JPH07265080A - Fosfomycin biosynthesis-related gene and new method for producing fosfomycin with the same - Google Patents

Fosfomycin biosynthesis-related gene and new method for producing fosfomycin with the same

Info

Publication number
JPH07265080A
JPH07265080A JP6058844A JP5884494A JPH07265080A JP H07265080 A JPH07265080 A JP H07265080A JP 6058844 A JP6058844 A JP 6058844A JP 5884494 A JP5884494 A JP 5884494A JP H07265080 A JPH07265080 A JP H07265080A
Authority
JP
Japan
Prior art keywords
leu
fosfomycin
ala
gly
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6058844A
Other languages
Japanese (ja)
Inventor
Satoshi Imai
敏 今井
Tomomi Hidaka
智美 日高
Masahisa Aida
昌央 合田
Tomohisa Katsurayama
智久 葛山
Naomi Takei
なおみ 武居
Haruo Seto
治男 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP6058844A priority Critical patent/JPH07265080A/en
Publication of JPH07265080A publication Critical patent/JPH07265080A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To provide a fosfonycin biosynthesis-related gene for obtaining fosfomycin from 2-hydroxypropyl phosphoric acid, the fosfomycin being an antibiotic useful in the field of medical treatments. CONSTITUTION:The DNA contains the gene of an epoxidized enzyme which is an enzyme in the fourth stage of the biosynthesis of fosfomycin existing in an approximately 23kb gene cluster cloned from the DNA of a fosfomycin- producing bacterium and codes for an amino acid sequence of the formula. The gene can be obtained by a sub-cloning means using as a DNA donor the Streptomycin wedmorensis NP71 pFBG 23 strain (FERM P-13838) which is a strain transformed with plasmid pFBG 23 into that the gene cluster is inserted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抗生物質ホスホマイシン
の生合成経路上の重要な反応であるメチル化反応とエポ
キシ化反応に関与する2種の酵素、メチル化酵素とエポ
キシ化酵素の遺伝子に関するものである。またエポキシ
化酵素遺伝子を含むプラスミドで形質転換した組換え微
生物を用いたホスホマイシンの新規な製造法を提供する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to genes for two enzymes, methylating enzyme and epoxidizing enzyme, which are involved in methylation reaction and epoxidation reaction, which are important reactions in the biosynthetic pathway of the antibiotic fosfomycin. Is. The present invention also provides a novel method for producing fosfomycin using a recombinant microorganism transformed with a plasmid containing an epoxidase gene.

【0002】メチル化酵素及びエポキシ化酵素は、各々
ホスホマイシンの構造上の特徴であるメチル基及びエポ
キシ環の形成に関与する酵素である。特にエポキシ環構
造は、加水分解によって開環すると抗菌活性が消失する
ことからホスホマイシンが抗菌活性を示す上で特に重要
な構造とされている。従ってメチル化酵素及びエポキシ
化酵素の活性は、ホスホマイシンが生合成される過程で
重要な因子であると考えられる。
Methylating enzymes and epoxidizing enzymes are enzymes involved in the formation of a methyl group and an epoxy ring, which are structural features of fosfomycin. In particular, the epoxy ring structure is considered to be a particularly important structure in view of the antibacterial activity of fosfomycin since the antibacterial activity disappears when the ring is opened by hydrolysis. Therefore, the activities of methylating enzyme and epoxidizing enzyme are considered to be important factors in the process of biosynthesis of fosfomycin.

【0003】ホスホマイシンは、低分子の化合物で生合
成のステップも少ない事から、本発明で提供されるメチ
ル化酵素遺伝子及びエポキシ化酵素遺伝子並びにこれら
ホスホマイシン生合成関連遺伝子を含む遺伝子クラスタ
ーを用いたホスホマイシン生合成関連酵素活性の発現や
制御の仕組みを明らかにする事はホスホマイシン生合成
研究のみならず医療分野で有用な抗生物質であるホスホ
マイシンの生産性向上研究並びに製造法改良研究に役立
てる事が可能である。
Since fosfomycin is a low molecular weight compound and has few steps of biosynthesis, fosfomycin using a gene cluster containing the methylation enzyme gene and the epoxidation enzyme gene and these fosfomycin biosynthesis related genes provided by the present invention. Elucidating the mechanism of expression and regulation of biosynthesis-related enzyme activity can be used not only for fosfomycin biosynthesis research, but also for productivity improvement research and manufacturing method improvement research of fosfomycin, which is an antibiotic useful in the medical field. is there.

【0004】ホスホマイシンはストレプトマイセス属放
線菌の生産物として見いだされた物質であるが、工業的
な製法としては現在cis-プロペニルホスホン酸を化学合
成的にエポキシ化する方法が用いられている。化学合成
法ではラセミ化が起こり光学分割が必要であるため生成
収率が制限される。そこで微生物の生合成反応の構造特
異性や選択性に注目したcis-プロペニルホスホン酸を基
質としたホスホマイシンの製造法が検討され、ペニシリ
ウム属やセルビブリオ属の微生物を用いた方法が報告さ
れている。
Fosfomycin is a substance found as a product of Streptomyces genus actinomycetes, but as an industrial production method, a method of chemically epoxidizing cis-propenylphosphonic acid is currently used. In the chemical synthesis method, racemization occurs and optical resolution is required, so that the production yield is limited. Therefore, a method for producing fosfomycin using cis-propenylphosphonic acid as a substrate focusing on the structure specificity and selectivity of the biosynthetic reaction of a microorganism has been studied, and a method using a microorganism of the genus Penicillium or Servibrio has been reported. .

【0005】[0005]

【従来の技術】ホスホマイシンは放線菌ストレプトマイ
セス・フラジエ(Streptomyces fradiae)やストレプトマ
イセス・ベデモレンシス(Streptomyces wedmorensis)の
培養液から発見された抗生物質で、ユニークな作用機作
を持ち他の抗生物質との交差耐性が無いことから各種感
染症に広く用いられている。
BACKGROUND OF THE INVENTION Fosfomycin is an antibiotic found in a culture solution of Streptomyces fradiae and Streptomyces wedmorensis, and has another unique mechanism of action. It is widely used for various infectious diseases due to its lack of cross resistance with.

【0006】またホスホマイシンは天然物としては極め
て稀な炭素とリンが直接結合したC−P結合を有するた
め、ホスホマイシンがどのように生産されるかという、
いわゆる生合成研究が本発明者らにより詳細に進められ
ておりホスホエノールピルビン酸から4段階の反応で生
成される事が報告されている。(S.Imai et al.: Agric.
Biol.Chem., 49, 873(1985), H.Seto et al.: J.Antib
iotics, 44, 1286(1991), T.Hidaka et al.: J.Antibi
otics, 45, 1008(1992), T.Kuzuyama et al.:J.Antibi
otics, 45, 1812(1992), T.Kuzuyama et al.: J.Antib
iotics, 46, 1478(1993))
Further, since fosfomycin has a CP bond in which carbon and phosphorus are directly bonded, which is extremely rare as a natural product, how fosfomycin is produced is as follows.
So-called biosynthetic studies have been carried out in detail by the present inventors, and it has been reported that they are produced from phosphoenolpyruvate in a four-step reaction. (S.Imai et al .: Agric.
Biol. Chem., 49, 873 (1985), H. Seto et al .: J. Antib.
iotics, 44, 1286 (1991), T. Hidaka et al .: J. Antibi
otics, 45, 1008 (1992), T. Kuzuyama et al .: J. Antibi
otics, 45, 1812 (1992), T. Kuzuyama et al .: J. Antib
iotics, 46, 1478 (1993))

【0007】またC−P結合を有する化合物としてホス
ホマイシンの他に放線菌ストレプトマイセス・ハイグロ
スコピカス(Streptomyces hygroscopicus)が生産する除
草剤であるビアラホスがあり、その生合成についても本
発明者らによって詳細に研究されており生合成の初期段
階は類似した反応である事が報告されている。(T.Hidak
a et al.: Actinomycetol., 5, 112(1991), T.Hidaka e
t al.: Actinomycetol., 6, 105(1992), K.Kamigiri e
t al.: J.Antibiotics, 45, 781(1992))
In addition to fosfomycin as a compound having a C—P bond, there is bialaphos, which is a herbicide produced by Streptomyces hygroscopicus, and its biosynthesis was also conducted by the present inventors. It has been studied in detail and the early steps of biosynthesis have been reported to be similar reactions. (T.Hidak
a et al .: Actinomycetol., 5, 112 (1991), T. Hidaka e
t al .: Actinomycetol., 6, 105 (1992), K. Kamigiri e
t al .: J. Antibiotics, 45, 781 (1992))

【0008】ホスホマイシン生合成関連遺伝子に関する
研究では、本発明者らによって生合成関連遺伝子がクラ
スター状に存在する事が示され、ホスホマイシン生合成
の第1段階であるホスホエノールピルビン酸ホスホムタ
ーゼ遺伝子及び第2段階であるホスホノピルビン酸デカ
ルボキシラーゼ遺伝子の塩基配列が決定されている。
(特願平5−282973)
[0008] In studies on fosfomycin biosynthesis-related genes, the present inventors showed that biosynthesis-related genes exist in clusters, and the first step of fosfomycin biosynthesis, the phosphoenolpyruvate phosphomutase gene and the second stage. The nucleotide sequence of the phosphonopyruvate decarboxylase gene, which is a stage, has been determined.
(Japanese Patent Application No. 5-282973)

【0009】また現在工業的に用いられているホスホマ
イシン製造法として、cis-プロペニルホスホン酸を化学
合成的にエポキシ化する方法があるが、化学合成法では
ラセミ化が起こり光学分割が必要であるため生成収率が
制限される。そこで微生物の生合成反応の構造特異性や
選択性に注目したcis-プロペニルホスホン酸を基質とし
たホスホマイシンの製造法が検討され、ペニシリウム属
の微生物を用いた方法(R.F.White et al.: Applied Mic
robiology, 22, 55(1971))やセルビブリオ属の微生物を
用いた方法が報告されている。(K.Aisaka et al.: Appl
Microbial Biotechnol 36, 431(1992))
[0009] Further, as a fosfomycin production method currently industrially used, there is a method of chemically epoxidizing cis-propenylphosphonic acid. However, in the chemical synthesis method, racemization occurs and optical resolution is required. The production yield is limited. Therefore, a method for producing fosfomycin using cis-propenylphosphonic acid as a substrate, which pays attention to the structure specificity and selectivity of the biosynthetic reaction of microorganisms, was examined, and a method using a microorganism of the genus Penicillium (RF White et al .: Applied Mic
robiology, 22, 55 (1971)) and methods using microorganisms of the genus Servibrio have been reported. (K. Aisaka et al .: Appl
Microbial Biotechnol 36, 431 (1992))

【0010】この様に合成法の中間原料であるcis-プロ
ペニルホスホン酸を基質として微生物のエポキシ化反応
によってホスホマイシンを製造する事が可能であるが、
ホスホマイシン生産能を有するストレプトマイセス属放
線菌ではcis-プロペニルホスホン酸を基質としたホスホ
マイシン生産は起こらないという興味深い知見が本発明
者らによって報告されている。(H.Seto et al.: J.Anti
biotics, 44, 1286(1991))
As described above, fosfomycin can be produced by the epoxidation reaction of microorganisms using cis-propenylphosphonic acid, which is an intermediate raw material of the synthetic method, as a substrate.
The present inventors have reported an interesting finding that Streptomyces actinomycete capable of producing fosfomycin does not produce fosfomycin using cis-propenylphosphonic acid as a substrate. (H.Seto et al .: J. Anti
biotics, 44, 1286 (1991))

【0011】すなわちホスホマイシンの生産能を有する
放線菌ではペニシリウム属やセルビブリオ属微生物とは
異なるエポキシ化の機構がある事を示しており、新しい
エポキシ化の機構を用いた新規なホスホマイシン製造法
の可能性が示唆された。ホスホマイシン生産能を有する
放線菌の生合成ではエポキシ化反応の基質は2−ヒドロ
キシプロピルホスホン酸であると推定されている。
That is, it has been shown that actinomycetes capable of producing fosfomycin have a different epoxidation mechanism from Penicillium spp. And Servibrio spp. Sex was suggested. In the biosynthesis of actinomycetes capable of producing fosfomycin, the substrate for the epoxidation reaction is presumed to be 2-hydroxypropylphosphonic acid.

【0012】[0012]

【発明が解決しようとする課題】本発明が解決しようと
する課題の一つは、未だ明らかにされていないホスホマ
イシン生合成の重要な2つの反応であるメチル化酵素遺
伝子及びエポキシ化酵素遺伝子を特定し塩基配列を決定
して当該酵素活性を人為的に制御するための基礎知見を
得る事である。
One of the problems to be solved by the present invention is to identify a methylation enzyme gene and an epoxidation enzyme gene, which are two important reactions of fosfomycin biosynthesis that have not yet been clarified. The basic knowledge for artificially controlling the enzyme activity by determining the nucleotide sequence is obtained.

【0013】また二つ目の課題は、エポキシ化酵素遺伝
子を含むプラスミドで形質転換した組換え微生物を作成
しエポキシ化酵素を発現させてエポキシ化酵素の基質で
ある2−ヒドロキシプロピルホスホン酸を原料としたホ
スホマイシンの新規な製造法を提供する事である。
The second problem is to prepare a recombinant microorganism transformed with a plasmid containing an epoxidase gene, express the epoxidase, and use 2-hydroxypropylphosphonic acid as a substrate of the epoxidase as a raw material. Is to provide a novel method for producing fosfomycin.

【0014】エポキシ化酵素遺伝子を含むプラスミドで
形質転換した組換え微生物を用いたホスホマイシン製造
法では、高発現プロモーターの利用や転写能の高い微生
物の選択などエポキシ化酵素遺伝子の発現を制御・促進
する事によってホスホマイシンの生産量を飛躍的に高め
る事が可能と考えられる。
In the fosfomycin production method using a recombinant microorganism transformed with a plasmid containing an epoxidase gene, the expression of the epoxidase gene is controlled and promoted by utilizing a high expression promoter and selecting a microorganism having high transcription ability. It is thought that it is possible to dramatically increase the production of fosfomycin.

【0015】[0015]

【問題点を解決するための手段】メチル化酵素遺伝子及
びエポキシ化酵素遺伝子を含めホスホマイシン生合成関
連遺伝子はクラスター状に存在し、その遺伝子クラスタ
ーは既に本発明者らによってクローニングされている。
すなわちホスホマイシン生産菌のDNAを制限酵素であ
るBamHIで部分消化しpIJ922のBamHIサイトに挿入した
プラスミドを作成し、ホスホマイシン生合成の第2段階
の酵素であるホスホノピルビン酸デカルボキシラーゼ欠
損株であるストレプトマイセス・ベデモレンシスNP7株
を形質転換し、ホスホマイシン生産能の回復を指標にし
て採取された。(日本農芸化学会1993年度大会(仙台)
講演番号3Ka3、特願平5−282973)
[Means for Solving the Problems] Genes related to fosfomycin biosynthesis including a methylation enzyme gene and an epoxidation enzyme gene exist in a cluster form, and the gene cluster has already been cloned by the present inventors.
That is, the DNA of the fosfomycin-producing bacterium was partially digested with BamHI, which is a restriction enzyme, to prepare a plasmid inserted into the BamHI site of pIJ922. The Myces vedemorensis NP7 strain was transformed and collected using the restoration of the fosfomycin-producing ability as an index. (Agricultural Chemistry Society of Japan 1993 Conference (Sendai)
(Lecture number 3Ka3, Japanese Patent Application No. 5-282973)

【0016】クローニングされた遺伝子クラスターは約
23kbの大きさであり、遺伝子クラスターを挿入したプラ
スミド(pFBG23)によって形質転換された菌株であるス
トレプトマイセス・ベデモレンシスNP7/pFBG23株が、FE
RM P-13840として工業技術院生命工学工業技術研究所に
寄託されている。
The cloned gene cluster is approximately
The strain of Streptomyces vedemorensis NP7 / pFBG23, which has a size of 23 kb and was transformed with a plasmid (pFBG23) having a gene cluster inserted,
Deposited as RMP-13840 at the Institute of Biotechnology, Institute of Biotechnology, AIST.

【0017】遺伝子クラスター中に存在するホスホマイ
シン生合成の第1段階の酵素であるホスホエノールピル
ビン酸ホスホムターゼ遺伝子及び第2段階の酵素である
ホスホノピルビン酸デカルボキシラーゼ遺伝子について
は既に特定され塩基配列が決定されており、本発明では
第3段階の酵素であるメチル化酵素遺伝子及び第4段階
の酵素であるエポキシ化酵素遺伝子を含むDNA断片を
採取するとともに両遺伝子の特定化、塩基配列の決定を
行った。
The phosphoenolpyruvate phosphomutase gene, which is the first-step enzyme of fosfomycin biosynthesis, and the phosphonopyruvate decarboxylase gene, which is the second-step enzyme, present in the gene cluster have already been identified and their nucleotide sequences have been determined. According to the present invention, a DNA fragment containing a methylase gene that is a third-stage enzyme and an epoxidase gene that is a fourth-stage enzyme is collected, and both genes are specified and the nucleotide sequence is determined. It was

【0018】メチル化酵素遺伝子及びエポキシ化酵素遺
伝子を含むDNAの採取、塩基配列決定のために用いる
DNA供与体としてホスホマイシン生産菌株であるスト
レプトマイセス・ベデモレンシスATCC21239株を用いる
事も可能であるが、遺伝子クラスターを挿入したプラス
ミド(pFBG23)によって形質転換された菌株であるスト
レプトマイセス・ベデモレンシスNP7/pFBG23株をDNA
供与体として用い、いわゆるサブクローニングの手法を
使うのが効率的である。
Although it is also possible to use the fosfomycin-producing strain Streptomyces vedemorensis ATCC21239 strain as a DNA donor used for collecting DNA containing the methylating enzyme gene and the epoxidizing enzyme gene and determining the nucleotide sequence, DNA of Streptomyces vedemorensis NP7 / pFBG23 strain, which is a strain transformed with a plasmid (pFBG23) having a gene cluster inserted,
It is efficient to use it as a donor and use a so-called subcloning technique.

【0019】サブクローニングのために必要なプラスミ
ドの採取、制限酵素によるDNAの切断、DNA断片の
ベクタープラスミドへの組み込み及び生成ハイブリッド
プラスミドによる宿主菌への形質転換などの遺伝子組換
え技術に関しては、公知の方法として例えば、高木康敬
著「遺伝子操作実験法」(講談社)やホップウッドらの
実験書(Genetic Manipulation of Streptomyces, A lab
oratory manual (1985))を参照することができる。
Known techniques for gene recombination such as collection of plasmids required for subcloning, cleavage of DNA with restriction enzymes, integration of DNA fragments into vector plasmids and transformation of host strains with the generated hybrid plasmids are known. Examples of the method include Yasutaka Takagi's “Genetic Manipulation Experiment” (Kodansha) and Hopman et al. (Genetic Manipulation of Streptomyces, A lab).
You can refer to the oratory manual (1985)).

【0020】制限酵素やリガーゼは市販されており、ベ
クタープラスミドとして適当なものの例としてはpIJ702
(John Innes研究所より入手可能。文献:J.General Mi
crobiology,129, 2703-2714(1983))、及びpIJ680(John
Innes研究所より入手可能。文献:D.A.Hopwood et a
l.: Genetic Manipulation of Streptomyces, A labora
tory Manual (1985))、及びpIJ922(John Innes研究所よ
り入手可能。文献:DJ.Lydiate et al.: Gene 35, 223
(1985))等があげられる。
Restriction enzymes and ligases are commercially available, and examples of suitable vector plasmids include pIJ702.
(Available from John Innes Laboratories. Reference: J. General Mi.
crobiology, 129, 2703-2714 (1983)), and pIJ680 (John
Available from Innes Laboratories. Literature: DAHopwood et a
l .: Genetic Manipulation of Streptomyces, A labora
tory Manual (1985)) and pIJ922 (available from John Innes Laboratories) Reference: DJ.Lydiate et al .: Gene 35, 223
(1985)) and the like.

【0021】また形質転換に用いる宿主菌としては、用
いるベクターの種類に応じて放線菌、大腸菌、枯草菌そ
の他の微生物の中から適宜選択する事ができる。本発明
の目的に適した宿主菌の好ましい例としては形質転換効
率がよく、形質転換によって得られた組換え体の特徴付
けが可能なストレプトマイセス・ベデモレンシスNP7株
及びその変異株をあげる事ができる。ストレプトマイセ
ス・ベデモレンシスNP7株はFERM P-13838として工業技
術院生命工学工業技術研究所に寄託されている。
The host bacterium used for transformation can be appropriately selected from actinomycetes, Escherichia coli, Bacillus subtilis and other microorganisms depending on the type of vector used. As a preferred example of a host bacterium suitable for the purpose of the present invention, it is possible to list Streptomyces bedemorensis NP7 strain and its mutant strain that have good transformation efficiency and are capable of characterizing recombinants obtained by transformation. it can. Streptomyces bedemorensis NP7 strain has been deposited as FERM P-13838 at the Institute of Biotechnology, Institute of Biotechnology, AIST.

【0022】またエポキシ化酵素遺伝子のクローニング
の場合には酵素の発現状態を2−ヒドロキシプロピルホ
スホン酸を基質としたホスホマイシンへの変換量として
把握できるため、取扱いが容易で多くの遺伝子発現実験
に用いられているストレプトマイセス・リビダンス66が
使用可能である。この微生物はFERM BP-737として工業
技術院生命工学工業技術研究所に国際寄託されている。
In the case of cloning the epoxidase gene, the expression state of the enzyme can be grasped as the amount of conversion to fosfomycin using 2-hydroxypropylphosphonic acid as a substrate, and therefore it is easy to handle and used in many gene expression experiments. The existing Streptomyces lividans 66 can be used. This microorganism has been internationally deposited as FERM BP-737 at the Institute of Biotechnology, Institute of Industrial Science and Technology.

【0023】DNA断片を組み込んだベクターを宿主菌
に導入するためには、宿主菌やベクターの種類によって
最も効率のよい方法が選ばれるが、放線菌のプラスミド
ベクターを使用する場合は、宿主菌のプロトプラストを
形質転換するのが最も一般的な方法である。形質転換に
よって得られた組換え体の選別には、用いるベクターの
保有する遺伝的指標、たとえば、抗生物質耐性、メラニ
ン生産能(M.J.Bibb etal.: Molec.Gen.Genet. 154, 155
(1977), Nature 274,398(1978))等が利用できる。
In order to introduce a vector into which a DNA fragment has been incorporated into a host bacterium, the most efficient method is selected depending on the host bacterium and the type of the vector. The most common method is to transform protoplasts. For selection of recombinants obtained by transformation, a genetic index possessed by the vector used, for example, antibiotic resistance, melanin production ability (MJBibb et al .: Molec. Gen. Genet. 154, 155
(1977), Nature 274, 398 (1978)) and the like can be used.

【0024】メチル化酵素遺伝子及びエポキシ化酵素遺
伝子を含むDNA断片を含む遺伝子クラスターを挿入し
たプラスミドは、プラスミドで形質転換された組換え微
生物を培養し、培養菌体より公知の方法によって容易に
単離することができる。単離されたプラスミドに挿入さ
れたDNA断片を各種制限酵素によって切断し、アガロ
ースゲル電気泳動を行って各断片の大きさを分析する事
によって制限酵素切断地図を作成する事ができる。
The plasmid into which the gene cluster containing the DNA fragment containing the methylating enzyme gene and the epoxidizing enzyme gene is inserted, the recombinant microorganism transformed with the plasmid is cultivated, and it is easily isolated from the cultured cells by a known method. Can be separated. A restriction enzyme cleavage map can be prepared by cutting the DNA fragment inserted into the isolated plasmid with various restriction enzymes, and performing agarose gel electrophoresis to analyze the size of each fragment.

【図1】にプラスミドpFBG23の挿入断片DNAの制限酵
素地図及び本発明により塩基配列が決定されたエポキシ
化酵素遺伝子を含むDNA断片(pFBG51挿入断片DN
A)の位置を示した。
FIG. 1 shows a restriction enzyme map of the insert DNA of the plasmid pFBG23 and a DNA fragment containing the epoxidase gene whose nucleotide sequence was determined by the present invention (pFBG51 insert DN
The position of A) is shown.

【0025】単離されたプラスミドに挿入されたDNA
断片中にメチル化酵素遺伝子及びエポキシ化酵素遺伝子
が存在する事を確認するためには次の二つの方法を単独
又は組み合わせて用いた。一つはホスホマイシン生合成
変異株に当該プラスミドを形質転換して組換え体のホス
ホマイシン生産能の回復を見る方法であり、変異株とし
てストレプトマイセス・ベデモレンシスNP-7株を変異処
理して得た第二段階及び第三段階の両方を欠損した変異
株NP-17株を用いた。
DNA inserted in the isolated plasmid
In order to confirm that the methylating enzyme gene and the epoxidizing enzyme gene are present in the fragment, the following two methods were used alone or in combination. One is a method of transforming the fosfomycin biosynthetic mutant strain with the plasmid and observing the recovery of the fosfomycin-producing ability of the recombinant, which was obtained by mutating Streptomyces vedemorensis NP-7 strain as a mutant strain. A mutant strain NP-17 strain lacking both the second stage and the third stage was used.

【0026】NP-17株は無添加または2−アミノエチル
ホスホン酸添加ではホスホマイシンを生産せず、2−ヒ
ドロキシプロピルホスホン酸添加でホスホマイシンを生
産する変異株であり2−アミノエチルホスホン酸添加で
のホスホマイシン生産能の回復によってメチル化酵素遺
伝子の存在を確認することが出来る。同様な手法で第二
段階及び第四段階の両方を欠損した変異株を用い2−ヒ
ドロキシプロピルホスホン酸添加でのホスホマイシン生
産能の回復によってエポキシ化酵素遺伝子の存在を確認
する事が出来る。2−アミノエチルホスホン酸はシグマ
社から購入する事ができ、2−ヒドロキシプロピルホス
ホン酸はPreisらの方法により合成した。(S.Preis et a
l.: J.Am.Chem.Soc. 77, 6225(1955)) 方法の詳細につ
いては特願平5−282973に記載されている。
The NP-17 strain is a mutant strain that does not produce fosfomycin without addition or addition of 2-aminoethylphosphonic acid, but produces fosfomycin with addition of 2-hydroxypropylphosphonic acid. The presence of the methyltransferase gene can be confirmed by restoration of the fosfomycin-producing ability. The presence of the epoxidase gene can be confirmed by recovering the fosfomycin-producing ability by adding 2-hydroxypropylphosphonic acid using a mutant strain that lacks both the second step and the fourth step in the same manner. 2-Aminoethylphosphonic acid can be purchased from Sigma and 2-hydroxypropylphosphonic acid was synthesized by the method of Preis et al. (S. Preis et a
l .: J. Am. Chem. Soc. 77, 6225 (1955)) The details of the method are described in Japanese Patent Application No. 5-282973.

【0027】またエポキシ化酵素遺伝子の存在を確認す
る場合にはホスホマイシン生産菌株あるいはその変異株
に加え、ストレプトマイセス・リビダンスを用いる事も
可能で、これら宿主菌に当該プラスミドを形質転換し
て、組換え体のエポキシ化酵素遺伝子の発現を2−ヒド
ロキシプロピルホスホン酸添加でのホスホマイシン生産
で見る事が可能である。
In addition, in order to confirm the presence of the epoxidase gene, Streptomyces lividans can be used in addition to the fosfomycin-producing strain or its mutant strain. By transforming the plasmid into these host strains, The expression of the recombinant epoxidase gene can be observed by the production of fosfomycin with the addition of 2-hydroxypropylphosphonic acid.

【0028】エポキシ化酵素遺伝子の発現は微生物培養
菌体を超音波処理して抽出した粗酵素液を用いて、2−
ヒドロキシプロピルホスホン酸を基質としたホスホマイ
シンの酵素反応による生成で見ることも可能である。こ
のような手法でメチル化酵素遺伝子及びエポキシ化酵素
遺伝子を含むDNA断片を挿入したプラスミドpFBG51を
選別した。プラスミドpFBG51でストレプトマイセス・リ
ビダンスを形質転換して得られた組換え体ストレプトマ
イセス・リビダンス/pFBG51はFERM P-14243として工業
技術院生命工学工業技術研究所に寄託されている。
Expression of the epoxidation enzyme gene was carried out by using a crude enzyme solution obtained by subjecting a microbial culture to ultrasonic treatment to extract 2-
It can also be seen by the production of fosfomycin by an enzymatic reaction using hydroxypropylphosphonic acid as a substrate. The plasmid pFBG51 into which the DNA fragment containing the methylation enzyme gene and the epoxidation enzyme gene was inserted was selected by such a method. Recombinant Streptomyces lividans / pFBG51 obtained by transforming Streptomyces lividans with the plasmid pFBG51 has been deposited at the Institute of Biotechnology, Institute of Industrial Science as FERM P-14243.

【0029】二つ目の方法は、DNA断片の塩基配列を
決定して酵素蛋白のアミノ酸配列をコードすると推定さ
れる遺伝子配列いわゆるオープンリーディングフレーム
(ORF)をWrightらの方法で見出し(F.Wright et a
l.: Gene 113, 55 (1992))、塩基配列から推定されるア
ミノ酸配列について、既に公表されているアミノ酸配列
と比較して相同性から遺伝子のコードする酵素タンパク
質の特性を推定する方法である。
The second method is to find a gene sequence, so-called open reading frame (ORF), which is presumed to encode the amino acid sequence of the enzyme protein by determining the nucleotide sequence of the DNA fragment by the method of Wright et al. (F. Wright). et a
l .: Gene 113, 55 (1992)), a method of estimating the characteristics of an enzyme protein encoded by a gene from the homology of an amino acid sequence deduced from a nucleotide sequence by comparing it with a previously published amino acid sequence. .

【0030】メチル化酵素遺伝子及びエポキシ化酵素遺
伝子を含むDNA断片の塩基配列決定のためには、プラ
スミドpFBG23またはpFBG51から
To determine the nucleotide sequence of a DNA fragment containing the methylation enzyme gene and the epoxidation enzyme gene, plasmid pFBG23 or pFBG51 was used.

【図1】に示すPstI-BamHI断片を切り出しpTZ18(Toyo
bo)やpUC118(Takara)等を用いて塩基配列解析用プラス
ミドを作製し、更に公知の方法によって欠失プラスミ
ド、1本鎖DNAを調整してApplied Biosystems社のTa
q Dye Primer Cycle Sequencing キット及びDNAシー
ケンサーABI 373Aを用いて塩基配列を決定した。
The PstI-BamHI fragment shown in FIG.
bo) or pUC118 (Takara) and the like to prepare a plasmid for nucleotide sequence analysis, and further prepare a deletion plasmid and single-stranded DNA by a known method to prepare Ta of Applied Biosystems.
q The nucleotide sequence was determined using the Dye Primer Cycle Sequencing kit and the DNA sequencer ABI 373A.

【0031】プラスミドpFBG51に挿入されたメチル化酵
素遺伝子及びエポキシ化酵素遺伝子を含むDNA断片
(PstI-BamHI断片)の塩基配列は後記する配列表の配
列番号1の配列に示される通りである。塩基配列を決定
した塩基数5170のDNA断片中には4つのオープンリー
ディングフレーム(ORF)が存在していた。各々、配
列表の配列番号1の配列中の1546-428位、2244-1543
位、2612-4216位、4233-4829位(開始コドン−終始コド
ンで示す。)に位置する。多くの抗生物質で生合成遺伝
子はクラスター状に存在する事が知られており、この4
つのORFもホスホマイシン生合成関連酵素をコードす
る遺伝子と考えられる。
The nucleotide sequence of the DNA fragment (PstI-BamHI fragment) containing the methylating enzyme gene and the epoxidizing enzyme gene inserted in the plasmid pFBG51 is as shown in the sequence of SEQ ID NO: 1 in the sequence listing described later. Four open reading frames (ORFs) were present in the 5170-bp DNA fragment whose nucleotide sequence was determined. Positions 1546-428 and 2244-1543 in the sequence of SEQ ID NO: 1 in the sequence listing, respectively.
Positions 2612-4216 and 4233-4829 (start codon-stop codon). It is known that biosynthesis genes exist in clusters in many antibiotics.
The two ORFs are also considered to be genes encoding fosfomycin biosynthesis related enzymes.

【0032】またORFの塩基配列から推定されるアミ
ノ酸配列について、SWISS-PROTのデータベースを利用し
てホモロジー検索を行い、約3万の配列と比較した。ホ
モロジー検索の結果、2612-4216(終始コドン含む)位
の配列のコードするアミノ酸配列はマグネシウム−プロ
トポルフィリンモノメチルエステル環化酵素と有意なホ
モロジーのある事が確認された。ホスホマイシンのメチ
ル化反応にはメチルコバラミンが関与しており、コバラ
ミンとプロトポルフィリンの構造類似性から、この配列
がメチル化酵素遺伝子と推定された。
The amino acid sequence deduced from the base sequence of the ORF was subjected to homology search using the database of SWISS-PROT and compared with about 30,000 sequences. As a result of homology search, it was confirmed that the amino acid sequence encoded by the sequence at position 2612-4216 (including the termination codon) had significant homology with magnesium-protoporphyrin monomethyl ester cyclase. Methylcobalamin is involved in the fosfomycin methylation reaction, and this sequence was presumed to be a methylase gene based on the structural similarity between cobalamin and protoporphyrin.

【0033】サブクローニングによるメチル化酵素遺伝
子欠損株NP-17株を用いた2−アミノエチルホスホン酸
添加でのホスホマイシン生産能の回復試験においてもこ
の領域の配列を含むDNA断片がメチル化酵素遺伝子を
含む事が確認された。同様に4233-4829位(終始コドン
含む)の配列をエポキシ化酵素遺伝子と特定する事が出
来た。このようにホスホマイシン生合成の重要な酵素で
あるメチル化酵素遺伝子及びエポキシ化酵素遺伝子を含
むDNA断片の全塩基配列を決定し、各々の酵素遺伝子
を特定する事により本発明を完成した。
In a recovery test of the fosfomycin productivity by addition of 2-aminoethylphosphonic acid using the methylation enzyme gene-deficient strain NP-17 strain by subcloning, the DNA fragment containing the sequence of this region contains the methylation enzyme gene. Things were confirmed. Similarly, the sequence of positions 4233-4829 (including the stop codon) could be identified as the epoxidase gene. Thus, the present invention was completed by determining the entire nucleotide sequence of a DNA fragment containing a methylation enzyme gene and an epoxidation enzyme gene, which are important enzymes of fosfomycin biosynthesis, and specifying each enzyme gene.

【0034】またエポキシ化酵素遺伝子を含むDNA断
片を挿入したプラスミド例えばpFBG51で形質転換した組
換え体ストレプトマイセス・リビダンス/pFBG51は2−
ヒドロキシプロピルホスホン酸を基質として高い収率で
ホスホマイシンを生成する事から2−ヒドロキシプロピ
ルホスホン酸を原料とする新規な製造法によるホスホマ
イシンの生産が可能である。
Also, a recombinant Streptomyces lividans / pFBG51 transformed with a plasmid, for example, pFBG51 containing a DNA fragment containing an epoxidase gene is 2-
Since fosfomycin is produced at a high yield using hydroxypropylphosphonic acid as a substrate, it is possible to produce fosfomycin by a novel production method using 2-hydroxypropylphosphonic acid as a raw material.

【0035】2−ヒドロキシプロピルホスホン酸を基質
とする新規なホスホマイシン製造法では、本発明のスト
レプトマイセス・リビダンス/pFBG51の他にエポキシ化
酵素遺伝子を含むDNA断片が挿入されたプラスミドで
形質転換された組換え微生物で2−ヒドロキシプロピル
ホスホン酸を基質としてホスホマイシンを生産する能力
のある微生物であれば、いずれも使用可能である。
In the novel method for producing fosfomycin using 2-hydroxypropylphosphonic acid as a substrate, transformation is carried out with a plasmid into which a DNA fragment containing an epoxidase gene is inserted in addition to Streptomyces lividans / pFBG51 of the present invention. Any recombinant microorganism that is capable of producing fosfomycin using 2-hydroxypropylphosphonic acid as a substrate can be used.

【0036】また本発明の2−ヒドロキシプロピルホス
ホン酸を基質とする新規なホスホマイシン製造法では、
上記微生物を好気的条件下で培養し適当な培養時間に2
−ヒドロキシプロピルホスホン酸を添加して更に培養を
続けてホスホマイシンを蓄積させる添加培養が一般的で
ある。すなわち前記の菌を通常の微生物が利用しうる栄
養物を含有する培地で培養する。栄養源としては、従来
放線菌の培養に利用されている公知のものが使用でき
る。
Further, in the novel method for producing fosfomycin using 2-hydroxypropylphosphonic acid as a substrate of the present invention,
The above microorganisms are cultivated under aerobic conditions and the
-Additional culture in which hydroxypropylphosphonic acid is added and the culture is further continued to accumulate fosfomycin is common. That is, the above-mentioned bacteria are cultivated in a medium containing nutrients that can be used by ordinary microorganisms. As the nutrient source, known ones conventionally used for culturing actinomycetes can be used.

【0037】例えば、炭素源として、グルコース、水あ
め、デキストリン、澱粉、糖みつ、動・植物油等を使用
しうる。また窒素源として、大豆粕、小麦胚芽、コーン
スティープリカー、綿実粕、肉エキス、ペプトン、酵母
エキス、硫酸アンモニウム、硝酸ソーダ、尿素等を使用
しうる。その他、必要に応じ、ナトリウム、カリウム、
カルシウム、マグネシウム、コバルト、塩素、燐酸、硫
酸、およびその他の無機塩類を添加することも可能であ
る。また菌の発育を助け、2−ヒドロキシプロピルホス
ホン酸からのホスホマイシン生産を促進するような有機
および無機物を適当に添加することができる。
For example, glucose, starch syrup, dextrin, starch, molasses, animal / vegetable oil, etc. may be used as the carbon source. As the nitrogen source, soybean meal, wheat germ, corn steep liquor, cottonseed meal, meat extract, peptone, yeast extract, ammonium sulfate, sodium nitrate, urea and the like can be used. In addition, if necessary, sodium, potassium,
It is also possible to add calcium, magnesium, cobalt, chlorine, phosphoric acid, sulfuric acid, and other inorganic salts. In addition, organic and inorganic substances that help the growth of bacteria and promote the production of fosfomycin from 2-hydroxypropylphosphonic acid can be appropriately added.

【0038】添加培養の方法としては、好気的条件での
培養法、特に深部培養法が最も適している。培養に適当
な温度は25〜30℃であるが、多くの場合、28℃付近で培
養する。2−ヒドロキシプロピルホスホン酸を基質とす
るホスホマイシンの生産は培地培養条件や基質の添加量
により異なるが、振とう培養、タンク培養のいずれにお
いても通常3〜7日の間でその蓄積が最高に達する。ホ
スホマイシンの蓄積量が最高になった時に培養を停止
し、培養液から目的物質を単離精製する。
As a method of additional culture, a culture method under aerobic conditions, particularly a deep culture method is most suitable. A suitable temperature for culturing is 25 to 30 ° C, but in most cases, culturing is performed at around 28 ° C. The production of fosfomycin using 2-hydroxypropylphosphonic acid as a substrate varies depending on the culture conditions and the amount of substrate added, but its accumulation usually reaches its maximum within 3 to 7 days in both shaking culture and tank culture. . When the accumulated amount of fosfomycin reaches the maximum, the culture is stopped, and the target substance is isolated and purified from the culture medium.

【0039】また添加培養の他、培養菌体を適当な担体
に固定した固定化菌体を用いる方法、培養菌体から超音
波処理、フレンチプレス等の方法を用いて抽出したエポ
キシ化酵素を含む抽出物を用いた酵素法等、2−ヒドロ
キシプロピルホスホン酸を基質としてホスホマイシン生
産の見られる方法であれば、いずれの方法を用いる事も
可能である。
In addition to the addition culture, the method also includes a method of using immobilized cells in which the cultured cells are fixed on a suitable carrier, an epoxidation enzyme extracted from the cultured cells by ultrasonic treatment, French press or the like. Any method can be used as long as fosfomycin production is observed using 2-hydroxypropylphosphonic acid as a substrate, such as an enzymatic method using an extract.

【0040】2−ヒドロキシプロピルホスホン酸を基質
として生産されるホスホマイシンは酸性の水溶性物質で
あり、その性状に従って培養液あるいは酵素液から精製
することが可能である。Dowex 1x2やDowex 50Wの様なイ
オン交換樹脂を用いた精製法、アルミナやカーボンに吸
着させ適当な溶媒で溶出する精製法、セファデックス等
の樹脂や限外濾過膜を用い分子の大きさで分離する方
法、溶媒による抽出や結晶化を用いた方法等、培養液よ
り抗生物質を精製するために用いる通常の精製法を用い
る事が出来る。このような精製法の詳細については、例
えばL.Chaiet等の報告を参照する事が出来る。(L.Chaie
t et al.: J.Antibiotics, 23, 336(1970))
Fosfomycin produced by using 2-hydroxypropylphosphonic acid as a substrate is an acidic water-soluble substance, and can be purified from a culture solution or an enzyme solution according to its properties. Purification method using ion exchange resin such as Dowex 1x2 or Dowex 50W, purification method by adsorbing on alumina or carbon and eluting with a suitable solvent, separation by molecular size using resin such as Sephadex or ultrafiltration membrane The conventional purification method used for purifying an antibiotic from a culture medium, such as the method described above, the method using solvent extraction or crystallization, can be used. For details of such a purification method, for example, the report of L. Chaiet and the like can be referred to. (L.Chaie
t et al .: J. Antibiotics, 23, 336 (1970))

【0041】ホスホマイシンの検定に当たっては、生物
学的検定法及びシリカゲル薄層クロマトグラフィーやHP
LCによる化学的検定法等、抗生物質の検出に用いられる
通常の検定法を用いることができる。以下に本発明の実
施例を示すが、これは単なる一例であって本発明を限定
するものではない。ここに例示しなかった多くの変法あ
るいは修飾手段を用い得ることは勿論のことである。
In the assay of fosfomycin, biological assay methods, silica gel thin layer chromatography and HP
Conventional assay methods used for detecting antibiotics such as chemical assay methods by LC can be used. Examples of the present invention will be shown below, but these are merely examples and do not limit the present invention. It goes without saying that many modified or modified means not exemplified here can be used.

【0042】[0042]

【実施例1】メチル化酵素遺伝子及びエポキシ化酵素遺
伝子を含むDNA断片を挿入したプラスミドの採取方法
についてpFBG51を例にあげると次の通りである。ストレ
プトマイセス・リビダンスを宿主菌として、形質転換は
Bibb等の公知の方法(M.J.Bibb et al.: Nature, 274, 3
98(1978))を改変した方法により行った。すなわち、ス
トレプトマイセス・リビダンスをグリシン濃度を0.5%と
した100mlのGPY培地(グルコース1.0%、ポリペプトン0.5
%、イーストエキストラクト0.4%、MgSO4・7H2O0.05%、K2
HPO4 0.1%)を分注した坂口フラスコに接種して30℃で24
時間振盪培養を行い、10000gの遠心分離で菌糸を集めて
0.35Mのショ糖溶液で1回洗浄した後、リゾチーム(生
化学工業製)(1mg/ml)を含む20mlのP培地(12%ショ糖、
1.4mM K2SO4, 10mM MgCl2, 0.4mM KH2PO4, 25mM CaCl2,
25mM TES緩衝液(pH7.2), 1/500量微量元素溶液)に懸
濁させた。(微量元素溶液の組成1リットル中:40mg Z
nCl2, 200mg FeCl3・6H2O, 10mg CuCl2・2H2O, 10mg MnCl
2・4H2O, 10mg Na2B4O7・10H 2O, 10mg (NH4)6Mo7O24・4H
2O) 30℃に30分間保温してプロトプラストを形成さ
せ、プロトプラスト化しなかった菌糸は綿濾過で除去し
た。遠心分離によってプロトプラストを集め、P培地で
1回洗浄してから1mlのP培地に懸濁した。
Example 1 Methylase gene and epoxidase gene
Method for collecting plasmid having inserted DNA fragment containing gene
For example, pFBG51 is as follows. Straight
Transformation with P. lividans as host bacterium
Bibb et al. (M.J.Bibb et al .: Nature, 274, 3
98 (1978)) by a modified method. That is,
Treptomyces lividans with glycine concentration of 0.5%
100 ml GPY medium (glucose 1.0%, polypeptone 0.5
%, Yeast extract 0.4%, MgSOFour・ 7H2O0.05%, K2
HPOFour0.1%) was inoculated into a Sakaguchi flask and dispensed at 30 ° C for 24 hours.
After shaking culture for 1 hour, collect mycelium by centrifugation at 10,000 g
After washing once with 0.35M sucrose solution, lysozyme (raw
20 ml of P medium (12% sucrose, manufactured by Kagaku Kogyo Co., Ltd.) (1 mg / ml),
1.4mM K2SOFour, 10mM MgCl2, 0.4mM KH2POFour, 25mM CaCl2,
 25 mM TES buffer (pH 7.2), 1/500 volume trace element solution)
Made cloudy. (Composition of trace element solution in 1 liter: 40 mg Z
nCl2, 200mg FeCl3・ 6H2O, 10mg CuCl2・ 2H2O, 10mg MnCl
2・ 4H2O, 10mg Na2BFourO7・ 10H 2O, 10mg (NH4)6Mo7Otwenty four・ 4H
2O) Incubate at 30 ℃ for 30 minutes to form protoplasts.
The hyphae that did not become protoplasts were removed by cotton filtration.
It was Collect protoplasts by centrifugation and in P medium
It was washed once and then suspended in 1 ml of P medium.

【0043】プロトプラスト溶液100μlに各種プラスミ
ドDNA(pFBG23を各種制限酵素で切断し、ベクタープ
ラスミドであるpIJ702あるいはpIJ680に挿入したプラス
ミド)溶液10μlを加えた後、ただちにポリエチレング
リコール 1000 25%を含むP培地500μlを加え、ピペッ
ティングしてDNAを取り込ませた。数分放置後5mlの
P培地を加えて反応を終了させ、遠心分離によってプロ
トプラストを集め、0.6%の寒天を含むR2YE培地10mlに懸
濁し、この2mlずつをR2YE培地に広げた。(0.3Mショ糖、
1.4mM K2SO4, 50mM MgCl2, 1%グルコース、0.01% カザ
ミノ酸, 1/50量微量元素溶液、0.4mM KH2PO4, 20mM CaC
l2, 0.3%プロリン、25mM TES緩衝液(pH7.2)、0.5%イース
トエキストラクト、2.2%寒天) 30℃で6時間培養後、チ
オストレプトン溶液(200μg/ml)1mlを重層し、さらに
3日間培養して組換え体を得た。
To 100 μl of the protoplast solution was added 10 μl of various plasmid DNA (plasmid cleaved pFBG23 with various restriction enzymes and inserted into vector plasmid pIJ702 or pIJ680) solutions, and immediately, 500 μl of P medium containing 25% polyethylene glycol 1000 Was added and the DNA was incorporated by pipetting. After standing for several minutes, 5 ml of P medium was added to terminate the reaction, protoplasts were collected by centrifugation, suspended in 10 ml of R2YE medium containing 0.6% agar, and 2 ml of each was spread on R2YE medium. (0.3M sucrose,
1.4mM K 2 SO 4 , 50mM MgCl 2 , 1% glucose, 0.01% casamino acid, 1/50 amount trace element solution, 0.4mM KH 2 PO 4 , 20mM CaC
l 2 , 0.3% proline, 25 mM TES buffer (pH7.2), 0.5% yeast extract, 2.2% agar) After culturing at 30 ° C for 6 hours, 1 ml of thiostrepton solution (200 μg / ml) was overlaid, and further After culturing for 3 days, a recombinant was obtained.

【0044】得られた組換え体をホスホマイシン生産確
認用に作成したアガーピース培地(スターチ0.4%、サン
グレイン0.5%、小麦胚芽0.2%、K2HPO4 0.01%、CoCl2・6H
2O 0.0001%、寒天2.2%の組成の培地に2−ヒドロキシプ
ロピルホスホン酸を100μg/mlとなるように添加)に植
菌し5日間27℃で培養後、2−ヒドロキシプロピルホス
ホン酸からのホスホマイシン生産能をプロテウス・ブル
ガリスに対する阻止円の有無で判定した。ホスホマイシ
ン生産能のある組換え体のプラスミドにはエポキシ化酵
素遺伝子が存在し発現している事を示している。
An agar piece medium (starch 0.4%, sungrain 0.5%, wheat germ 0.2%, K 2 HPO 4 0.01%, CoCl 2 .6H) was prepared by using the obtained recombinant to confirm the production of fosfomycin.
2-hydroxypropylphosphonic acid was added to a medium having a composition of 2 O 0.0001% and agar 2.2% at 100 μg / ml) and cultured for 5 days at 27 ° C., then fosfomycin from 2-hydroxypropylphosphonic acid Productivity was determined by the presence or absence of an inhibition circle for Proteus bulgaris. It is shown that the epoxidase gene is present and expressed in the recombinant plasmid capable of producing fosfomycin.

【0045】この様にして得られた組換え体の一つであ
るストレプトマイセス・リビダンス/pFBG51を培養し
て、培養菌体から公知の方法でプラスミドを抽出した。
このプラスミドにより同様にストレプトマイセス・ベデ
モレンシスNP7株の各種変異株を形質転換させ、組換え
体での2−アミノエチルホスホン酸及び2−ヒドロキシ
プロピルホスホン酸からのホスホマイシン生産能を調べ
エポキシ化酵素遺伝子とメチル化酵素遺伝子の両方の遺
伝子の存在を確認した。
One of the recombinants thus obtained, Streptomyces lividans / pFBG51, was cultured, and the plasmid was extracted from the cultured cells by a known method.
In the same manner, various mutants of Streptomyces vedemorensis NP7 strain were transformed with this plasmid, and the ability to produce fosfomycin from 2-aminoethylphosphonic acid and 2-hydroxypropylphosphonic acid in the recombinant was investigated and the epoxidase gene The presence of both the gene and the methylase gene was confirmed.

【0046】[0046]

【実施例2】ストレプトマイセス・リビダンス/pFBG51
を前培養培地(スターチ2.0%、ペプトン1.0%、肉エキス
0.3%、K2HPO4 0.05%、pH 7.0)に植菌し、28℃で24時間
振盪培養した後、ホスホマイシン生産培地(スターチ4.
0%、サングレイン5.0%、小麦胚芽2.0%、K2HPO4 0.1%、C
oCl2・6H2O 0.0001%、pH 8.0)に移植した。生産培地に
2−ヒドロキシプロピルホスホン酸を300μg/mlになる
ように添加して28℃で4日間振盪培養を行った。培養濾
液中のホスホマイシンの生産量はプロテウス・ブルガリ
スMB-838を用いた生物検定法で約100μg/mlであった。
[Example 2] Streptomyces lividans / pFBG51
Preculture medium (starch 2.0%, peptone 1.0%, meat extract
0.3%, K 2 HPO 4 0.05%, pH 7.0) and incubate with shaking at 28 ° C for 24 hours, and then fosfomycin production medium (starch 4.
0%, sun grain 5.0%, wheat germ 2.0%, K 2 HPO 4 0.1%, C
It was transplanted to oCl 2 .6H 2 O 0.0001%, pH 8.0). 2-Hydroxypropylphosphonic acid was added to the production medium at 300 μg / ml, and shake culture was carried out at 28 ° C. for 4 days. The amount of fosfomycin produced in the culture filtrate was about 100 μg / ml in a bioassay using Proteus bulgaris MB-838.

【0047】[0047]

【実施例3】メチル化酵素遺伝子及びエポキシ化酵素遺
伝子を含むプラスミドpFBG51の挿入DNA断片は
Example 3 The inserted DNA fragment of the plasmid pFBG51 containing the methylation enzyme gene and the epoxidation enzyme gene was

【図1】に示すようにpFBG23中の約5.1kbのPstI-BamH
I断片として示される。このPstI-BamHI断片をpTZ18
とpTZ19(東洋紡)のBamHI、PstIに各々クローン化
し、これらのプラスミドから制限酵素部位を利用した欠
失プラスミド及びkilo-Sequence用Deletion Kit(宝酒
造社製)を用いた欠失プラスミドを添付説明書に従って
調製した。
As shown in Figure 1, the approximately 5.1 kb PstI-BamH in pFBG23.
Shown as I fragment. This PstI-BamHI fragment was transformed into pTZ18
And pTZ19 (Toyobo) were cloned into BamHI and PstI, respectively, and the deletion plasmid using the restriction enzyme site from these plasmids and the deletion plasmid using the deletion kit for kilo-Sequence (Takara Shuzo) according to the attached instructions Prepared.

【0048】これら欠失プラスミドで形質転換した大腸
菌JM109株を、50μg/mlのアンピシリンを含むLB培地(B
acto trypton 1%, Bacto yeast extract 0.5%, NaCl 0,
5%pH 7.0)で前培養後、2xYT培地(Bacto trypton 1.6
%, Bacto yeast extract 1.0%, NaCl 0,5% pH 7.0)に
植え継ぎ、37℃、1時間培養後、ファージM13KO7を加え
て更に7〜8時間培養した。培養上清より1本鎖DNAを
調製し、塩基配列の決定に用いた。
Escherichia coli JM109 strain transformed with these deletion plasmids was transformed into LB medium containing 50 μg / ml of ampicillin (B
acto trypton 1%, Bacto yeast extract 0.5%, NaCl 0,
After pre-culturing with 5% pH 7.0, 2xYT medium (Bacto trypton 1.6
%, Bacto yeast extract 1.0%, NaCl 0,5% pH 7.0), and cultured for 1 hour at 37 ° C., after which phage M13KO7 was added and further cultured for 7 to 8 hours. Single-stranded DNA was prepared from the culture supernatant and used for determining the nucleotide sequence.

【0049】塩基配列の決定はApplied Biosystems社の
Taq Dye Primer Cycle Sequencingキット及びDNAシ
ーケンサーABI 373Aを用いて行った。その結果、5170ベ
ースの塩基配列が決定された。決定された塩基配列は後
記する配列表の配列番号1の配列に示される通りであ
る。決定された塩基配列をもとにオープンリーデイング
フレーム(ORF)を調べた。Bibbらの報告(Gene, 30,
157(1984))やWrightらの方法(F.Wright et al.: Gene
113, 55 (1992))に従って検討した結果、配列表の配列
番号1の配列に4つのORFを見い出した。各々、配列
表の配列番号1の配列中の1546-428位、2244-1543位、2
612-4216位、4233-4829位(開始コドン−終始コドンで
示す。)に位置する。
Nucleotide sequence determination was performed by Applied Biosystems.
It was performed using Taq Dye Primer Cycle Sequencing kit and DNA sequencer ABI 373A. As a result, the base sequence of 5170 base was determined. The determined nucleotide sequence is as shown in the sequence of SEQ ID NO: 1 in the sequence listing described below. The open reading frame (ORF) was examined based on the determined nucleotide sequence. Bibb et al. Report (Gene, 30,
157 (1984)) and Wright et al. (F. Wright et al .: Gene
113, 55 (1992)), four ORFs were found in the sequence of SEQ ID NO: 1 in the sequence listing. 1546-428th, 2244-1543th, and 2nd in the sequence of SEQ ID NO: 1 in the sequence listing, respectively.
It is located at positions 612-4216 and 4233-4829 (start codon-stop codon).

【0050】サブクローニングの結果とホモロジー検索
の結果から2612-4216位の塩基配列(終止コドンを含
む。)をメチル化酵素遺伝子、4233-4829位の塩基配列
(終始コドンを含む。)をエポキシ化酵素遺伝子と特定
した。メチル化酵素遺伝子は配列表配列番号1の2612番
目のATGから始まり4214番目のTGAで終わる。その塩基配
列に相当するアミノ酸配列も決定された。その配列は配
列表の配列番号1の配列中の2612-4213位に対応するア
ミノ酸配列として示されており、同一のアミノ酸配列は
配列番号2の配列として示されている。
From the result of subcloning and the result of homology search, the nucleotide sequence of 2612-4216 position (including stop codon) is methylation enzyme gene, and the nucleotide sequence of 4233-4829 position (including stop codon) is epoxidation enzyme. Identified as a gene. The methylase gene starts from the ATG at the 2612th position in the sequence listing SEQ ID NO: 1 and ends at the TGA at the 4214th position. The amino acid sequence corresponding to the base sequence was also determined. The sequence is shown as an amino acid sequence corresponding to positions 2612-4213 in the sequence of SEQ ID NO: 1 in the sequence listing, and the same amino acid sequence is shown as the sequence of SEQ ID NO: 2.

【0051】エポキシ化酵素遺伝子は配列表の4233番目
のATGから始まり4827番目のTGAで終わる。その塩基配列
に相当するアミノ酸配列も決定された。その配列は配列
表の配列番号1の配列中の4233-4826位に対応するアミ
ノ酸配列として示されており、同一のアミノ酸配列は配
列番号3の配列として示されている。
The epoxidase gene starts from the ATG at the 4233th position and ends at the TGA at the 4827th position in the sequence listing. The amino acid sequence corresponding to the base sequence was also determined. The sequence is shown as the amino acid sequence corresponding to positions 4233-4826 in the sequence of SEQ ID NO: 1 in the sequence listing, and the same amino acid sequence is shown as the sequence of SEQ ID NO: 3.

【0052】また1546-428位、2244-1543位に位置する
2つのORFについては現在のところ、その役割が不明
であるが、多くの抗生物質で生合成関連遺伝子はクラス
ター状に存在する事が知られており、これら2つのOR
Fもホスホマイシン生合成関連遺伝子と考えられる
The role of the two ORFs located at positions 1546-428 and 2244-1543 is currently unknown, but biosynthesis-related genes may exist in clusters in many antibiotics. Known and these two ORs
F is also considered to be a fosfomycin biosynthesis-related gene

【0053】[0053]

【配列表】[Sequence list]

配列番号:1 配列の長さ:5170 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名:ストレプトマイセス・ベデモレンシス(Strept
omyces wedmorensis) 株名:ATCC21239株 配列の特徴 特徴を表す記号:mat peptide 存在位置:2612..4213 4233..4826 特徴を決定した方法:E 配列 CTGCAGGACG AGCAGGGGGA TCGCGAGGAT CGCGAGCCCG TCGCCGATCA GCGACACGGT 60 CTGGCCGCCG AGGAAGATCT TGAAGGCCAG CGCGGAGGGC CGGGCAGGCG CCACCGGGGA 120 CGGGGCGAGT GCCACTCAGG CCACCGCCTC GACGAGCGCG CCGACGATCT GGCAGGCCTG 180 GCTCATGGTC AGCGTCGCGA ACCCCTCGGG CTCGACCGGC TCCCCGGCGG CCAGCGGCCG 240 GCCGTCCGGC GACAGCCGGT CGCCCCACCT GATCTGCCGG CGGAAGGCCG CGGACAGCTC 300 CGCGCCCTCG GCCGCCAGCC ACTCGGCCAC GACCCGCTGG ATCTCGGGGG CCGTCCGGTC 360 CACGCGCTCG GGCCAGGCCG CGATGGCCGT ACGGACCCGG GCGAGCAGGT CCCCGACCAG 420 TGCCACGTCA CGCGGCTCGC GGGAGGACGG CCACAGCAGG AAGGGCGCGG TGGGTGCGAT 480 GACGAACAGC AGGGGGAGCG GCCCAGGGGA GGTCCCGCGC CACGGCCTCG TACATCCACT 540 TGGTCTTCTT CGCGCCGCTG AAGAAGTACC CGCGGCGCTG CGGCGGGTAG CCGCCCATCG 600 CCAGGGCGCC CCACTGCACG TGCACGTCGA AGTCGCCGCA GACCGGGGGC TGTCCGGGCG 660 CGCGGTGGGT GCCGAGGACC GCGTAGAGAA GGGTGACCGC GTCCACCGAC AGCAGCGGCG 720 CGTGCGGCGC CGGGGCCGCG TCCTGGCCGG TGAACCGCCC GGCGGCGACC GCCGCCCGCG 780 CGGGCAGCAG GCTCGCCGCG ACCAGCGCGT CGGCCGTCGG GTAGTCGAAG GGCCCCAGGT 840 GGTAGCCCGA AGCGTCGGCC GTCGGCTTGA ACCGCTCCAC GCTTCCGTCG CGGTGCACGA 900 TCCGGTCGAA CACGTAGGAC AGGGCCCGGG TGTCCGTCCC GGCGGCCCGG AGCAGCGTGT 960 GCAGCACCTC CGTGACCCGC TCCTCCTCGC CCGTCAGGAG GTCGGAGTGG AACGTGGCGT 1020 CGGGGAAGTG CTCCCGCATC CGGCGGCGGT GCAGCTCGGT GAGGGGCAGT CGTTCGCCCT 1080 CCCACTCGGT CTCCACGTAC GGCACGAACA GCGATCCCTC GCCGTCGTGC CGCTCCATGC 1140 CCGCCGGCGA CCAGTGCCGG AGGGGGAGCC TGCTGCGTAC GCCGGCCTCG ACCAGGGAGC 1200 CGGGCAGGAA GAGGGTGTCA CCGCTCGCCA GGGCGGTGTC CTCGGTCTGG TTGAAGTCGT 1260 AGAGCAGGGG GCGGGCGAGG CCCGGAACGC CGCAGACCAC CCGGTTGTAG TCCAGGACCG 1320 TGCTGCGTCC GGAACCGATG TCGCCCCAGT CGGCGAGGTG CCCGGTGCGA ATGGGGGTGA 1380 GCGGCAACGC GGCGATCGAG GCGGTCAGTT CGCCCATCGG GAGCTGTACG CGTCCCATGT 1440 GGCGGGCGAC GAACCCCGAG CGTCCCGACC GGAGTTCGGC CCACGATTCC TCGTCGAGGC 1500 CGATCGCCTT GAGATCCTGT GGTGCCAGGC CGAGCTCCGA GGTCATCGGG AAGCGGCCAT 1560 GTCCAGGACG GCCCGGCCCA GGATGCGGGT CACGTCGTAC ACGTGCGGGG GGAGCTCGGG 1620 CAGCAGCGGC GACAGGTCCG TGCAGCCGAC GACGACGCCG TCCCCGGGCC GCGTCCACTC 1680 CCCTTCGACG GCCTTGCGCA ACTGGGCCGA AGCCTCCTGC ACACGGCCGG ACTTGACCAT 1740 CTCGACGCAT TCCTGGATCT CGCGCTGCGT GGCGGGGTCC GGGTAGACGG GAGTGAGGCC 1800 GGCGTCCACC AGGGCCCGGT GCAGCAGACC GAGCTTCAGT GCGCCGTCGG TGACCGCGAG 1860 GGCGGGGCGC AGGACTCCGG CCTCCCGGAG GCCGGCGGCC ACGACCCGGA GCATGTCGAC 1920 CACGGGAACG TCCACCGCGG CCGAGACCTC GTCGTAGTAG GCCTGCGTGG TGACCGACGG 1980 CATCGCGATC AGCTGGGCGC CGGCGTCCTG GAGACGCCGC GCCACGGCCT GGAGCTGTTC 2040 CACCGGTGAG GGGCCGTCGG ACAGGAGGTG GTCGAGGCGA CTGGGGATGG CGGGGCTGGA 2100 GAGGAGGAGG ACCTCGGGGT GCTCCTGGTC GCTGCCGGCC GTCGTCTGCT CGACGAGACG 2160 CATGTAGAAA TTAGCGCAGG CAAGGGGTCC AAGCCCGCCG ATAATGCCTA TCTTCTGCCA 2220 GTGGTCTATC GCGGCGTTAC TCACGTAGTT CACCCTGCTT CGGGCGGCGT CCGGAAAGCA 2280 ACCCCGAACC GATGGCATAT GACGGTCATG GCGCATAAGT GTCAACCATG AAGCGGTGCA 2340 AACCGGGCAT CCGTCAGGTC TTGTTGCAAG AATGTTGACG TCTTTCAGAC CTGAGTATTA 2400 CGTTGATCGC CACTTCACGC TCGACGCCGG GGGAACGGCG TAATGGGGCG CACCGAATCC 2460 TTGTCCTTGA TGGTGCAGCG GCTACTGGTT GGGCACGTCC GAACACTCGG GCGGCGGCGT 2520 TTTCACCGGC ATTGGAGAGT GGTATCTCCA TGCGTTCATC CGGGCCCATT TCACGAGAAA 2580 CGCGGCGGTT TTGAGCACTA AACAGAATCT C ATG ACG ATC GGT TCT CTG GGC 2632 Met Thr Ile Gly Ser Leu Gly 1 5 TCC ACC GAG TTC GCC CTG CAC GGG AAG CCG GCC ATC AGA TGG GGC GAT 2680 Ser Thr Glu Phe Ala Leu His Gly Lys Pro Ala Ile Arg Trp Gly Asp 10 15 20 CTG CCC CAG CGC GTC GGA AAG CCG GAG ACG CGG CGC TAC CAG AAG GTG 2728 Leu Pro Gln Arg Val Gly Lys Pro Glu Thr Arg Arg Tyr Gln Lys Val 25 30 35 CTG CTG CTG AAT CCC TCG GCA ACG CTC TTC CGG CAC GAC CTT CCG CGA 2776 Leu Leu Leu Asn Pro Ser Ala Thr Leu Phe Arg His Asp Leu Pro Arg 40 45 50 55 TGT ACG TAC CCC CTC GGC CTG GGG TAC ATC GCG GCC GTC CTC GAG AAG 2824 Cys Thr Tyr Pro Leu Gly Leu Gly Tyr Ile Ala Ala Val Leu Glu Lys 60 65 70 TAC GGC TAC GAG GTC AAG ATC CTC GAC GTC TTC GCG GAG GGC TAC TAC 2872 Tyr Gly Tyr Glu Val Lys Ile Leu Asp Val Phe Ala Glu Gly Tyr Tyr 75 80 85 AAC GCC CAG CCC GTC GAC GGC GAC GAC CAG TTC CTC CGT TAC GGC CTG 2920 Asn Ala Gln Pro Val Asp Gly Asp Asp Gln Phe Leu Arg Tyr Gly Leu 90 95 100 TCG GAC GAC GAC ATC GTC AAG GTG ATG AAG GAG TTC GGG CCC GAC GTC 2968 Ser Asp Asp Asp Ile Val Lys Val Met Lys Glu Phe Gly Pro Asp Val 105 110 115 GTC GGC ATC TCG AGC ATC TTC AGC AAC CAG GCC GAC AAC GTG CAC CAC 3016 Val Gly Ile Ser Ser Ile Phe Ser Asn Gln Ala Asp Asn Val His His 120 125 130 135 CTT CTG AAG CTG GCG GAC CTC GTC ACG CCC GAG GCC GTC ACC GCG ATC 3064 Leu Leu Lys Leu Ala Asp Leu Val Thr Pro Glu Ala Val Thr Ala Ile 140 145 150 GGC GGA GCG CAC GCG CGC TAC TTC CCG AAG GCC TGT CTG GAC GAC CCG 3112 Gly Gly Ala His Ala Arg Tyr Phe Pro Lys Ala Cys Leu Asp Asp Pro 155 160 165 AAC CTC GAC GCG GTG TTC CTC GGC GAA GGC GAG ATG ACC TTC CTG CTG 3160 Asn Leu Asp Ala Val Phe Leu Gly Glu Gly Glu Met Thr Phe Leu Leu 170 175 180 TGG ATG GAG CAC CTC AAC GGA AAC GTG AGC GAC GAC GAG GTC CAC GGC 3208 Trp Met Glu His Leu Asn Gly Asn Val Ser Asp Asp Glu Val His Gly 185 190 195 ATC GCG TGG CGT GAC CGC GAC GGC AAG GTC CAG ATC AAG CCC GAG CTG 3256 Ile Ala Trp Arg Asp Arg Asp Gly Lys Val Gln Ile Lys Pro Glu Leu 200 205 210 215 CCG CTG ATC AGC TCG ATG CGC CCC GAA GGC CCC GAG ACG GGC AAG TCC 3304 Pro Leu Ile Ser Ser Met Arg Pro Glu Gly Pro Glu Thr Gly Lys Ser 220 225 230 TCT CCC ATG CTG AGC ATG GCC GGC GAA CTG GAC CAC ATC CCG TTC CCC 3352 Ser Pro Met Leu Ser Met Ala Gly Glu Leu Asp His Ile Pro Phe Pro 235 240 245 GCC TGG CAC CAC TAC AAC ATG GAG AAG TAC TTC GAG ATC AAG GCC TAC 3400 Ala Trp His His Tyr Asn Met Glu Lys Tyr Phe Glu Ile Lys Ala Tyr 250 255 260 CAG TCG CCG TAC ACG GTC GGC TCC CGG GTG GGC CAG CTC TAC ACC AGC 3448 Gln Ser Pro Tyr Thr Val Gly Ser Arg Val Gly Gln Leu Tyr Thr Ser 265 270 275 CGC GGC TGC ACG GCC CAC TGC ACC TTC TGC ACG ACC ACC CAC TTC TGG 3496 Arg Gly Cys Thr Ala His Cys Thr Phe Cys Thr Thr Thr His Phe Trp 280 285 290 295 GGT CAG AAG CTC CGC CGG CGC AGC GTC CAG GAC GTG GTC GAC GAG GTC 3544 Gly Gln Lys Leu Arg Arg Arg Ser Val Gln Asp Val Val Asp Glu Val 300 305 310 CTG AGG CTG CGC GAC GAA TAC GGA ATC GAC GAA TTC CAT ATT CAG GAC 3592 Leu Arg Leu Arg Asp Glu Tyr Gly Ile Asp Glu Phe His Ile Gln Asp 315 320 325 GAC AAC ATC ACG AAC GAC ATG GAC CAC GCC CGC GAG CTG TTC CGC GCG 3640 Asp Asn Ile Thr Asn Asp Met Asp His Ala Arg Glu Leu Phe Arg Ala 330 335 340 TTC AAG GAG GTC GGC CTC CCC TGG GCG ACC CCG CAG GGC ACC GCC CTG 3688 Phe Lys Glu Val Gly Leu Pro Trp Ala Thr Pro Gln Gly Thr Ala Leu 345 350 355 TGG CGC ATG GAC GAA GAG CTG CTC GAC CTC ATG GCG GAG TCG GGC GCC 3736 Trp Arg Met Asp Glu Glu Leu Leu Asp Leu Met Ala Glu Ser Gly Ala 360 365 370 375 TAC CAG GTG ACG TTC GCC ATC GAG AGC GGC GTG CAG CGA GTC CTC AAG 3784 Tyr Gln Val Thr Phe Ala Ile Glu Ser Gly Val Gln Arg Val Leu Lys 380 385 390 GAA CTC ATC AAG AAG CCG CTC AAC CTC GAA CGG ACC TCG CAC CTC ATC 3832 Glu Leu Ile Lys Lys Pro Leu Asn Leu Glu Arg Thr Ser His Leu Ile 395 400 405 AAG TAC GCG AGA AGC CTT GGA ATG CAC GTC CAC GGC TTC TTC ATC ATC 3880 Lys Tyr Ala Arg Ser Leu Gly Met His Val His Gly Phe Phe Ile Ile 410 415 420 GGC ATG CCG CCG ATG TGC GGA AAC GCC GGC GAA AGC ATC GAG GAG ATG 3928 Gly Met Pro Pro Met Cys Gly Asn Ala Gly Glu Ser Ile Glu Glu Met 425 430 435 CAG GCG TCG TAC GAC TAT GCC GAA GAA GCC GGA TTC AGC AGC GCT TCC 3976 Gln Ala Ser Tyr Asp Tyr Ala Glu Glu Ala Gly Phe Ser Ser Ala Ser 440 445 450 455 TTC TTC GCG GCA TCG CCG ATC GTC GGT TCC GAG CTC CTG CGC GAG TGC 4024 Phe Phe Ala Ala Ser Pro Ile Val Gly Ser Glu Leu Leu Arg Glu Cys 460 465 470 ATT CGC CAG GGG TTC GTG GAC CCG GAG GAG TCT CTT TAC CGC ATG ACC 4072 Ile Arg Gln Gly Phe Val Asp Pro Glu Glu Ser Leu Tyr Arg Met Thr 475 480 485 TAC AAG CAG GGG ATC ATC AAC GTC CCC GGC CTG TGG GAC GGC GAG GAG 4120 Tyr Lys Gln Gly Ile Ile Asn Val Pro Gly Leu Trp Asp Gly Glu Glu 490 495 500 ATC GCG GAG CTC GCC GCG AAA TTC AAC CGG GAC TTC AAT GCG CGG CGC 4168 Ile Ala Glu Leu Ala Ala Lys Phe Asn Arg Asp Phe Asn Ala Arg Arg 505 510 515 GAC CGG GCT TAC ACG CCG CAG AAG CAG TGG AAC GCA AAC CAG TAC TGA 4216 Asp Arg Ala Tyr Thr Pro Gln Lys Gln Trp Asn Ala Asn Gln Tyr *** 520 525 530 534 AATC TGGGAGGGCG AA ATG AGC AAC ACC AAG ACG GCG AGC ACG GGC 4262 Met Ser Asn Thr Lys Thr Ala Ser Thr Gly 1 5 10 TTC GCG GAG CTC CTC AAG GAC CGG CGC GAG CAG GTC AAG ATG GAC CAC 4310 Phe Ala Glu Leu Leu Lys Asp Arg Arg Glu Gln Val Lys Met Asp His 15 20 25 GCC GCC CTT GCC TCG CTC CTC GGG GAG ACC CCC GAG ACG GTG GCG GCC 4358 Ala Ala Leu Ala Ser Leu Leu Gly Glu Thr Pro Glu Thr Val Ala Ala 30 35 40 TGG GAG AAC GGC GAG GGC GGC GAG CTG ACG CTC ACG CAG CTG GGC AGG 4406 Trp Glu Asn Gly Glu Gly Gly Glu Leu Thr Leu Thr Gln Leu Gly Arg 45 50 55 ATC GCC CAC GTG CTC GGC ACG TCG ATC GGC GCC CTC ACC CCG CCG GCG 4454 Ile Ala His Val Leu Gly Thr Ser Ile Gly Ala Leu Thr Pro Pro Ala 60 65 70 GGC AAC GAC CTC GAC GAC GGC GTC ATC ATC CAG ATG CCC GAC GAG CGC 4502 Gly Asn Asp Leu Asp Asp Gly Val Ile Ile Gln Met Pro Asp Glu Arg 75 80 85 90 CCG ATC CTC AAG GGT GTG CGG GAC AAC GTC GAC TAC TAC GTC TAC AAC 4550 Pro Ile Leu Lys Gly Val Arg Asp Asn Val Asp Tyr Tyr Val Tyr Asn 95 100 105 TGT CTC GTC CGC ACC AAG CGT GCG CCT TCG CTC GTC CCC CTC GTG GTG 4598 Cys Leu Val Arg Thr Lys Arg Ala Pro Ser Leu Val Pro Leu Val Val 110 115 120 GAC GTG CTG ACG GAC AAC CCC GAC GAC GCG AAG TTC AAC TCG GGC CAC 4646 Asp Val Leu Thr Asp Asn Pro Asp Asp Ala Lys Phe Asn Ser Gly His 125 130 135 GCC GGC AAC GAG TTC CTC TTC GTG CTC GAG GGC GAG ATC CAC ATG AAG 4694 Ala Gly Asn Glu Phe Leu Phe Val Leu Glu Gly Glu Ile His Met Lys 140 145 150 TGG GGC GAC AAG GAG AAC CCG AAG GAG GCC CTC CTC CCG ACC GGC GCG 4742 Trp Gly Asp Lys Glu Asn Pro Lys Glu Ala Leu Leu Pro Thr Gly Ala 155 160 165 170 AGC ATG TTC GTG GAG GAG CAC GTG CCG CAC GCC TTC ACG GCG GCC AAG 4790 Ser Met Phe Val Glu Glu His Val Pro His Ala Phe Thr Ala Ala Lys 175 180 185 GGC ACG GGT TCC GCG AAG CTG ATC GCC GTC AAC TTC TGA C CCACGGAGT 4840 Gly Thr Gly Ser Ala Lys Leu Ile Ala Val Asn Phe *** 190 195 198 ACGGGTGGAC TCCCTCCACC CGTACCTCGC GGTCCCGTGA GGCAGCCCGG TCTGCCGAGT 4900 TGCCGAATGG ACGAGACAGG ACGATGGCAG AAGTCGCCTC CCAGGAAACC GAGTTCGCGG 4960 CCTTCGCGTT CGGGTCGGTC GTCGAGCGCC GGGACGAACT GGAGGGGCGG CCGTGGATCT 5020 CGTATCCCGT CCGCGTGGTG GCCGACACCC CCGAGCTCGT CGCCGTCTAC CTGTCCCACG 5080 GCACCCTCCT CACCTTCGGA GACGGCCCCT TCAGCTGGGG CCCGCACCCC TGGGGACCGT 5140 TCGGCGACCG GTGGCAGAGC GCCGGGATCC 5170
SEQ ID NO: 1 Sequence length: 5170 Sequence type: Nucleic acid Number of strands: Double-strand Topology: Linear Sequence type: Genomic DNA Origin Biological name: Streptomyces bedemolensis (Strept
omyces wedmorensis) Strain name: ATCC21239 strain Sequence features Characteristic symbol: mat peptide Location: 2612..4213 4233..4826 Method of determining features: E sequence CTGCAGGACG AGCAGGGGGA TCGCGAGGATCGCGAGCCCG TCGCCGATCG 120 CGGGGCGAGT GCCACTCAGG CCACCGCCTC GACGAGCGCG CCGACGATCT GGCAGGCCTG 180 GCTCATGGTC AGCGTCGCGA ACCCCTCGGG CTCGACCGGC TCCCCGGCGG CCAGCGGCCG 240 GCCGTCCGGC GACAGCCGGT CGCCCCACCT GATCTGCCGG CGGAAGGCCG CGGACAGCTC 300 CGCGCCCTCG GCCGCCAGCC ACTCGGCCAC GACCCGCTGG ATCTCGGGGG CCGTCCGGTC 360 CACGCGCTCG GGCCAGGCCG CGATGGCCGT ACGGACCCGG GCGAGCAGGT CCCCGACCAG 420 TGCCACGTCA CGCGGCTCGC GGGAGGACGG CCACAGCAGG AAGGGCGCGG TGGGTGCGAT 480 GACGAACAGC AGGGGGAGCG GCCCAGGGGA GGTCCCGCGC CACGGCCTCG TACATCCACT 540 TGGTCTTCTT CGCGCCGCTG AAGAAGTACC CGCGGCGCTG CGGCGGGTAG CCGCCCATCG 600 CCAGGGCGCC CCACTGCACG TGCACGTCGA AGTCGCCGCA GACCGGGGGC TGTCCGGGCG 660 CGCGGTGGGT GCCGAGGACC GCGTAGAGAA GGGTGACCGC GTCCACCGAC AG CAGCGGCG 720 CGTGCGGCGC CGGGGCCGCG TCCTGGCCGG TGAACCGCCC GGCGGCGACC GCCGCCCGCG 780 CGGGCAGCAG GCTCGCCGCG ACCAGCGCGT CGGCCGTCGG GTAGTCGAAG GGCCCCAGGT 840 GGTAGCCCGA AGCGTCGGCC GTCGGCTTGA ACCGCTCCAC GCTTCCGTCG CGGTGCACGA 900 TCCGGTCGAA CACGTAGGAC AGGGCCCGGG TGTCCGTCCC GGCGGCCCGG AGCAGCGTGT 960 GCAGCACCTC CGTGACCCGC TCCTCCTCGC CCGTCAGGAG GTCGGAGTGG AACGTGGCGT 1020 CGGGGAAGTG CTCCCGCATC CGGCGGCGGT GCAGCTCGGT GAGGGGCAGT CGTTCGCCCT 1080 CCCACTCGGT CTCCACGTAC GGCACGAACA GCGATCCCTC GCCGTCGTGC CGCTCCATGC 1140 CCGCCGGCGA CCAGTGCCGG AGGGGGAGCC TGCTGCGTAC GCCGGCCTCG ACCAGGGAGC 1200 CGGGCAGGAA GAGGGTGTCA CCGCTCGCCA GGGCGGTGTC CTCGGTCTGG TTGAAGTCGT 1260 AGAGCAGGGG GCGGGCGAGG CCCGGAACGC CGCAGACCAC CCGGTTGTAG TCCAGGACCG 1320 TGCTGCGTCC GGAACCGATG TCGCCCCAGT CGGCGAGGTG CCCGGTGCGA ATGGGGGTGA 1380 GCGGCAACGC GGCGATCGAG GCGGTCAGTT CGCCCATCGG GAGCTGTACG CGTCCCATGT 1440 GGCGGGCGAC GAACCCCGAG CGTCCCGACC GGAGTTCGGC CCACGATTCC TCGTCGAGGC 1500 CGATCGCCTT GAGATCCTGT GGTGCCAGGC CGAGCTCCGA GGTCATCGGG AAGCGGCCAT 15 60 GTCCAGGACG GCCCGGCCCA GGATGCGGGT CACGTCGTAC ACGTGCGGGG GGAGCTCGGG 1620 CAGCAGCGGC GACAGGTCCG TGCAGCCGAC GACGACGCCG TCCCCGGGCC GCGTCCACTC 1680 CCCTTCGACG GCCTTGCGCA ACTGGGCCGA AGCCTCCTGC ACACGGCCGG ACTTGACCAT 1740 CTCGACGCAT TCCTGGATCT CGCGCTGCGT GGCGGGGTCC GGGTAGACGG GAGTGAGGCC 1800 GGCGTCCACC AGGGCCCGGT GCAGCAGACC GAGCTTCAGT GCGCCGTCGG TGACCGCGAG 1860 GGCGGGGCGC AGGACTCCGG CCTCCCGGAG GCCGGCGGCC ACGACCCGGA GCATGTCGAC 1920 CACGGGAACG TCCACCGCGG CCGAGACCTC GTCGTAGTAG GCCTGCGTGG TGACCGACGG 1980 CATCGCGATC AGCTGGGCGC CGGCGTCCTG GAGACGCCGC GCCACGGCCT GGAGCTGTTC 2040 CACCGGTGAG GGGCCGTCGG ACAGGAGGTG GTCGAGGCGA CTGGGGATGG CGGGGCTGGA 2100 GAGGAGGAGG ACCTCGGGGT GCTCCTGGTC GCTGCCGGCC GTCGTCTGCT CGACGAGACG 2160 CATGTAGAAA TTAGCGCAGG CAAGGGGTCC AAGCCCGCCG ATAATGCCTA TCTTCTGCCA 2220 GTGGTCTATC GCGGCGTTAC TCACGTAGTT CACCCTGCTT CGGGCGGCGT CCGGAAAGCA 2280 ACCCCGAACC GATGGCATAT GACGGTCATG GCGCATAAGT GTCAACCATG AAGCGGTGCA 2340 AACCGGGCAT CCGTCAGGTC TTGTTGCAAG AATGTTGACG TCTTTCAGAC CTGAGTATTA 2400 CGT TGATCGC CACTTCACGC TCGACGCCGG GGGAACGGCG TAATGGGGCG CACCGAATCC 2460 TTGTCCTTGA TGGTGCAGCG GCTACTGGTT GGGCACGTCC GAACACTCGG GCGGCGGCGT 2520 TTTCACCGGC ATTGGAGAGT GGTATCTCCA TGCGTTCATC CGGGCCCATT TCACGAGAAA 2580 CGCGGCGGTT TTGAGCACTA AACAGAATCT C ATG ACG ATC GGT TCT CTG GGC 2632 Met Thr Ile Gly Ser Leu Gly 1 5 TCC ACC GAG TTC GCC CTG CAC GGG AAG CCG GCC ATC AGA TGG GGC GAT 2680 Ser Thr Glu Phe Ala Leu His Gly Lys Pro Ala Ile Arg Trp Gly Asp 10 15 20 CTG CCC CAG CGC GTC GGA AAG CCG GAG ACG CGG CGC TAC CAG AAG GTG 2728 Leu Pro Gln Arg Val Gly Lys Pro Glu Thr Arg Arg Tyr Gln Lys Val 25 30 35 CTG CTG CTG AAT CCC TCG GCA ACG CTC TTC CGG CAC GAC CTT CCG CGA 2776 Leu Leu Leu Asn Pro Ser Ala Thr Leu Phe Arg His Asp Leu Pro Arg 40 45 50 55 TGT ACG TAC CCC CTC GGC CTG GGG TAC ATC GCG GCC GTC CTC GAG AAG 2824 Cys Thr Tyr Pro Leu Gly Leu Gly Tyr Ile Ala Ala Val Leu Glu Lys 60 65 70 TAC GGC TAC GAG GTC AAG ATC CTC GAC GTC TTC GCG GAG GGC TAC TAC 2872 Tyr Gly Tyr Glu Val Lys Ile Leu Asp Val Phe Ala Gl u Gly Tyr Tyr 75 80 85 AAC GCC CAG CCC GTC GAC GGC GAC GAC CAG TTC CTC CGT TAC GGC CTG 2920 Asn Ala Gln Pro Val Asp Gly Asp Asp Gln Phe Leu Arg Tyr Gly Leu 90 95 100 TCG GAC GAC GAC ATC GTC AAG GTG ATG AAG GAG TTC GGG CCC GAC GTC 2968 Ser Asp Asp Asp Ile Val Lys Val Met Lys Glu Phe Gly Pro Asp Val 105 110 115 GTC GGC ATC TCG AGC ATC TTC AGC AAC CAG GCC GAC AAC GTG CAC CAC 3016 Val Gly Ile Ser Ser Ile Phe Ser Asn Gln Ala Asp Asn Val His His 120 125 130 135 CTT CTG AAG CTG GCG GAC CTC GTC ACG CCC GAG GCC GTC ACC GCG ATC 3064 Leu Leu Lys Leu Ala Asp Leu Val Thr Pro Glu Ala Val Thr Ala Ile 140 145 150 GGC GGA GCG CAC GCG CGC TAC TTC CCG AAG GCC TGT CTG GAC GAC CCG 3112 Gly Gly Ala His Ala Arg Tyr Phe Pro Lys Ala Cys Leu Asp Asp Pro 155 160 165 AAC CTC GAC GCG GTG TTC CTC GGC GAA GGC GAG ATG ACC TTC CTG CTG 3160 Asn Leu Asp Ala Val Phe Leu Gly Glu Gly Glu Met Thr Phe Leu Leu 170 175 180 TGG ATG GAG CAC CTC AAC GGA AAC GTG AGC GAC GAC GAG GTC CAC GGC 3208 Trp Met Glu His Leu Asn Gly Asn Val Ser Asp Asp Glu Val His Gly 185 190 195 ATC GCG TGG CGT GAC CGC GAC GGC AAG GTC CAG ATC AAG CCC GAG CTG 3256 Ile Ala Trp Arg Asp Arg Asp Gly Lys Val Gln Ile Lys Pro Glu Leu 200 205 210 215 CCG CTG ATC AGC TCG ATG CGC CCC GAA GGC CCC GAG ACG GGC AAG TCC 3304 Pro Leu Ile Ser Ser Met Arg Pro Glu Gly Pro Glu Thr Gly Lys Ser 220 225 230 TCT CCC ATG CTG AGC ATG GCC GGC GAA CTG GAC CAC ATC CCG TTC CCC 3352 Ser Pro Met Leu Ser Met Ala Gly Glu Leu Asp His Ile Pro Phe Pro 235 240 245 GCC TGG CAC CAC TAC AAC ATG GAG AAG TAC TTC GAG ATC AAG GCC TAC 3400 Ala Trp His His Tyr Asn Met Glu Lys Tyr Phe Glu Ile Lys Ala Tyr 250 255 260 CAG TCG CCG TAC ACG GTC GGC TCC CGG GTG GGC CAG CTC TAC ACC AGC 3448 Gln Ser Pro Tyr Thr Val Gly Ser Arg Val Gly Gln Leu Tyr Thr Ser 265 270 275 CGC GGC TGC ACG GCC CAC TGC ACC TTC TGC ACG ACC ACC CAC TTC TGG 3496 Arg Gly Cys Thr Ala His Cys Thr Phe Cys Thr Thr Thr His Phe Trp 280 285 290 295 GGT CAG AAG CTC CGC CGG CGC AGC GTC CAG GAC GTG GTC GAC GAG GTC 3544 Gly Gln Lys L eu Arg Arg Arg Ser Val Gln Asp Val Val Asp Glu Val 300 305 310 CTG AGG CTG CGC GAC GAA TAC GGA ATC GAC GAA TTC CAT ATT CAG GAC 3592 Leu Arg Leu Arg Asp Glu Tyr Gly Ile Asp Glu Phe His Ile Gln Asp 315 320 325 GAC AAC ATC ACG AAC GAC ATG GAC CAC GCC CGC GAG CTG TTC CGC GCG 3640 Asp Asn Ile Thr Asn Asp Met Asp His Ala Arg Glu Leu Phe Arg Ala 330 335 340 TTC AAG GAG GTC GGC CTC CCC TGG GCG ACC CCG CAG GGC ACC GCC CTG 3688 Phe Lys Glu Val Gly Leu Pro Trp Ala Thr Pro Gln Gly Thr Ala Leu 345 350 355 TGG CGC ATG GAC GAA GAG CTG CTC GAC CTC ATG GCG GAG TCG GGC GCC 3736 Trp Arg Met Asp Glu Glu Leu Leu Asp Leu Met Ala Glu Ser Gly Ala 360 365 370 375 TAC CAG GTG ACG TTC GCC ATC GAG AGC GGC GTG CAG CGA GTC CTC AAG 3784 Tyr Gln Val Thr Phe Ala Ile Glu Ser Gly Val Gln Arg Val Leu Lys 380 385 390 GAA CTC ATC AAG AAG CCG CTC AAC CTC GAA CGG ACC TCG CAC CTC ATC 3832 Glu Leu Ile Lys Lys Pro Leu Asn Leu Glu Arg Thr Ser His Leu Ile 395 400 405 AAG TAC GCG AGA AGC CTT GGA ATG CAC GTC CAC GGC TTC TTC ATC ATC 3880 Lys Tyr Ala Arg Ser Leu Gly Met His Val His Gly Phe Phe Ile Ile 410 415 420 GGC ATG CCG CCG ATG TGC GGA AAC GCC GGC GAA AGC ATC GAG GAG ATG 3928 Gly Met Pro Pro Met Cys Gly Asn Ala Gly Glu Ser Ile Glu Glu Met 425 430 435 CAG GCG TCG TAC GAC TAT GCC GAA GAA GCC GGA TTC AGC AGC GCT TCC 3976 Gln Ala Ser Tyr Asp Tyr Ala Glu Glu Ala Gly Phe Ser Ser Ala Ser 440 445 450 455 TTC TTC GCG GCA TCG CCG ATC GTC GGT TCC GAG CTC CTG CGC GAG TGC 4024 Phe Phe Ala Ala Ser Pro Ile Val Gly Ser Glu Leu Leu Arg Glu Cys 460 465 470 ATT CGC CAG GGG TTC GTG GAC CCG GAG GAG TCT CTT TAC CGC ATG ACC 4072 Ile Arg Gln Gly Phe Val Asp Pro Glu Glu Ser Leu Tyr Arg Met Thr 475 480 485 TAC AAG CAG GGG ATC ATC AAC GTC CCC GGC CTG TGG GAC GGC GAG GAG 4120 Tyr Lys Gln Gly Ile Ile Asn Val Pro Gly Leu Trp Asp Gly Glu Glu 490 495 500 ATC GCG GAG CTC GCC GCG AAA TTC AAC CGG GAC TTC AAT GCG CGG CGC 4168 Ile Ala Glu Leu Ala Ala Lys Phe Asn Arg Asp Phe Asn Ala Arg Arg 505 510 515 GAC CGG GCT TAC ACG CCG CAG AAG CAG TGG AAC GCA AAC CAG TAC TGA 4216 Asp Arg Ala Tyr Thr Pro Gln Lys Gln Trp Asn Ala Asn Gln Tyr *** 520 525 530 534 AATC TGGGAGGGCG AA ATG AGC AAC ACC AAG ACG GCG AGC ACG GGC 4262 Met Ser Asn Thr Lys Thr Ala Ser Thr Gly 1 5 10 TTC GCG GAG CTC CTC AAG GAC CGG CGC GAG CAG GTC AAG ATG GAC CAC 4310 Phe Ala Glu Leu Leu Lys Asp Arg Arg Glu Gln Val Lys Met Asp His 15 20 25 GCC GCC CTT GCC TCG CTC CTC GGG GAG ACC CCC GAG ACG GTG GCG GCC 4358 Ala Ala Leu Ala Ser Leu Leu Gly Glu Thr Pro Glu Thr Val Ala Ala 30 35 40 TGG GAG AAC GGC GAG GGC GGC GAG CTG ACG CTC ACG CAG CTG GGC AGG 4406 Trp Glu Asn Gly Glu Gly Gly Glu Leu Thr Leu Thr Gln Leu Gly Arg 45 50 55 ATC GCC CAC GTG CTC GGC ACG TCG ATC GGC GCC CTC ACC CCG CCG GCG 4454 Ile Ala His Val Leu Gly Thr Ser Ile Gly Ala Leu Thr Pro Pro Ala 60 65 70 GGC AAC GAC CTC GAC GAC GGC GTC ATC ATC CAG ATG CCC GAC GAG CGC 4502 Gly Asn Asp Leu Asp Asp Gly Val Ile Ile Gln Met Pro Asp Glu Arg 75 80 85 90 CCG ATC CTC AAG GGT GTG CGG GAC AAC GTC GAC TAC TAC GTC TAC AAC 4550 Pr o Ile Leu Lys Gly Val Arg Asp Asn Val Asp Tyr Tyr Val Tyr Asn 95 100 105 TGT CTC GTC CGC ACC AAG CGT GCG CCT TCG CTC GTC CCC CTC GTG GTG 4598 Cys Leu Val Arg Thr Lys Arg Ala Pro Ser Leu Val Pro Leu Val Val 110 115 120 GAC GTG CTG ACG GAC AAC CCC GAC GAC GCG AAG TTC AAC TCG GGC CAC 4646 Asp Val Leu Thr Asp Asn Pro Asp Asp Ala Lys Phe Asn Ser Gly His 125 130 135 GCC GGC AAC GAG TTC CTC TTC GTG CTC GAG GGC GAG ATC CAC ATG AAG 4694 Ala Gly Asn Glu Phe Leu Phe Val Leu Glu Gly Glu Ile His Met Lys 140 145 150 TGG GGC GAC AAG GAG AAC CCG AAG GAG GCC CTC CTC CCG ACC GGC GCG 4742 Trp Gly Asp Lys Glu Asn Pro Lys Glu Ala Leu Leu Pro Thr Gly Ala 155 160 165 170 AGC ATG TTC GTG GAG GAG CAC GTG CCG CAC GCC TTC ACG GCG GCC AAG 4790 Ser Met Phe Val Glu Glu His Val Pro His Ala Phe Thr Ala Ala Lys 175 180 185 GGC ACG GGT TCC GCG AAG CTG ATC GCC GTC AAC TTC TGA C CCACGGAGT 4840 Gly Thr Gly Ser Ala Lys Leu Ile Ala Val Asn Phe *** 190 195 198 ACGGGTGGAC TCCCTCCACC CGTACCTCGC GGTCCCGTGA GGCAGCCCGG TCTGCCGAGT 4900 TGCCGAATGG ACGAGACAGG ACGATGGCAG AAGTCGCCTC CCAGGAAACC GAGTTCGCGG 4960 CCTTCGCGTT CGGGTCGGTC GTCGAGCGCC GGGACGAACT GGAGGGGCGG CCGTGGATCT 5020 CGTATCCCGT CCGCGTGGTG GCCGACACCC CCGAGCTCGT CGCCGTCTAC CTGTCCCACG 5080 GCACCCTCCT CACCTTCGGA GACGGCCCCT TCAGCTGGGG CCCGCACCCC TGGGGACCGT 5140 TCGGCGACCG GTGGCAGAGC GCCGGGATCC 5170

【0054】[0054]

【配列表】[Sequence list]

配列番号:2 配列の長さ:534 配列の型:アミノ酸 トポロジー: 配列の種類:タンパク質 配列の特徴 特徴を表す記号:mat peptide 特徴を決定した方法:E 配列 Met Thr Ile Gly Ser Leu Gly Ser Thr Glu Phe Ala Leu His Gly Lys 1 5 10 15 Pro Ala Ile Arg Trp Gly Asp Leu Pro Gln Arg Val Gly Lys Pro Glu 20 25 30 Thr Arg Arg Tyr Gln Lys Val Leu Leu Leu Asn Pro Ser Ala Thr Leu 35 40 45 Phe Arg His Asp Leu Pro Arg Cys Thr Tyr Pro Leu Gly Leu Gly Tyr 50 55 60 Ile Ala Ala Val Leu Glu Lys Tyr Gly Tyr Glu Val Lys Ile Leu Asp 65 70 75 80 Val Phe Ala Glu Gly Tyr Tyr Asn Ala Gln Pro Val Asp Gly Asp Asp 85 90 95 Gln Phe Leu Arg Tyr Gly Leu Ser Asp Asp Asp Ile Val Lys Val Met 100 105 110 Lys Glu Phe Gly Pro Asp Val Val Gly Ile Ser Ser Ile Phe Ser Asn 115 120 125 Gln Ala Asp Asn Val His His Leu Leu Lys Leu Ala Asp Leu Val Thr 130 135 140 Pro Glu Ala Val Thr Ala Ile Gly Gly Ala His Ala Arg Tyr Phe Pro 145 150 155 160 Lys Ala Cys Leu Asp Asp Pro Asn Leu Asp Ala Val Phe Leu Gly Glu 165 170 175 Gly Glu Met Thr Phe Leu Leu Trp Met Glu His Leu Asn Gly Asn Val 180 185 190 Ser Asp Asp Glu Val His Gly Ile Ala Trp Arg Asp Arg Asp Gly Lys 195 200 205 Val Gln Ile Lys Pro Glu Leu Pro Leu Ile Ser Ser Met Arg Pro Glu 210 215 220 Gly Pro Glu Thr Gly Lys Ser Ser Pro Met Leu Ser Met Ala Gly Glu 225 230 235 240 Leu Asp His Ile Pro Phe Pro Ala Trp His His Tyr Asn Met Glu Lys 245 250 255 Tyr Phe Glu Ile Lys Ala Tyr Gln Ser Pro Tyr Thr Val Gly Ser Arg 260 265 270 Val Gly Gln Leu Tyr Thr Ser Arg Gly Cys Thr Ala His Cys Thr Phe 275 280 285 Cys Thr Thr Thr His Phe Trp Gly Gln Lys Leu Arg Arg Arg Ser Val 290 295 300 Gln Asp Val Val Asp Glu Val Leu Arg Leu Arg Asp Glu Tyr Gly Ile 305 310 315 320 Asp Glu Phe His Ile Gln Asp Asp Asn Ile Thr Asn Asp Met Asp His 325 330 335 Ala Arg Glu Leu Phe Arg Ala Phe Lys Glu Val Gly Leu Pro Trp Ala 340 345 350 Thr Pro Gln Gly Thr Ala Leu Trp Arg Met Asp Glu Glu Leu Leu Asp 355 360 365 Leu Met Ala Glu Ser Gly Ala Tyr Gln Val Thr Phe Ala Ile Glu Ser 370 375 380 Gly Val Gln Arg Val Leu Lys Glu Leu Ile Lys Lys Pro Leu Asn Leu 385 390 395 400 Glu Arg Thr Ser His Leu Ile Lys Tyr Ala Arg Ser Leu Gly Met His 405 410 415 Val His Gly Phe Phe Ile Ile Gly Met Pro Pro Met Cys Gly Asn Ala 420 425 430 Gly Glu Ser Ile Glu Glu Met Gln Ala Ser Tyr Asp Tyr Ala Glu Glu 435 440 445 Ala Gly Phe Ser Ser Ala Ser Phe Phe Ala Ala Ser Pro Ile Val Gly 450 455 460 Ser Glu Leu Leu Arg Glu Cys Ile Arg Gln Gly Phe Val Asp Pro Glu 465 470 475 480 Glu Ser Leu Tyr Arg Met Thr Tyr Lys Gln Gly Ile Ile Asn Val Pro 485 490 495 Gly Leu Trp Asp Gly Glu Glu Ile Ala Glu Leu Ala Ala Lys Phe Asn 500 505 510 Arg Asp Phe Asn Ala Arg Arg Asp Arg Ala Tyr Thr Pro Gln Lys Gln 515 520 525 Trp Asn Ala Asn Gln Tyr 530 534  SEQ ID NO: 2 Sequence length: 534 Sequence type: Amino acid Topology: Sequence type: Protein Sequence feature symbol: mat peptide Method for determining feature: E sequence Met Thr Ile Gly Ser Leu Gly Ser Thr Glu Phe Ala Leu His Gly Lys 1 5 10 15 Pro Ala Ile Arg Trp Gly Asp Leu Pro Gln Arg Val Gly Lys Pro Glu 20 25 30 Thr Arg Arg Tyr Gln Lys Val Leu Leu Leu Asn Pro Ser Ala Thr Leu 35 40 45 Phe Arg His Asp Leu Pro Arg Cys Thr Tyr Pro Leu Gly Leu Gly Tyr 50 55 60 Ile Ala Ala Val Leu Glu Lys Tyr Gly Tyr Glu Val Lys Ile Leu Asp 65 70 75 80 Val Phe Ala Glu Gly Tyr Tyr Asn Ala Gln Pro Val Asp Gly Asp Asp 85 90 95 Gln Phe Leu Arg Tyr Gly Leu Ser Asp Asp Asp Ile Val Lys Val Met 100 105 110 Lys Glu Phe Gly Pro Asp Val Val Gly Ile Ser Ser Ile Phe Ser Asn 115 120 125 Gln Ala Asp Asn Val His His Leu Leu Lys Leu Ala Asp Leu Val Thr 130 135 140 Pro Glu Ala Val Thr Ala Ile Gly Gly Ala His Ala Arg Tyr Phe Pro 145 150 155 160 Lys Ala Cys Leu Asp Asp Pro Asn Leu Asp Ala Val Phe Leu Gly Glu 165 170 175 Gly Glu Met Thr Phe Leu Leu Trp Met Glu His Leu Asn Gly Asn Val 180 185 190 Ser Asp Asp Glu Val His Gly Ile Ala Trp Arg Asp Arg Asp Gly Lys 195 200 205 Val Gln Ile Lys Pro Glu Leu Pro Leu Ile Ser Ser Met Arg Pro Glu 210 215 220 Gly Pro Glu Thr Gly Lys Ser Ser Pro Met Leu Ser Met Ala Gly Glu 225 230 235 240 Leu Asp His Ile Pro Phe Pro Ala Trp His His Tyr Asn Met Glu Lys 245 250 255 Tyr Phe Glu Ile Lys Ala Tyr Gln Ser Pro Tyr Thr Val Gly Ser Arg 260 265 270 Val Gly Gln Leu Tyr Thr Ser Arg Gly Cys Thr Ala His Cys Thr Phe 275 280 285 Cys Thr Thr Thr His Phe Trp Gly Gln Lys Leu Arg Arg Arg Ser Val 290 295 300 Gln Asp Val Val Asp Glu Val Leu Arg Leu Arg Asp Glu Tyr Gly Ile 305 310 315 320 Asp Glu Phe His Ile Gln Asp Asp Asn Ile Thr Asn Asp Met Asp His 325 330 335 Ala Arg Glu Leu Phe Arg Ala Phe Lys Glu Val Gly Leu Pro Trp Ala 340 345 350 Thr Pro Gln Gly Thr Ala Leu Trp Arg Met Asp Glu Glu Leu Leu Asp 355 360 365 Leu Met Ala Glu Ser Gly Ala Tyr Gln Va l Thr Phe Ala Ile Glu Ser 370 375 380 Gly Val Gln Arg Val Leu Lys Glu Leu Ile Lys Lys Pro Leu Asn Leu 385 390 395 400 Glu Arg Thr Ser His Leu Ile Lys Tyr Ala Arg Ser Leu Gly Met His 405 410 415 Val His Gly Phe Phe Ile Ile Gly Met Pro Pro Met Cys Gly Asn Ala 420 425 430 Gly Glu Ser Ile Glu Glu Met Gln Ala Ser Tyr Asp Tyr Ala Glu Glu 435 440 445 Ala Gly Phe Ser Ser Ala Ser Phe Phe Ala Ala Ser Pro Ile Val Gly 450 455 460 Ser Glu Leu Leu Arg Glu Cys Ile Arg Gln Gly Phe Val Asp Pro Glu 465 470 475 480 Glu Ser Leu Tyr Arg Met Thr Tyr Lys Gln Gly Ile Ile Asn Val Pro 485 490 495 Gly Leu Trp Asp Gly Glu Glu Ile Ala Glu Leu Ala Ala Lys Phe Asn 500 505 510 Arg Asp Phe Asn Ala Arg Arg Asp Arg Ala Tyr Thr Pro Gln Lys Gln 515 520 525 Trp Asn Ala Asn Gln Tyr 530 534

【0055】[0055]

【配列表】[Sequence list]

配列番号:3 配列の長さ:198 配列の型:アミノ酸 トポロジー: 配列の種類:タンパク質 配列の特徴 特徴を表す記号:mat peptide 特徴を決定した方法:E 配列 Met Ser Asn Thr Lys Thr Ala Ser Thr Gly Phe Ala Glu Leu Leu Lys 1 5 10 15 Asp Arg Arg Glu Gln Val Lys Met Asp His Ala Ala Leu Ala Ser Leu 20 25 30 Leu Gly Glu Thr Pro Glu Thr Val Ala Ala Trp Glu Asn Gly Glu Gly 35 40 45 Gly Glu Leu Thr Leu Thr Gln Leu Gly Arg Ile Ala His Val Leu Gly 50 55 60 Thr Ser Ile Gly Ala Leu Thr Pro Pro Ala Gly Asn Asp Leu Asp Asp 65 70 75 80 Gly Val Ile Ile Gln Met Pro Asp Glu Arg Pro Ile Leu Lys Gly Val 85 90 95 Arg Asp Asn Val Asp Tyr Tyr Val Tyr Asn Cys Leu Val Arg Thr Lys 100 105 110 Arg Ala Pro Ser Leu Val Pro Leu Val Val Asp Val Leu Thr Asp Asn 115 120 125 Pro Asp Asp Ala Lys Phe Asn Ser Gly His Ala Gly Asn Glu Phe Leu 130 135 140 Phe Val Leu Glu Gly Glu Ile His Met Lys Trp Gly Asp Lys Glu Asn 145 150 155 160 Pro Lys Glu Ala Leu Leu Pro Thr Gly Ala Ser Met Phe Val Glu Glu 165 170 175 His Val Pro His Ala Phe Thr Ala Ala Lys Gly Thr Gly Ser Ala Lys 180 185 190 Leu Ile Ala Val Asn Phe 195 198 SEQ ID NO: 3 Sequence length: 198 Sequence type: Amino acid Topology: Sequence type: Protein Sequence feature symbol: mat peptide Characterization method: E sequence Met Ser Asn Thr Lys Thr Ala Ser Thr Gly Phe Ala Glu Leu Leu Lys 1 5 10 15 Asp Arg Arg Glu Gln Val Lys Met Asp His Ala Ala Leu Ala Ser Leu 20 25 30 Leu Gly Glu Thr Pro Glu Thr Val Ala Ala Trp Glu Asn Gly Glu Gly 35 40 45 Gly Glu Leu Thr Leu Thr Gln Leu Gly Arg Ile Ala His Val Leu Gly 50 55 60 Thr Ser Ile Gly Ala Leu Thr Pro Pro Ala Gly Asn Asp Leu Asp Asp 65 70 75 80 Gly Val Ile Ile Gln Met Pro Asp Glu Arg Pro Ile Leu Lys Gly Val 85 90 95 Arg Asp Asn Val Asp Tyr Tyr Val Tyr Asn Cys Leu Val Arg Thr Lys 100 105 110 Arg Ala Pro Ser Leu Val Pro Leu Val Val Asp Val Leu Thr Asp Asn 115 120 125 Pro Asp Asp Ala Lys Phe Asn Ser Gly His Ala Gly Asn Glu Phe Leu 130 135 140 Phe Val Leu Glu Gly Glu Ile His Met Lys Trp Gly Asp Lys Glu Asn 145 150 155 160 Pro Lys Glu Ala Leu Leu Pro Thr Gl y Ala Ser Met Phe Val Glu Glu 165 170 175 His Val Pro His Ala Phe Thr Ala Ala Lys Gly Thr Gly Ser Ala Lys 180 185 190 Leu Ile Ala Val Asn Phe 195 198

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により塩基配列が決定されたエポキシ化
酵素遺伝子を含むDNA断片(pFBG51挿入断片DNA)
をpFBG23挿入断片DNAの制限酵素地図中に示した。
FIG. 1 is a DNA fragment containing an epoxidase gene whose nucleotide sequence has been determined by the present invention (pFBG51 insert fragment DNA).
Is shown in the restriction map of the pFBG23 insert DNA.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:465) (C12P 1/04 C12R 1:465) (72)発明者 葛山 智久 東京都文京区弥生1−1−1 東京大学分 子細胞生物学研究所内 (72)発明者 武居 なおみ 東京都文京区弥生1−1−1 東京大学分 子細胞生物学研究所内 (72)発明者 瀬戸 治男 東京都文京区弥生1−1−1 東京大学分 子細胞生物学研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display location C12R 1: 465) (C12P 1/04 C12R 1: 465) (72) Inventor Tomohisa Kuzuyama Tokyo Metropolitan Bunkyo 1-1-1 Yayoi-ku, Institute for Molecular Biology, University of Tokyo (72) Inventor Naomi Takei 1-1-1, Yayoi, Bunkyo, Tokyo Inside, Institute for Molecular Biology, University of Tokyo (72) Haruo Seto Tokyo 1-1-1 Yayoi, Bunkyo-ku, Tokyo Inside Institute for Molecular Biology, University of Tokyo

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】配列表の配列番号2の配列で示されるアミ
ノ酸配列をコードするメチル化酵素遺伝子またはその同
効物を含んでなる、DNA。
1. A DNA comprising a methylating enzyme gene encoding the amino acid sequence represented by the sequence of SEQ ID NO: 2 in the sequence listing or its equivalent.
【請求項2】メチル化酵素遺伝子が、配列表の配列番号
1の配列中の2612-4213位の塩基配列で表される、請求
項1記載のDNA。
2. The DNA according to claim 1, wherein the methylase gene is represented by the nucleotide sequence at position 2612-4213 in the sequence of SEQ ID NO: 1 in the sequence listing.
【請求項3】配列表の配列番号3の配列で示されるアミ
ノ酸配列をコードするエポキシ化酵素遺伝子またはその
同効物を含んでなる、DNA。
3. A DNA comprising an epoxidase gene encoding the amino acid sequence represented by the sequence of SEQ ID NO: 3 in the sequence listing or its equivalent.
【請求項4】エポキシ化酵素遺伝子が、配列表の配列番
号1の配列中の4233-4826位の塩基配列で表される、請
求項3記載のDNA。
4. The DNA according to claim 3, wherein the epoxidase gene is represented by the nucleotide sequence at position 4233-4826 in the sequence of SEQ ID NO: 1 in the sequence listing.
【請求項5】エポキシ化酵素遺伝子を含む遺伝子クラス
ター、及び遺伝子クラスターを含むプラスミド。
5. A gene cluster containing an epoxidase gene, and a plasmid containing the gene cluster.
【請求項6】請求項5記載のプラスミドで形質転換され
た、組換え体。
6. A recombinant transformed with the plasmid according to claim 5.
【請求項7】形質転換に用いる宿主が、本来はホスホマ
イシンを生産し得ない微生物であるストレプトマイセス
・リビダンスである請求項6記載の組換え体。
7. The recombinant according to claim 6, wherein the host used for transformation is Streptomyces lividans, which is a microorganism that originally cannot produce fosfomycin.
【請求項8】エポキシ化酵素遺伝子を含むプラスミドで
形質転換した組換え体を用いた2−ヒドロキシプロピル
ホスホン酸を基質とするホスホマイシンの新規な製造
法。
8. A novel method for producing fosfomycin using 2-hydroxypropylphosphonic acid as a substrate, which uses a recombinant transformed with a plasmid containing an epoxidase gene.
【請求項9】組換え体がストレプトマイセス・リビダン
ス/pFBG51である請求項8記載の製造法。
9. The method according to claim 8, wherein the recombinant is Streptomyces lividans / pFBG51.
JP6058844A 1994-03-29 1994-03-29 Fosfomycin biosynthesis-related gene and new method for producing fosfomycin with the same Pending JPH07265080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6058844A JPH07265080A (en) 1994-03-29 1994-03-29 Fosfomycin biosynthesis-related gene and new method for producing fosfomycin with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6058844A JPH07265080A (en) 1994-03-29 1994-03-29 Fosfomycin biosynthesis-related gene and new method for producing fosfomycin with the same

Publications (1)

Publication Number Publication Date
JPH07265080A true JPH07265080A (en) 1995-10-17

Family

ID=13095975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6058844A Pending JPH07265080A (en) 1994-03-29 1994-03-29 Fosfomycin biosynthesis-related gene and new method for producing fosfomycin with the same

Country Status (1)

Country Link
JP (1) JPH07265080A (en)

Similar Documents

Publication Publication Date Title
US5726032A (en) Process for the efficient production of 7-ADCA via 2-(carboxyethylthio)acetyl-7-ADCA and 3-(carboxymethylthio)propionyl-7-ADCA
JP4561010B2 (en) DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid
EP0711348B1 (en) Process for the efficient production of 7-adca via 3-(carboxyethylthio)propionyl-7-adca
KR100511734B1 (en) Method for producing optically active compound
US5919680A (en) Process for the production of SSC's via expandase activity on penicillin G
EP2357222B1 (en) Scyllo-inositol-producing cell and scyllo-inositol production method using said cells
JP4561009B2 (en) DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid
US5281531A (en) Host and vector for producing D-ribose
KR100679759B1 (en) Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes
JPH07265080A (en) Fosfomycin biosynthesis-related gene and new method for producing fosfomycin with the same
JPH1198980A (en) Production of nucleoside derivative
US6635458B2 (en) Enzymatic process for the preparation of cephalosporanic 7$B(G)-(4-Carboxybutanamide) acid by means of the modified enzyme D-aminoacid oxidase of trigonopsis variabilis produced in escherichia coli
JPH06303981A (en) Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
JP2777958B2 (en) MboI restriction / modification enzyme gene and production method
JP3396740B2 (en) Gene encoding phosphoenolpyruvate carboxylase
JP2006514542A (en) Method for producing cephalosporin C
RU2139350C1 (en) Method of effective production of 7-aminodeacetoxycephalosporanic acid through 3-(carboxyethylthio)-propionyl-7-amino- -deacetoxycephalosporanic acid
JP2000245471A (en) Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant
JPH06253853A (en) Modified dna containing macrolide antibiotic substance biosynthetic gene
JP4276886B2 (en) Enzyme having interconversion action between scyllo-inosose and D-kilo-1-inosose and its production and application
KR20080032641A (en) Genes involved in the biosynthesis of thiocoraline and heterologous production of same
JPH05207886A (en) Production of l-threonine by fermentation method
JPH0638769A (en) Dna fragment having genetic information of proline iminopeptidase and its use
JPH09168389A (en) Dna coding for ascorbate oxidase
JPH0724585B2 (en) Actinomycetes promoter DNA sequence