1.5 or less.
The third invention is
The composite oxide powder for a fuel cell air electrode according to the first or second invention, wherein the BET value is 0.5 m 2 / g or less.
The fourth invention is:
The composite oxide powder for a fuel cell air electrode according to any one of the first to third aspects, wherein the cumulative particle size D50 is 20 μm or more and 30 μm or less.
The fifth invention is:
A composite oxide represented by the general formula ABO 3 (where A element is one or more elements selected from La, Sr, and Ca, and B element is one or more elements selected from Mn, Co, and Fe) Yes, and
A composite oxide powder for a fuel cell air electrode having a roundness of 1.0 to 1.5 and a cumulative particle size D50 of 20 μm to 30 μm.
The sixth invention is:
A composite oxide represented by the general formula ABO 3 (where A element is one or more elements selected from La, Sr, and Ca, and B element is one or more elements selected from Mn, Co, and Fe) Yes, and
A composite oxide powder for a fuel cell air electrode, having a circularity of 1.0 to 1.5 and a cumulative particle size D50 of 20 μm to 30 μm.
The seventh invention
The composite oxide powder for a fuel cell air electrode according to the fifth or sixth invention, wherein the BET value is 0.5 m 2 / g or less.
The eighth invention
The composite oxide powder for a fuel cell air electrode according to any one of the first to seventh inventions,
The composite oxide powder for a fuel cell air electrode is characterized in that the filling rate inside the particles contained in the powder is 80% or more.
The ninth invention
When the raw material slurry is spray-dried to obtain a granulated powder, and the granulated powder is fired and pulverized to obtain a composite oxide powder for a fuel cell air electrode, the solid content concentration of the powder in the raw material slurry is determined. A method for producing a composite oxide powder for a fuel cell air electrode, characterized in that it is 25% by mass or more, the cumulative particle diameter D50 of the raw slurry is 0.8 μm or more and 3.0 μm or less, and firing is performed in an open system. is there.
The tenth invention is
The method for producing a composite oxide powder for a fuel cell air electrode according to the ninth aspect, wherein the solid content concentration of the powder in the raw slurry is 50% by mass or more.
The eleventh invention is
A fuel cell air electrode comprising the composite oxide powder for a fuel cell air electrode according to any one of the first to eighth inventions.
The twelfth invention
A fuel cell comprising the composite oxide powder for a fuel cell air electrode according to any one of the first to eighth inventions.

本発明によれば、燃料電池空気電極用複合酸化物粉末と電解質層との間において、均一な空孔である3相界面を多数生成出来るので、発電効率の高い空気電極を製造することが出来る。さらに、本発明によれば、当該燃料電池空気電極用複合酸化物粉末の導電性が高いので、発電効率の高い空気電極を製造することが出来る。   According to the present invention, since a large number of three-phase interfaces that are uniform pores can be generated between the composite oxide powder for a fuel cell air electrode and the electrolyte layer, an air electrode with high power generation efficiency can be manufactured. . Furthermore, according to the present invention, since the composite oxide powder for a fuel cell air electrode has high conductivity, an air electrode with high power generation efficiency can be manufactured.

空気電極を、上から見た場合と断面を見た場合とで、模式的に記載した図である。It is the figure which described typically the case where the air electrode was seen from the top and the case where the cross section was seen. 実施例に係る燃料電池空気電極用複合酸化物粉末のSEM像および断面像である。It is the SEM image and cross-sectional image of the complex oxide powder for fuel cell air electrodes which concern on an Example.

本発明に係る燃料電池空気電極用複合酸化物粉末(以下、本明細書において「粉末」と略記する場合がある。)、当該粉末を構成する粒子について説明する。
本発明に係る燃料電池空気電極用複合酸化物粉末は、一般式ABOで表わされる複合酸化物である(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Fe、Niから選択される一種以上の元素である)。
当該粉末を構成する粒子は、累積粒径D50が20μm以上30μm以下の球形粒子である。当該球形粒子における球形の度合は、真円度で表記したとき1.0以上1.5以下、円形度で表記したとき1.0以上1.5以下である。
そして、当該粒子のBET値は、0.5m/g以下、粒子内部の空隙率は20質量%以下(即ち、粒子内部の充填率は80%以上)である。
The composite oxide powder for a fuel cell air electrode according to the present invention (hereinafter sometimes abbreviated as “powder” in the present specification) and the particles constituting the powder will be described.
The composite oxide powder for a fuel cell air electrode according to the present invention is a composite oxide represented by the general formula ABO 3 (provided that the A element is one or more elements selected from La, Sr, and Ca, and the B element) Is one or more elements selected from Mn, Co, Fe, and Ni).
The particles constituting the powder are spherical particles having a cumulative particle diameter D50 of 20 μm or more and 30 μm or less. The degree of sphere in the spherical particles is 1.0 or more and 1.5 or less when expressed in roundness, and 1.0 or more and 1.5 or less when expressed in circularity.
And the BET value of the said particle | grain is 0.5 m < 2 > / g or less, and the porosity inside a particle | grain is 20 mass% or less (namely, the filling factor inside a particle | grain is 80% or more).

燃料電池の空気電極においては、酸素が空気電極内の空孔を移動して電解質と接し、電子を受け取って酸素イオンになることで反応が進行する。ここで当該反応は、空気電極、電解質、気相の3つの相が接している、所謂3相界面にて進行する。ここで本発明者らは、当該3層界面の存在個数を増やすことで、燃料電池の発電効率を上げることを考え研究を行った。そして、当該空気電極を構成する粒子が高い真円度(円形度)を有していれば良いことに想到したものである。   In the air electrode of a fuel cell, oxygen moves through the air holes in the air electrode, comes into contact with the electrolyte, receives electrons and becomes oxygen ions, and the reaction proceeds. Here, the reaction proceeds at a so-called three-phase interface in which three phases of an air electrode, an electrolyte, and a gas phase are in contact. Here, the present inventors have studied to increase the power generation efficiency of the fuel cell by increasing the number of the three-layer interfaces. The inventors have conceived that the particles constituting the air electrode only have to have high roundness (circularity).

当該構成を、図面を参照しながら説明する。
図1は、空気電極において、空気電極を構成する粒子と電解質とが接している部分を、上から見た場合と断面を見た場合とで、模式的に記載した図である。
即ち、空気電極を構成する粒子が高い真円度(円形度)を有する球形の場合、(A)に示すように当該粒子が細密充填の形をとって均一存在することとなる。そして(B)に示すように当該粒子間に均一に空孔が空き、酸素の流れが均一化すると伴に、多数の3層界面が効率的に形成されて、発電効率が上がることに依る。
一方、空気電極を構成する粒子の形状が、球形以外の例えば直方体の場合であると、(C)に示すように当該粒子間の接触の仕方により、空孔が存在しない部分と、大きな空孔が過剰に存在する部分とが形成される。この結果、(D)に示すように酸素の流れが不均一化すると伴に、3相界面が少なくなり発電効率が下がることに想到したものである。
The configuration will be described with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a portion of an air electrode where a particle constituting the air electrode is in contact with an electrolyte, when viewed from above and when viewed from a cross section.
That is, when the particles constituting the air electrode have a spherical shape with high roundness (circularity), the particles are uniformly present in a finely packed shape as shown in (A). Then, as shown in (B), vacancies are uniformly vacant between the particles, and the flow of oxygen becomes uniform, and at the same time, a large number of three-layer interfaces are efficiently formed, thereby increasing the power generation efficiency.
On the other hand, when the shape of the particles constituting the air electrode is, for example, a rectangular parallelepiped other than a sphere, a portion where no void exists and a large void depending on the manner of contact between the particles as shown in (C) Are formed in excess. As a result, as shown in (D), as the oxygen flow becomes non-uniform, the three-phase interface is reduced and the power generation efficiency is reduced.

本発明者らの検討によると、真円度や円形度が1.5よりも小さい場合、発電効率が保持された。これは、粒子の形状が球形から大きく形が崩れなかった為であると考えられる。
粒子が球形でありBETの値が0.5m/gより小さい場合、発電効率が保持された。これは、粒子表面の形状が凸凹にならず、平滑である為、空気電極の空孔が均一に生成した為であると考えられる。
一方、粒子内部の充填率が80%以上あると導電率が保持された。これは、粒子内部に空孔が無く、電流パスが良好であった為と考えられる。
According to the study by the present inventors, when the roundness or circularity is less than 1.5, the power generation efficiency is maintained. This is considered to be because the shape of the particles was not greatly deformed from the spherical shape.
When the particles were spherical and the BET value was less than 0.5 m 2 / g, the power generation efficiency was maintained. This is presumably because the pores of the air electrode were uniformly generated because the shape of the particle surface was not uneven but smooth.
On the other hand, the electrical conductivity was maintained when the filling rate inside the particles was 80% or more. This is presumably because there were no vacancies inside the particles and the current path was good.

以下、本発明に係る燃料電池空気電極用複合酸化物粉末の製造方法について詳細に説明する。
(1)湿式粉砕
本発明に係る燃料電池空気電極用複合酸化物粉末の原料として、A元素およびB元素の水に不溶性の塩を使用し原料スラリーを得る。これは、後工程において噴霧乾燥により、造粒粉を製造する為である。
A元素およびB元素の原料塩は、水に不溶性の塩であれば、特に限定せずに使用できるが、仮焼工程において複合酸化物以外の元素がガスとして脱離される塩であることが、不純物の低減の観点から望ましい。具体的には、A元素およびB元素の酸化物や炭酸塩などが、好ましい例としてあげられる。尚、各原料塩中の不純物については、重量で100ppm以下となるように原料を選定すればよい。
具体的には、A元素原料およびB元素原料の所定量を秤量し、純水と混合してスラリーを得る。当該原料スラリーにおける粉末の固形分濃度は、25質量%以上であれば良好な特性を有する燃料電池空気電極用複合酸化物粉末を得ることが出来た。さらに、乾燥効率の観点からは、当該原料スラリーにおける粉末の固形分濃度は40質量%以上が望ましい。尤も、原料スラリーにおける粉末の固形分濃度が50質量%以上となると、スラリーの粘度が高くなり、原料の粉砕が困難になる。そこで、原料スラリーにおける粉末の固形分濃度が50質量%以上の場合は、原料スラリーへ分散剤を添加することが望ましい。当該分散剤としては、ポリアクリル酸アンモニウム等を好ましく用いることが出来る。
Hereinafter, the method for producing a composite oxide powder for a fuel cell air electrode according to the present invention will be described in detail.
(1) Wet pulverization As a raw material of the composite oxide powder for a fuel cell air electrode according to the present invention, a raw material slurry is obtained by using water insoluble salts of element A and element B. This is because the granulated powder is produced by spray drying in the subsequent step.
The raw material salt of element A and element B can be used without particular limitation as long as it is an insoluble salt in water, but it is a salt from which elements other than the composite oxide are eliminated as a gas in the calcination step. This is desirable from the viewpoint of reducing impurities. Specifically, oxides and carbonates of element A and element B are preferable examples. In addition, what is necessary is just to select a raw material so that it may become 100 ppm or less by weight about the impurity in each raw material salt.
Specifically, predetermined amounts of the A element raw material and the B element raw material are weighed and mixed with pure water to obtain a slurry. If the solid content concentration of the powder in the raw material slurry is 25% by mass or more, a composite oxide powder for a fuel cell air electrode having good characteristics could be obtained. Furthermore, from the viewpoint of drying efficiency, the solid content concentration of the powder in the raw slurry is desirably 40% by mass or more. However, when the solid content concentration of the powder in the raw material slurry is 50% by mass or more, the viscosity of the slurry becomes high and it becomes difficult to pulverize the raw material. Therefore, when the solid content concentration of the powder in the raw slurry is 50% by mass or more, it is desirable to add a dispersant to the raw slurry. As the dispersant, ammonium polyacrylate or the like can be preferably used.

湿式粉砕はビーズミルで行う。粉砕メディアの素材は、機械的強度の高いものならば限定せずに使用できる。具体的には、強度が高いZrビーズが好ましい。また、ZrはFe等の元素に比べ、例えコンタミが発生しても許容される範囲が大きい。従って、当該コンタミの観点からもZrビーズが好ましい。ビーズ径がφ2.0mm以下であると粉砕効率を担保出来るので好ましい。
湿式粉砕後の原料スラリーは、累積粒径D50が5μm未満であれば、後述する焼成において、一般式ABOで表記される複合酸化物相以外の異相が生成せず好ましい。原料スラリーの粒度分布のD50が5.0μm以下であれば、造粒物内の部位による組成の偏りが少ないので異相の生成が抑制され、且つ粒子形状の歪みが小さくなる。そして、累積粒径D50は小さい程好ましいが、0.8μm以上あればコンタミが増加を抑制できる。当該観点から、D50は0.8μm以上3.0μm以下であることが好ましい。さらに、上述した本発明に係る粉末を構成する粒子内部の充填率を上げる観点から、0.8≦D50<1.2μmで、一山分布の粒度分布を有することがさらに好ましい。
Wet grinding is performed with a bead mill. The material of the grinding media can be used without limitation as long as it has high mechanical strength. Specifically, Zr beads having high strength are preferable. Further, Zr has a larger allowable range even when contamination occurs, compared to an element such as Fe. Therefore, Zr beads are preferable from the viewpoint of contamination. It is preferable that the bead diameter is φ2.0 mm or less because the grinding efficiency can be secured.
The raw slurry after the wet pulverization is preferable if the cumulative particle diameter D50 is less than 5 μm, since no different phases other than the composite oxide phase represented by the general formula ABO 3 are generated in the firing described later. If D50 of the particle size distribution of the raw material slurry is 5.0 μm or less, the composition deviation due to the site in the granulated product is small, so the generation of heterogeneous phases is suppressed and the particle shape distortion is reduced. The cumulative particle size D50 is preferably as small as possible, but if the particle size is 0.8 μm or more, the increase in contamination can be suppressed. From this viewpoint, D50 is preferably 0.8 μm or more and 3.0 μm or less. Furthermore, from the viewpoint of increasing the filling rate inside the particles constituting the powder according to the present invention described above, it is more preferable that 0.8 ≦ D50 <1.2 μm and a particle size distribution of a single distribution.

(2)乾燥、造粒
前記湿式粉砕後の原料スラリーを乾燥して造粒する。
当該原料スラリーを乾燥して球状に造粒するには、噴霧乾燥が適している。そして、球形の造粒粉を得る観点からスプレードライヤーを用いることが好ましい。ノズル式、ディスク式があるが、造粒径を大きく、球形の粒子を得るためにはディスク式が好ましく、且つ、スプレードライヤーにおけるアトマイザーディスクの回転数は高回転なほど、スラリーを剪断し造粒する操作が均一になるため、粒子の形状が歪むことなく球状になりやすい。
なお、アトマイザーディスクの回転数はスラリーを供給する速度やドライヤーの送風量、チャンバー容量にもよるが、20000rpm以上とすることが好ましい。乾燥用熱風温度は、噴霧乾燥後、造粒される粒子に水分が残らない温度が望ましい。具体的には、入り口温度で150〜200℃、出口温度は60℃以上が望ましい。
原料スラリーの供給速度は、装置容量により異なる。例えば、乾燥室の容量が1m程度の装置の場合は、原料スラリーの供給速度を5〜30kg/hとすることで造粒される粒子の形状を保つことが出来、生産性も担保出来ることから好ましい。
(2) Drying and granulation The raw material slurry after the wet pulverization is dried and granulated.
Spray drying is suitable for drying the raw slurry and granulating it into a spherical shape. And it is preferable to use a spray dryer from a viewpoint of obtaining spherical granulated powder. There are nozzle type and disk type, but the particle type is large to obtain spherical particles, and the disk type is preferable, and the higher the rotation speed of the atomizer disk in the spray dryer, the more the slurry is sheared and granulated. Since the operation is uniform, the shape of the particles tends to be spherical without distortion.
The number of revolutions of the atomizer disk is preferably 20000 rpm or more, although it depends on the speed at which the slurry is supplied, the air flow rate of the dryer, and the chamber capacity. The hot air temperature for drying is desirably a temperature at which moisture does not remain in the granulated particles after spray drying. Specifically, the inlet temperature is preferably 150 to 200 ° C., and the outlet temperature is preferably 60 ° C. or higher.
The feed rate of the raw slurry varies depending on the capacity of the apparatus. For example, in the case of an apparatus having a drying chamber capacity of about 1 m 3 , the shape of the granulated particles can be maintained and the productivity can be secured by setting the feed rate of the raw slurry to 5 to 30 kg / h. To preferred.

(3)焼成
前記造粒された粒子の焼成温度は、燃料電池空気電極用複合酸化物粉末を構成する粒子の粒子内部の充填率を上げ、当該粒子の導電率を上げる観点から1200℃〜1600℃が望ましい。また、特に導電率上げる観点から焼成温度は1300℃以上が好ましい。また、焼成温度が1500℃以下であると焼成後の造粒物の解粒が容易なため好ましい。
焼成時は、昇温速度は、10℃/min以下が良く、雰囲気は大気で良い。そして、炉内や焼成容器内を開放系とし、A元素およびB元素の原料塩から発生してくるガス成分を除去しながら昇温する。なお、本発明において開放系とは、炉内や焼成容器内が密閉されておらず、雰囲気である気体の流入出が可能な反応系を指す。
これは、気体の流入出が遮断された密閉系にて造粒物を焼成すると、原料から発生するガス成分が系内に充満する為、粒子がその形状を崩しながら成長する結果、粒子形状が歪んでしまう場合があるからである。一方、開放系にて造粒物を焼成すれば、燃料電池空気電極用複合酸化物粉末を構成する粒子が、球形形状を崩しながら、または、表面に凹凸を形成しながら粒成長することが無いからである。
(3) Firing The firing temperature of the granulated particles is 1200 ° C. to 1600 from the viewpoint of increasing the filling rate inside the particles constituting the composite oxide powder for a fuel cell air electrode and increasing the conductivity of the particles. ° C is desirable. In particular, the firing temperature is preferably 1300 ° C. or higher from the viewpoint of increasing the electrical conductivity. Further, it is preferable that the firing temperature is 1500 ° C. or lower because the granulated product after firing is easy to be pulverized.
During firing, the rate of temperature rise is preferably 10 ° C./min or less, and the atmosphere may be air. Then, the inside of the furnace and the firing container is opened, and the temperature is raised while removing the gas components generated from the raw material salts of the A element and B element. In the present invention, the open system refers to a reaction system in which the inside of the furnace or the baking vessel is not sealed and the atmosphere gas can flow in and out.
This is because, when the granulated product is fired in a closed system in which the inflow and outflow of gas are blocked, the gas component generated from the raw material is filled in the system, and as a result, the particle grows while breaking its shape, so that the particle shape is This is because it may be distorted. On the other hand, if the granulated product is calcined in an open system, the particles constituting the composite oxide powder for a fuel cell air electrode will not grow while breaking the spherical shape or forming irregularities on the surface. Because.

(4)解粒
前記焼成後の造粒物を解粒することで、本発明に係る燃料電池空気電極用複合酸化物粉末を得る。当該解粒の際、粒子の球形形状を損なわないように留意する。
当該観点から、当該解粒にはサンプルミル、ヘンシェルミキサー、ピンミル等を用い、粒子球形形状を損なわな条件で解粒を行う。具体的には、例えば、20Lの容量を持つヘンシェルミキサーを用いるなら回転数は2100rpm以下が望ましい。回転数が2100rpm以下であれば、粒子の球形形状を損なう場合が無い為である。
以上により、本発明に係る粉末を得ることが出来る。
(4) Granulation By pulverizing the granulated product after firing, the composite oxide powder for a fuel cell air electrode according to the present invention is obtained. Care should be taken not to impair the spherical shape of the particles during the pulverization.
From this viewpoint, a sample mill, a Henschel mixer, a pin mill, or the like is used for the granulation, and the granulation is performed under conditions that do not impair the particle spherical shape. Specifically, for example, if a Henschel mixer having a capacity of 20 L is used, the rotational speed is preferably 2100 rpm or less. This is because if the rotation speed is 2100 rpm or less, the spherical shape of the particles is not impaired.
As described above, the powder according to the present invention can be obtained.

以下、本発明に係る燃料電池空気電極用複合酸化物粉末の評価方法について詳細に説明する。
(5)粒子の真円度・円形度
本発明に係る燃料電池空気電極用複合酸化物粉末を構成する粒子の真円度・円形度は、当該粒子のSEM画像を、画像解析ソフト(例えば、米国 ローパーインダストリーズ社製 Image−Pro Plus 7.0J)を用いて測定、評価することが出来る。
ここで、
真円度=L^2/(S*4π)
円形度=(R^2/S)*(π/4)
(但し、L:周囲長、S:画像解析による対象粒子の面積、R:最大フェレ径である。)で定義される。
そして、真円度、円形度ともに、値が1に近いほど球形であることを表しており、値が大きくなるほどに不定形であることを表している。
尚、SEM画像には倍率1000倍のものを用い、50個程度の粒子を選択して、L、S、Rの値の平均値を求め、さらに、真円度および円形度の値を求めれば良い。
Hereinafter, the evaluation method of the composite oxide powder for a fuel cell air electrode according to the present invention will be described in detail.
(5) Roundness / Circularity of Particles The roundness / circularity of the particles constituting the composite oxide powder for a fuel cell air electrode according to the present invention can be determined using an SEM image of the particles obtained from image analysis software (for example, Measurement and evaluation can be performed using Image-Pro Plus 7.0J, manufactured by Roper Industries, USA.
here,
Roundness = L ^ 2 / (S * 4π)
Circularity = (R ^ 2 / S) * (π / 4)
(However, L: circumference length, S: area of target particle by image analysis, R: maximum ferret diameter).
In both roundness and circularity, the closer the value is to 1, the more spherical it is, and the larger the value, the more irregular it is.
In addition, if the magnification of 1000 times is used for the SEM image, about 50 particles are selected, the average value of L, S, and R values is obtained, and further, the roundness and circularity values are obtained. good.

(6)粒子内部の充填率
本発明に係る燃料電池空気電極用複合酸化物粉末を構成する粒子内部における、充填率の測定にはSEM画像解析を用いた。
〈1〉前記実施例1〜3に係る粉末を熱硬化性の樹脂に分散させ、当該樹脂を熱硬化させる。当該熱硬化した樹脂を、クロスセクションポリッシャを用いて切断し、粉末を構成する粒子の断面を露出させた。
〈2〉露出した粒子断面のSEM画像を撮影する。撮影されたSEM画像を、画像解析ソフト(例えば、株式会社 日本ローパー Image−Pro Plus 7.0J)を使用して解析し、粒子内部の充填率を測定した。そして、粒子部分と空孔部分とのコントラストの差から、粒子内部の充填率=(粒子部分面積−空孔部分面積)/(粒子部分面積)を規定した。
尚、SEM画像には倍率1000倍のものを用い、50個程度の粒子を解析して平均値を求めれば良い。
(6) Filling rate inside the particles SEM image analysis was used to measure the filling rate inside the particles constituting the composite oxide powder for a fuel cell air electrode according to the present invention.
<1> The powder according to Examples 1 to 3 is dispersed in a thermosetting resin, and the resin is thermoset. The heat-cured resin was cut using a cross section polisher to expose the cross section of the particles constituting the powder.
<2> Take an SEM image of the exposed particle cross section. The photographed SEM image was analyzed using image analysis software (for example, Nippon Roper Image-Pro Plus 7.0J), and the filling rate inside the particles was measured. Then, from the difference in contrast between the particle portion and the pore portion, the filling ratio inside the particle = (particle portion area−pore portion area) / (particle portion area) was defined.
In addition, what is necessary is just to obtain | require an average value by analyzing about 50 particle | grains using a 1000 times magnification SEM image.

(7)導電率
本発明に係る燃料電池空気電極用複合酸化物粉末の導電率測定には、当該粉末をペレット化し、抵抗率計(株式会社 三菱アナリテック社製 MCP−T610)を用いて導電率を測定することが出来る。
具体的には、ペレット作成用プレス装置を用いて、本発明に係る粉末を加圧してペレットを成形する。成形されたペレットを、25℃から1150℃まで5℃/minで昇温し、1150℃で4時間保持後に自然降温させて、導電率測定用ペレットを得る。
抵抗率計を使用し、前記導電率測定用ペレット円柱の中心部分に端子を当てて、導電率(S/cm)を測定した。当該測定を10回程度行って平均値を得、当該平均値を測定値
とした。
(7) Conductivity The conductivity of the composite oxide powder for fuel cell air electrode according to the present invention is measured by pelletizing the powder and conducting by using a resistivity meter (MCP-T610 manufactured by Mitsubishi Analytech Co., Ltd.). The rate can be measured.
Specifically, the pellet according to the present invention is pressed using a pellet forming press to form a pellet. The molded pellets are heated from 25 ° C. to 1150 ° C. at 5 ° C./min, held at 1150 ° C. for 4 hours, and then naturally cooled to obtain pellets for conductivity measurement.
Using a resistivity meter, the terminal was applied to the central portion of the pellet cylinder for measuring conductivity, and the conductivity (S / cm) was measured. The measurement was performed about 10 times to obtain an average value, and the average value was taken as a measurement value.

以下、実施例を参照しながら本発明をより具体的に説明する。
(実施例1)
(1)原料スラリーの作製
原料スラリーの作製にはビーズミル(容量1.2リットル)を使用した。
〈1〉LaSrCaMn(但し、x=0.49、y=0.24、z=0.25、w=1.03)の組成を有する粉末製造の為、Laを2966g、SrCOを1360g、CaCOを938g、MnCOを4723g、純水を4280g、ポリアクリル酸アンモニウムの分散剤を500g秤量する。
〈2〉ビーズミルのベッセル内に、直径1.75mmのZrOビーズを3100g仕込む。
〈3〉純水と分散剤とをバッファータンクに投入して混合し分散剤水溶液とする。そして、当該分散剤水溶液を、ポンプを用いてビーズミルに循環させる。
〈4〉バッファータンク内の分散剤水溶液を400rpmで攪拌しながら、ここへ、上記秤量したLa、SrCO、CaCO、MnCOを投入する。
〈5〉ビーズミルを1000rpmで回転させ、投入したLa、SrCO、CaCO、MnCOを80分間粉砕して、原料スラリーを作製した。
得られた原料スラリーの粒度分布は一山分布であり、累積粒径D50は1.17μmであった。
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example 1)
(1) Preparation of raw material slurry A bead mill (capacity: 1.2 liters) was used for preparation of the raw material slurry.
<1> La x Sr y Ca z Mn w O 3 ( where, x = 0.49, y = 0.24 , z = 0.25, w = 1.03) for the powder production with the composition, La the 2 O 3 2966g, 1360g of SrCO 3, the CaCO 3 938 g, the MnCO 3 4723g, pure water 4280G, a dispersant ammonium polyacrylate to 500g weighed.
<2> 3100 g of ZrO 2 beads having a diameter of 1.75 mm are charged in a bead mill vessel.
<3> Pure water and a dispersant are put into a buffer tank and mixed to obtain a dispersant aqueous solution. And the said dispersing agent aqueous solution is circulated to a bead mill using a pump.
<4> While stirring the dispersant aqueous solution in the buffer tank at 400 rpm, the above-mentioned weighed La 2 O 3 , SrCO 3 , CaCO 3 , and MnCO 3 are put therein.
<5> The bead mill was rotated at 1000 rpm, and La 2 O 3 , SrCO 3 , CaCO 3 , and MnCO 3 charged were pulverized for 80 minutes to prepare a raw material slurry.
The obtained raw material slurry had a single particle size distribution and a cumulative particle size D50 of 1.17 μm.

(2)乾燥、造粒
噴霧乾燥にはスプレードライヤーを使用した。
〈1〉前記原料スラリーへ純水を添加し、原料スラリーにおける粉末の固形分濃度を63質量%に調整した。
〈2〉スプレードライヤーのディスク回転数を25000rpm、乾燥用熱風温度を入り口温度で150℃、出口温度で75℃とし、原料スラリーの供給速度を9kg/hとして、原料スラリーの噴霧乾燥を行って造粒物を得た。
得られた造粒物の累積粒径D50は39μmであった。
(2) Drying and granulation A spray dryer was used for spray drying.
<1> Pure water was added to the raw material slurry, and the solid content concentration of the powder in the raw material slurry was adjusted to 63% by mass.
<2> Spray drying of the raw material slurry was carried out at a spray dryer disk rotation speed of 25000 rpm, a hot air temperature for drying at an inlet temperature of 150 ° C., an outlet temperature of 75 ° C., and a raw material slurry supply rate of 9 kg / h. Grains were obtained.
The obtained granulated product had a cumulative particle size D50 of 39 μm.

(3)焼成
焼成にはるつぼを使用した。
〈1〉円筒型のるつぼ(直径12cm 高さ5cm)に、前記造粒物230gを仕込んだ。そして、大気中で25℃から1300℃まで4.25℃/minで昇温し、さらに1300℃から1450℃まで1.5℃/minで昇温し、その後1450℃で4時間保持した後、自然降温した。
(3) Firing A crucible was used for firing.
<1> 230 g of the granulated product was charged into a cylindrical crucible (diameter 12 cm, height 5 cm). And after raising the temperature from 25 ° C. to 1300 ° C. at 4.25 ° C./min, further raising the temperature from 1300 ° C. to 1450 ° C. at 1.5 ° C./min, and then holding at 1450 ° C. for 4 hours, The temperature dropped naturally.

(4)解粒
解粒にはヘンシェルミキサーを使用した。
〈1〉ヘンシェルミキサーへ、前記焼成粉2000gを装填した。
回転数を1400rpmとし、60秒間の粉砕を行って、実施例1に係る燃料電池空気電極用複合酸化物粉末を得た。
上述した実施例1に係る粉末の組成、および焼成温度を表1に記載する。
(4) Granulation A Henschel mixer was used for granulation.
<1> 2000 g of the calcined powder was charged into a Henschel mixer.
The rotational speed was set to 1400 rpm and pulverization was performed for 60 seconds to obtain a composite oxide powder for a fuel cell air electrode according to Example 1.
Table 1 shows the composition of the powder according to Example 1 and the firing temperature.

得られた実施例1に係る粉末を構成する粒子のD50粒径、真円度、円形度、BET値、粒子内部の充填率、そして、当該粉末の導電率を表2に記載する。また、当該粒子の1000倍のSEM像、および、当該粒子の断面の1000倍のSEM像を図2に示す。   Table 2 shows the D50 particle diameter, roundness, circularity, BET value, filling rate inside the particles, and conductivity of the powders constituting the powder according to Example 1 obtained. In addition, FIG. 2 shows a 1000 times SEM image of the particles and a 1000 times SEM image of the cross section of the particles.

(実施例2)
焼成温度を1300℃とし、昇温速度を800℃まで6.66℃/min、800℃から1300℃まで3.33℃/minとした以外は、実施例1と同様にして、実施例2に係る燃料電池空気電極用複合酸化物粉末を得た。
上述した実施例2に係る粉末の組成、および焼成温度を表1に記載する。
そして、得られた実施例2に係る粉末を構成する粒子のD50粒径、真円度、円形度、BET値、粒子内部の充填率、そして、当該粉末の導電率を表2に記載する。また、当該粒子の1000倍のSEM像、および、当該粒子の断面の1000倍のSEM像を図2に示す。
(Example 2)
Example 2 was carried out in the same manner as in Example 1 except that the firing temperature was 1300 ° C., the heating rate was 6.66 ° C./min from 800 ° C. to 3.33 ° C./min from 800 ° C. to 1300 ° C. A composite oxide powder for a fuel cell air electrode was obtained.
Table 1 shows the composition of the powder according to Example 2 and the firing temperature.
Table 2 shows the D50 particle size, roundness, circularity, BET value, filling rate inside the particles, and electrical conductivity of the powder constituting the powder according to Example 2 obtained. In addition, FIG. 2 shows a 1000 times SEM image of the particles and a 1000 times SEM image of the cross section of the particles.

(実施例3)
粉末の組成が、LaSrCoFe(但し、x=0.61、y=0.41、v=0.20、u=0.79)の組成を有するように、原料スラリーを作製し、焼成温度を1300℃とし、昇温速度を800℃まで6.66℃/min、800℃から1300℃まで3.33℃/minとした以外は、実施例1と同様にして、実施例3に係る燃料電池空気電極用複合酸化物粉末を得た。
このとき、Co原料としては、Coを用い、Fe原料としては、Feを用いた。
上述した実施例3に係る粉末の組成、および焼成温度を表1に記載する。
そして、得られた実施例3に係る粉末を構成する粒子の累積粒径D50、真円度、円形度、BET値、粒子内部の充填率、そして、当該粉末の導電率を表2に記載する。
(Example 3)
The composition of the powder, La x Sr y Co v Fe u O 3 ( where, x = 0.61, y = 0.41 , v = 0.20, u = 0.79) to have a composition of the raw material A slurry was prepared, the firing temperature was set to 1300 ° C., the rate of temperature increase was 6.66 ° C./min from 800 ° C., and 3.33 ° C./min from 800 ° C. to 1300 ° C. Thus, a composite oxide powder for a fuel cell air electrode according to Example 3 was obtained.
At this time, Co 3 O 4 was used as the Co raw material, and Fe 2 O 3 was used as the Fe raw material.
Table 1 shows the composition of the powder according to Example 3 and the firing temperature.
Table 2 shows the cumulative particle diameter D50, roundness, circularity, BET value, filling rate inside the particles, and electrical conductivity of the powder constituting the powder according to Example 3 obtained. .

(実施例4)
原料スラリーへ純水を添加し、原料スラリーにおける粉末の固形分濃度を25質量%に調整し、焼成温度を1350℃とし、昇温速度を800℃まで6.66℃/min、800℃から1350℃まで3.33℃/minとした以外は、実施例1と同様にして、実施例4に係る燃料電池空気電極用複合酸化物粉末を得た。
上述した実施例4に係る粉末の組成、および焼成温度を表1に記載する。
そして、得られた実施例4に係る粉末を構成する粒子の累積粒径D50、真円度、円形度、BET値、粒子内部の充填率、そして、当該粉末の導電率を表2に記載する。
Example 4
Pure water is added to the raw slurry, the solid content concentration of the powder in the raw slurry is adjusted to 25% by mass, the firing temperature is 1350 ° C., the heating rate is 6.66 ° C./min up to 800 ° C., and from 800 ° C. to 1350 ° C. A composite oxide powder for a fuel cell air electrode according to Example 4 was obtained in the same manner as in Example 1, except that the temperature was 3.33 ° C./min.
Table 1 shows the composition of the powder according to Example 4 and the firing temperature.
Table 2 shows the cumulative particle diameter D50, roundness, circularity, BET value, filling rate inside the particles, and electrical conductivity of the powder constituting the powder according to Example 4 obtained. .

(実施例5)
粉末の組成が、LaNiFe(但し、x=0.99、t=0.61、u=0.40)の組成を有するように、原料スラリーを作製し、原料スラリーへ純水を添加し、原料スラリーにおける粉末の固形分濃度を57質量%に調整し、焼成温度を1430℃とした以外は、実施例1と同様にして、実施例5に係る燃料電池空気電極用複合酸化物粉末を得た。
このとき、Ni原料としては、NiOを用いた。
上述した実施例5に係る粉末の組成、および焼成温度を表1に記載する。
そして、得られた実施例5に係る粉末を構成する粒子の累積粒径D50、真円度、円形度、BET値、粒子内部の充填率、そして、当該粉末の導電率を表2に記載する。
(Example 5)
A raw material slurry is prepared so that the composition of the powder has a composition of La x Ni t Fe u O 3 (where x = 0.99, t = 0.61, u = 0.40), and into the raw material slurry For a fuel cell air electrode according to Example 5 except that pure water was added, the solid content concentration of the powder in the raw slurry was adjusted to 57 mass%, and the firing temperature was 1430 ° C. A composite oxide powder was obtained.
At this time, NiO was used as the Ni raw material.
Table 1 shows the composition of the powder according to Example 5 and the firing temperature.
Table 2 shows the cumulative particle diameter D50, roundness, circularity, BET value, filling rate inside the particles, and the electrical conductivity of the powder constituting the powder according to Example 5 obtained. .

(実施例6)
粉末の組成が、LaSrNiFe(但し、x=0.50、y=0.50、t=0.20、u=0.81)の組成を有するように、原料スラリーを作製し、原料スラリーへ純水を添加し、原料スラリーにおける粉末の固形分濃度を57質量%に調整し、焼成温度を1400℃とした以外は、実施例1と同様にして、実施例6に係る燃料電池空気電極用複合酸化物粉末を得た。
このとき、Ni原料としては、NiOを用いた。
上述した実施例6に係る粉末の組成、および焼成温度を表1に記載する。
そして、得られた実施例6に係る粉末を構成する粒子の累積粒径D50、真円度、円形度、BET値、粒子内部の充填率、そして、当該粉末の導電率を表2に記載する。
(Example 6)
Raw material so that the composition of the powder has a composition of La x Sr y Ni t Fe u O 3 (where x = 0.50, y = 0.50, t = 0.20, u = 0.81) A slurry was prepared, pure water was added to the raw slurry, the solid content concentration of the powder in the raw slurry was adjusted to 57% by mass, and the firing temperature was 1400 ° C. A composite oxide powder for a fuel cell air electrode according to No. 6 was obtained.
At this time, NiO was used as the Ni raw material.
Table 1 shows the composition of the powder according to Example 6 and the firing temperature.
Table 2 shows the cumulative particle diameter D50, roundness, circularity, BET value, filling rate inside the particles, and electrical conductivity of the powder constituting the powder according to Example 6 obtained. .

(比較例1)
円筒型のるつぼに蓋をして密閉状態で焼成を行った以外は、実施例1と同様にして、比較例1に係る燃料電池空気電極用複合酸化物粉末を得た。
得られた比較例1に係る造粒物の累積粒径D50は33.0μmであった。
上述した比較例1に係る粉末の組成、および焼成温度を表1に記載する。
そして、得られた比較例1に係る粉末を構成する粒子のD50、真円度、円形度、BET値、そして、当該粉末の導電率を表2に記載する。
比較例1においては、開放系にて焼成を行わなかったので、A元素およびB元素の原料塩から発生してくるガス成分が除去されずにるつぼ内に滞留した。その結果、粒子成長が、一粒子内の各部位で均一に起こらなかった為に、当該粒子の形状がいびつとなり、真円度、円形度が1.5を超えて高くなったものと考えられる。
(Comparative Example 1)
A composite oxide powder for a fuel cell air electrode according to Comparative Example 1 was obtained in the same manner as in Example 1, except that a cylindrical crucible was covered and fired in a sealed state.
The accumulated particle size D50 of the obtained granulated product according to Comparative Example 1 was 33.0 μm.
Table 1 shows the composition of the powder according to Comparative Example 1 and the firing temperature.
Table 2 shows the D50, roundness, circularity, BET value, and conductivity of the powder constituting the powder of Comparative Example 1 obtained.
In Comparative Example 1, since firing was not performed in an open system, the gas components generated from the raw material salts of element A and element B remained in the crucible without being removed. As a result, since particle growth did not occur uniformly at each part in one particle, the shape of the particle became distorted, and roundness and circularity were considered to be higher than 1.5. .

(比較例2)
(1)原料スラリーの作製
原料スラリーの作製において、粉砕時間を5分間にした以外は、実施例1と同様に原料スラリーを作製した。
得られた原料スラリーの粒度分布は二山分布であり、累積粒径D50は5.0μmであった。
当該原料スラリーへ純水を添加し、原料スラリーにおける粉末の固形分濃度を57質量%に調整した。そして、焼成温度を1300℃とした以外は、実施例1と同様にして、比較例2に係る燃料電池空気電極用複合酸化物粉末を得た。そして、当該比較例2に係る燃料電池空気電極用複合酸化物粉末を観察したところ、ABO相以外の異相も生成しており、ABO相の単相とは、なっていないことが判明した。
得られた比較例2に係る造粒物の累積粒径D50は26.0μmであった。
上述した比較例2に係る粉末の組成、および焼成温度を表1に記載する。
そして、得られた比較例2に係る粉末を構成する粒子のD50を表2に記載する。
真円度、円形度、BET値、充填密度、そして、当該粉末の導電率は、比較例2に係る燃料電池空気電極用複合酸化物粉末が単相化していなかった為、測定しなった。
当該粉末が単相化しなったのは、原料スラリーの粒度分布のD50が5.0μm以上であった為、造粒物内の部位による組成の偏りが大きくなり、異相が生成されたからであると考えられる。
(Comparative Example 2)
(1) Preparation of Raw Material Slurry A raw material slurry was prepared in the same manner as in Example 1 except that the pulverization time was 5 minutes in the preparation of the raw material slurry.
The obtained raw material slurry had a double particle size distribution and a cumulative particle size D50 of 5.0 μm.
Pure water was added to the raw material slurry, and the solid content concentration of the powder in the raw material slurry was adjusted to 57% by mass. And the complex oxide powder for fuel cell air electrodes which concerns on the comparative example 2 was obtained like Example 1 except the calcination temperature having been 1300 degreeC. And when the complex oxide powder for fuel cell air electrodes according to Comparative Example 2 was observed, it was found that a different phase other than the ABO 3 phase was also generated, and it was not a single phase of the ABO 3 phase. .
The cumulative particle diameter D50 of the granulated product according to Comparative Example 2 obtained was 26.0 μm.
Table 1 shows the composition of the powder according to Comparative Example 2 described above and the firing temperature.
Table 2 shows D50 of the particles constituting the powder according to Comparative Example 2 obtained.
The roundness, circularity, BET value, packing density, and conductivity of the powder were not measured because the composite oxide powder for fuel cell air electrode according to Comparative Example 2 was not single-phased.
The powder became a single phase because the D50 of the particle size distribution of the raw slurry was 5.0 μm or more, so that the compositional deviation due to the site in the granulated product increased and a heterogeneous phase was generated. Conceivable.

(比較例3)
原料スラリーにおける粉末の固形分濃度を24質量%とした以外は実施例1と同様にして、原料スラリーを作製し、噴霧乾燥を行って比較例3に係る造粒物を得た。
得られた比較例3に係る造粒物は、一部の粒子の形状が歪み、球形を保っていないものであった。そこで、試験を終了した。
造粒物粒子の形状が歪んだのは、原料スラリーにおける粉末の固形分濃度を低く設定したことによって、液滴中からの水分蒸発が多くなった結果、造粒品が球形を保てなかった為であると考えられる。
(Comparative Example 3)
A raw material slurry was prepared and spray-dried in the same manner as in Example 1 except that the solid content concentration of the powder in the raw material slurry was 24% by mass, and a granulated product according to Comparative Example 3 was obtained.
The obtained granulated product according to Comparative Example 3 was a product in which the shape of some of the particles was distorted and did not maintain a spherical shape. Therefore, the test was terminated.
The shape of the granulated particles was distorted because the solid content concentration of the powder in the raw slurry was set low, resulting in increased evaporation of water from the droplets, and the granulated product could not maintain a spherical shape. This is considered to be the reason.

(まとめ)
実施例1〜6においては、粉末を構成する粒子のD50が20.6〜29.0μm、真円度1.19〜1.35、円形度1.12〜1.23、BET値が0.078〜0.304m/gという、本発明の要件を満たす燃料電池空気電極用複合酸化物粉末を得ることが出来た。従って、これらの粉末を用いてSOFCの空気電極を製造すれば、当該空気電極内におけるガスの流れの均一化を実現できると伴に、当該粉末を構成する粒子間、および、当該粒子と電解質層との間の均一な空孔である3層界面が、効率的に多数形成されると考えられる。
(Summary)
In Examples 1 to 6, D50 of the particles constituting the powder was 20.6 to 29.0 μm, the roundness was 1.19 to 1.35, the circularity was 1.12 to 1.23, and the BET value was 0.1. A composite oxide powder for a fuel cell air electrode satisfying the requirements of the present invention of 078 to 0.304 m 2 / g could be obtained. Therefore, if an SOFC air electrode is manufactured using these powders, the flow of gas in the air electrode can be made uniform, and between the particles constituting the powder and between the particles and the electrolyte layer. It is considered that a large number of three-layer interfaces, which are uniform pores, are efficiently formed.

また、実施例1〜6においては粒子内部の充填率81.2〜99.3%という、本発明の要件を満たす燃料電池空気電極用複合酸化物粉末を得ることが出来た。これらの粉末は、いずれも47.6〜171.0S/cmといった高い導電率を発揮した。   Moreover, in Examples 1-6, the composite oxide powder for fuel cell air electrodes which satisfy | fills the requirements of this invention that the filling rate of particle | grain inside was 81.2 to 99.3% could be obtained. All of these powders exhibited high conductivity of 47.6 to 171.0 S / cm.

以上より、本発明によれば、燃料電池空気電極用複合酸化物粉末と電解質層との間において、均一な空孔である3相界面を多数生成出来、且つ、当該粉末の導電性が高いので、発電効率の高い空気電極を製造することが出来ると考えられる。   As described above, according to the present invention, a large number of three-phase interfaces that are uniform pores can be generated between the composite oxide powder for a fuel cell air electrode and the electrolyte layer, and the conductivity of the powder is high. It is considered that an air electrode with high power generation efficiency can be manufactured.

Claims (12)

一般式ABOで表記される複合酸化物(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Fe、Niから選択される一種以上の元素である。)であって、
真円度が1.0以上1.5以下であることを特徴とする燃料電池空気電極用複合酸化物粉末。
A composite oxide represented by the general formula ABO 3 (where A element is one or more elements selected from La, Sr, and Ca, and B element is one or more elements selected from Mn, Co, Fe, and Ni) Element)
A composite oxide powder for a fuel cell air electrode, wherein the roundness is 1.0 or more and 1.5 or less.
一般式ABOで表記される複合酸化物(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Fe、Niから選択される一種以上の元素である。)であって、
円形度が1.0以上1.5以下であることを特徴とする燃料電池空気電極用複合酸化物粉末。
A composite oxide represented by the general formula ABO 3 (where A element is one or more elements selected from La, Sr, and Ca, and B element is one or more elements selected from Mn, Co, Fe, and Ni) Element)
A composite oxide powder for a fuel cell air electrode, having a circularity of 1.0 to 1.5.
BETの値が、0.5m/g以下であることを特徴とする請求項1または2に記載の燃料電池空気電極用複合酸化物粉末。 The composite oxide powder for a fuel cell air electrode according to claim 1 or 2, wherein a BET value is 0.5 m 2 / g or less. 累積粒径D50が20μm以上30μm以下であることを特徴とする請求項1から3のいずれかに記載の燃料電池空気電極用複合酸化物粉末。   4. The composite oxide powder for a fuel cell air electrode according to claim 1, wherein the cumulative particle diameter D50 is 20 μm or more and 30 μm or less. 一般式ABOで表記される複合酸化物(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Feから選択される一種以上の元素である。)であって、
真円度が1.0以上1.5以下、且つ、累積粒径D50が20μm以上30μm以下であることを特徴とする燃料電池空気電極用複合酸化物粉末。
A composite oxide represented by the general formula ABO 3 (where A element is one or more elements selected from La, Sr, and Ca, and B element is one or more elements selected from Mn, Co, and Fe) Yes, and
A composite oxide powder for a fuel cell air electrode, having a roundness of 1.0 to 1.5 and a cumulative particle size D50 of 20 μm to 30 μm.
一般式ABOで表記される複合酸化物(但し、A元素は、La、Sr、Caから選択される一種以上の元素、B元素は、Mn、Co、Feから選択される一種以上の元素である。)であって、
円形度が1.0以上1.5以下、且つ、累積粒径D50が20μm以上30μm以下であることを特徴とする燃料電池空気電極用複合酸化物粉末。
A composite oxide represented by the general formula ABO 3 (where A element is one or more elements selected from La, Sr, and Ca, and B element is one or more elements selected from Mn, Co, and Fe) Yes, and
A composite oxide powder for a fuel cell air electrode, having a circularity of 1.0 to 1.5 and a cumulative particle size D50 of 20 μm to 30 μm.
BETの値が、0.5m/g以下であることを特徴とする請求項5または6に記載の燃料電池空気電極用複合酸化物粉末。 BET value is 0.5 m < 2 > / g or less, The complex oxide powder for fuel cell air electrodes of Claim 5 or 6 characterized by the above-mentioned. 請求項1から7のいずれかに記載の燃料電池空気電極用複合酸化物粉末であって、
当該粉末に含まれる粒子内部の充填率が80%以上あることを特徴とする燃料電池空気電極用複合酸化物粉末。
A composite oxide powder for a fuel cell air electrode according to any one of claims 1 to 7,
A composite oxide powder for a fuel cell air electrode, wherein a filling ratio of particles inside the powder is 80% or more.
原料スラリーを噴霧乾燥して造粒粉を得、当該造粒粉を焼成、解粒することで、燃料電池空気電極用複合酸化物粉末を得る際に、当該原料スラリーにおける粉末の固形分濃度を25質量%以上とし、原料スラリーの累積粒径D50を0.8μm以上3.0μm以下とし、開放系にて焼成が行われることを特徴とする燃料電池空気電極用複合酸化物粉末の製造方法。   When the raw material slurry is spray-dried to obtain a granulated powder, and the granulated powder is fired and pulverized to obtain a composite oxide powder for a fuel cell air electrode, the solid content concentration of the powder in the raw material slurry is determined. A method for producing a composite oxide powder for a fuel cell air electrode, characterized in that it is 25% by mass or more, the cumulative particle diameter D50 of the raw slurry is 0.8 μm or more and 3.0 μm or less, and firing is performed in an open system. 前記原料スラリーにおける粉末の固形分濃度を50質量%以上とすることを特徴とする請求項9に記載の燃料電池空気電極用複合酸化物粉末の製造方法。   The method for producing a composite oxide powder for a fuel cell air electrode according to claim 9, wherein the solid content concentration of the powder in the raw slurry is 50 mass% or more. 請求項1から8のいずれかに記載の燃料電池空気電極用複合酸化物粉末を含むことを特徴とする燃料電池空気電極。   A fuel cell air electrode comprising the composite oxide powder for a fuel cell air electrode according to any one of claims 1 to 8. 請求項1から8のいずれかに記載の燃料電池空気電極用複合酸化物粉末を含むことを特徴とする燃料電池。   A fuel cell comprising the composite oxide powder for a fuel cell air electrode according to any one of claims 1 to 8.
JP2015068081A 2014-03-31 2015-03-30 Composite oxide powder for fuel cell air electrode, method for producing the same, fuel cell air electrode and fuel cell Active JP6664881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068081A JP6664881B2 (en) 2014-03-31 2015-03-30 Composite oxide powder for fuel cell air electrode, method for producing the same, fuel cell air electrode and fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014074536 2014-03-31
JP2014074536 2014-03-31
JP2015068081A JP6664881B2 (en) 2014-03-31 2015-03-30 Composite oxide powder for fuel cell air electrode, method for producing the same, fuel cell air electrode and fuel cell

Publications (2)

Publication Number Publication Date
JP2015201440A true JP2015201440A (en) 2015-11-12
JP6664881B2 JP6664881B2 (en) 2020-03-13

Family

ID=54552492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068081A Active JP6664881B2 (en) 2014-03-31 2015-03-30 Composite oxide powder for fuel cell air electrode, method for producing the same, fuel cell air electrode and fuel cell

Country Status (1)

Country Link
JP (1) JP6664881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038018A1 (en) 2021-09-07 2023-03-16 Dowaエレクトロニクス株式会社 Perovskite composite oxide powder, air electrode for solid oxide fuel cells using same, and solid oxide fuel cell

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225986A (en) * 1992-02-12 1993-09-03 Fuji Electric Co Ltd Manufacture of solid electrolyte type fuel cell
JPH07267613A (en) * 1994-03-28 1995-10-17 Fine Ceramics Center Production of fine complex ceramic power, apparatus for production, the same ceramic powder and solid electrolytic type fuel cell containing the same ceramic powder as electrode material
JPH08259345A (en) * 1995-03-28 1996-10-08 Ngk Insulators Ltd Production of porous sintered compact
JPH09309768A (en) * 1996-05-24 1997-12-02 Fine Ceramics Center Composite ceramic powder and its production, electrode for solid electrolyte-type fuel cell and production of the electrode
JP2003119080A (en) * 2001-10-09 2003-04-23 Nippon Soken Inc Method of producing ceramic element
JP2003346820A (en) * 2002-05-30 2003-12-05 Sulzer Hexis Ag Ink manufacturing method
JP2004055194A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Electrode of solid oxide type fuel cell
JP2010507555A (en) * 2006-10-24 2010-03-11 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Method for manufacturing LTM perovskite products
JP2012048893A (en) * 2010-08-25 2012-03-08 Agc Seimi Chemical Co Ltd Powder of air electrode material for solid oxide fuel cell and method of producing the same
JP2012138256A (en) * 2010-12-27 2012-07-19 Agc Seimi Chemical Co Ltd Air electrode material powder for solid oxide type fuel battery, and method of manufacturing the same
JP2012146579A (en) * 2011-01-13 2012-08-02 Noritake Co Ltd Material for anode support, and method for manufacturing anode support
JP2013018705A (en) * 2006-03-31 2013-01-31 Cs Energy Materials Ltd POWDERED Ni AND Co-MIXED HYDROXIDE, AND USE THEREOF
JP2013515669A (en) * 2009-12-28 2013-05-09 ポスコ Composite ceramic material and method for producing the same
JP2013155072A (en) * 2012-01-30 2013-08-15 Nippon Chem Ind Co Ltd Dielectric ceramic material, and method for producing coarse particle of perovskite-type composite oxide used therefor
WO2013133023A1 (en) * 2012-03-09 2013-09-12 Agcセイミケミカル株式会社 Air-electrode material powder for solid oxide fuel cell and manufacturing process therefor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225986A (en) * 1992-02-12 1993-09-03 Fuji Electric Co Ltd Manufacture of solid electrolyte type fuel cell
JPH07267613A (en) * 1994-03-28 1995-10-17 Fine Ceramics Center Production of fine complex ceramic power, apparatus for production, the same ceramic powder and solid electrolytic type fuel cell containing the same ceramic powder as electrode material
JPH08259345A (en) * 1995-03-28 1996-10-08 Ngk Insulators Ltd Production of porous sintered compact
JPH09309768A (en) * 1996-05-24 1997-12-02 Fine Ceramics Center Composite ceramic powder and its production, electrode for solid electrolyte-type fuel cell and production of the electrode
JP2003119080A (en) * 2001-10-09 2003-04-23 Nippon Soken Inc Method of producing ceramic element
JP2003346820A (en) * 2002-05-30 2003-12-05 Sulzer Hexis Ag Ink manufacturing method
JP2004055194A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp Electrode of solid oxide type fuel cell
JP2013018705A (en) * 2006-03-31 2013-01-31 Cs Energy Materials Ltd POWDERED Ni AND Co-MIXED HYDROXIDE, AND USE THEREOF
JP2010507555A (en) * 2006-10-24 2010-03-11 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Method for manufacturing LTM perovskite products
JP2013515669A (en) * 2009-12-28 2013-05-09 ポスコ Composite ceramic material and method for producing the same
JP2012048893A (en) * 2010-08-25 2012-03-08 Agc Seimi Chemical Co Ltd Powder of air electrode material for solid oxide fuel cell and method of producing the same
JP2012138256A (en) * 2010-12-27 2012-07-19 Agc Seimi Chemical Co Ltd Air electrode material powder for solid oxide type fuel battery, and method of manufacturing the same
JP2012146579A (en) * 2011-01-13 2012-08-02 Noritake Co Ltd Material for anode support, and method for manufacturing anode support
JP2013155072A (en) * 2012-01-30 2013-08-15 Nippon Chem Ind Co Ltd Dielectric ceramic material, and method for producing coarse particle of perovskite-type composite oxide used therefor
WO2013133023A1 (en) * 2012-03-09 2013-09-12 Agcセイミケミカル株式会社 Air-electrode material powder for solid oxide fuel cell and manufacturing process therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038018A1 (en) 2021-09-07 2023-03-16 Dowaエレクトロニクス株式会社 Perovskite composite oxide powder, air electrode for solid oxide fuel cells using same, and solid oxide fuel cell
JPWO2023038018A1 (en) * 2021-09-07 2023-03-16
JP7355950B2 (en) 2021-09-07 2023-10-03 Dowaエレクトロニクス株式会社 Perovskite composite oxide powder, air electrode for solid oxide fuel cells and solid oxide fuel cells using the same
KR20240022665A (en) 2021-09-07 2024-02-20 도와 일렉트로닉스 가부시키가이샤 Perovskite-type composite oxide powder and air electrode for solid oxide-type fuel cell using the same and solid oxide-type fuel cell

Also Published As

Publication number Publication date
JP6664881B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
JP6026997B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JPWO2017057078A1 (en) Positive electrode material, method for producing the same, and lithium ion secondary battery
CN108292751B (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using same
JP2014067546A (en) Positive electrode active material of lithium secondary battery, and lithium secondary battery
JP6088923B2 (en) Method for producing positive electrode active material for lithium secondary battery or precursor thereof
JP5986573B2 (en) Method for producing positive electrode active material of lithium secondary battery
JPWO2012137535A1 (en) Positive electrode active material precursor particles, positive electrode active material particles of lithium secondary battery, and lithium secondary battery
JP6161467B2 (en) Composite oxide powder for solid oxide fuel cell and method for producing the same
JP2004503054A5 (en)
JP2014049407A (en) Method of manufacturing cathode active material for lithium secondary battery
TWI808237B (en) Powder for solid oxide fuel cell air electrode and manufacturing method thereof
KR20110053991A (en) Nickel oxide-stabilized zirconia composite oxide, process for production thereof, and anode for solid oxide type fuel cell comprising the composite oxide
JP6664881B2 (en) Composite oxide powder for fuel cell air electrode, method for producing the same, fuel cell air electrode and fuel cell
JP2021086723A (en) Positive electrode active material composite for lithium ion secondary battery and manufacturing method thereof
JP2008071668A (en) Composite particle powder and its manufacturing method, electrode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel battery cell
JP3336851B2 (en) Method for producing Ni / YSZ cermet raw material powder
JP6483448B2 (en) Manufacturing method of air electrode material of solid oxide fuel cell, air electrode material, air electrode and fuel cell using the same.
JP2006244810A (en) Electrode for solid oxide fuel cell and its manufacturing method
JP7165569B2 (en) Positive electrode paste for lithium ion secondary battery and method for producing the same
JP2000113898A (en) MANUFACTURE OF LaGaO3 POWDER AND MANUFACTURE OF LaGaO3 SINTERED BODY
JP5366025B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery and method for producing positive electrode for non-aqueous lithium secondary battery
JP7355950B2 (en) Perovskite composite oxide powder, air electrode for solid oxide fuel cells and solid oxide fuel cells using the same
JP3604210B2 (en) Method for producing NiO / YSZ composite powder
WO2023090413A1 (en) Composite oxide powder and production method thereof
JP7068637B1 (en) Positive electrode active material for lithium-ion secondary batteries, and lithium-ion secondary batteries using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200219

R150 Certificate of patent or registration of utility model

Ref document number: 6664881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250