JPH07263167A - Light emission control circuit of electronic flashing apparatus - Google Patents

Light emission control circuit of electronic flashing apparatus

Info

Publication number
JPH07263167A
JPH07263167A JP6072936A JP7293694A JPH07263167A JP H07263167 A JPH07263167 A JP H07263167A JP 6072936 A JP6072936 A JP 6072936A JP 7293694 A JP7293694 A JP 7293694A JP H07263167 A JPH07263167 A JP H07263167A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
arc tube
light emission
main capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6072936A
Other languages
Japanese (ja)
Other versions
JP3743009B2 (en
Inventor
Hideki Matsui
秀樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7293694A priority Critical patent/JP3743009B2/en
Publication of JPH07263167A publication Critical patent/JPH07263167A/en
Application granted granted Critical
Publication of JP3743009B2 publication Critical patent/JP3743009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Stroboscope Apparatuses (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

PURPOSE:To prevent the omission of light emission at continuous light emission by applying voltage larger than the charge voltage of a main capacitor to both ends of a light emitting tube at light emission. CONSTITUTION:An IGBTQ to apply a control signal TG to a gate is turned on, and a closed loop resonance circuit composed of a capacitor C3, an inductance L2, and the IGBTQ starts resonance, and nodes C and D goes up gradually to positive potential, and a capacitor C5 is charged. By this charge, the voltage about twice as high as the charge voltage of a main capacitor C1 is applied to the node A at the junction between the capacitor C4 of a double voltage applying means and a light emitting tube Xe, and voltage higher than the charge voltage of the capacitor C1 is applied to both ends of the light emitting tube Xe. Hereby, it becomes possible for the light emitting tube to emit light as far as low voltage, and the omission of light emission at continuous light emission is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子閃光装置の発光制
御回路に係わり、特に発光管の発光に先駆けて発光管の
両端にメインコンデンサの充電電圧以上の電圧を印加す
る電圧印加回路を有する電子閃光装置の発光回路に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emission control circuit for an electronic flash device, and more particularly to a voltage application circuit for applying a voltage higher than a charging voltage of a main capacitor to both ends of the light emission tube prior to light emission of the light emission tube. The present invention relates to a light emitting circuit of an electronic flash device.

【0002】[0002]

【従来の技術】従来より、発光管を流れる発光電流を制
御するスイッチング素子として絶縁ゲートバイポーラト
ランジスタ(以下、IGBTと称する)を用いた電子閃
光装置が提案されている。図3は、スイッチング素子と
してIGBTを用いた電子閃光装置の発光制御回路の一
例を示したものである。図3において、図示しない電源
昇圧回路の出力端子に接続される電源ラインLaと基準
電位ラインLbとの間には図示しないメインコンデンサ
が接続され、このメインコンデンサには発光エネルギー
が充電されるとともにトリガコンデンサC7にも抵抗R
1を介して充電されている。
2. Description of the Related Art Heretofore, there has been proposed an electronic flash device using an insulated gate bipolar transistor (hereinafter referred to as an IGBT) as a switching element for controlling a light emitting current flowing through an arc tube. FIG. 3 shows an example of a light emission control circuit of an electronic flash device using an IGBT as a switching element. In FIG. 3, a main capacitor (not shown) is connected between the power supply line La connected to the output terminal of a power supply booster circuit (not shown) and the reference potential line Lb, and the main capacitor is charged with light emission energy and triggers. Resistor R for capacitor C7
It is charged through 1.

【0003】この状態でIGBTQの制御端子TGに図
示しない制御回路から発光起動信号が出力されると、I
GBTQのコレクタ・エミッタ間は導通する。これによ
ってトリガコンデンサC7の電荷はトリガトランスTの
一次側巻線,トリガコンデンサC7,IGBTQのコレ
クタ・エミッタ間で構成される閉ループで放電されて発
光管Xeに数1000Vのトリガ電圧が印加される。発
光管Xeはこのトリガ電圧の印加によって励起されて発
光が開始される。また、図示しない調光回路によって調
光信号が出力されると、制御端子TGへの信号出力は停
止される。これによってIGBTQのコレクタ・エミッ
タ間は不導通となり、発光管Xeの発光が停止される。
In this state, when a light emission starting signal is output from the control circuit (not shown) to the control terminal TG of the IGBTQ, I
Conduction is made between the collector and the emitter of GBTQ. As a result, the electric charge of the trigger capacitor C7 is discharged in the closed loop formed between the primary winding of the trigger transformer T, the trigger capacitor C7, and the collector / emitter of the IGBTQ, and a trigger voltage of several thousand V is applied to the arc tube Xe. The arc tube Xe is excited by the application of this trigger voltage to start emitting light. When a dimming circuit (not shown) outputs a dimming signal, the signal output to the control terminal TG is stopped. As a result, the collector and emitter of the IGBTQ become non-conductive, and the light emission of the arc tube Xe is stopped.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図3に
おける回路構成では、発光管Xeの両端には図示しない
メインコンデンサが直列接続されているので、このメイ
ンコンデンサの電圧以上の電圧で発光管Xeを駆動する
ことはできない。メインコンデンサが充分に充電されて
いる場合には、発光管Xeは発光に失敗するということ
はないが、発光を連続的に行った場合、例えば数十Hz
の繰り返し発光を行った場合には発光管Xeの温度が上
昇し、これにともなって発光管Xeの最低発光電圧も上
昇することが知られており、メインコンデンサの電圧で
は発光しなくなることがある。また、同時にメインコン
デンサの充電電圧も発光によって徐々に低下するため、
連続して使用すると、発光しなくなることもある。ま
た、発光管Xeはその特性上ガラス管内部に封入するガ
ス圧を上げることによって発光効率が上がるという特性
を持っているが、このようにすると、同時に最低発光電
圧も上昇するため、発光し難くなることになる。このた
め、電子閃光装置を使用している時にレディライトは点
灯しているにもかかわらず、発光しないということが起
こる可能性があるという問題があった。
However, in the circuit configuration shown in FIG. 3, since the main capacitor (not shown) is connected in series at both ends of the arc tube Xe, the arc tube Xe is connected at a voltage higher than the voltage of the main capacitor. It cannot be driven. When the main capacitor is sufficiently charged, the arc tube Xe does not fail to emit light, but when light is emitted continuously, for example, several tens Hz.
It is known that the temperature of the light emitting tube Xe rises when the light is repeatedly emitted, and the minimum light emitting voltage of the light emitting tube Xe also rises with it, and the light emission may not occur at the voltage of the main capacitor. . At the same time, the charging voltage of the main capacitor gradually decreases due to light emission,
If it is used continuously, it may not emit light. Further, the arc tube Xe has a characteristic that the luminous efficiency is increased by increasing the gas pressure to be enclosed inside the glass tube. However, in this case, the minimum luminous voltage is also increased at the same time, which makes it difficult to emit light. Will be. Therefore, there is a possibility that the ready light may not be emitted even though the ready light is turned on when the electronic flash device is used.

【0005】したがって本発明は、前述した従来の課題
を解決するためになされたものであり、その目的は、発
光管の繰り返し発光を可能にし、発光抜けの発生を防止
することができる電子閃光装置の発光制御回路を提供す
ることにある。
Therefore, the present invention has been made in order to solve the above-mentioned conventional problems, and an object thereof is an electronic flash device capable of repeatedly emitting light from an arc tube and preventing occurrence of light emission omission. To provide a light emission control circuit.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために本発明においては、これを具体化した場合は例
えば図1のようになる。すなわち、IGBTQの制御端
子TGに発光開始信号が印加されると、IGBTQのコ
レクタ・エミッタ間は導通し、接続点Bは基準電位であ
る基準電位ラインLbとほぼ同電位となる。また、IG
BTQのコレクタ・エミッタとダイオードD3と第2の
倍電圧印加手段としてのコンデンサC3とインダクタL
2とで閉ループが構成され、LC共振が開始される。こ
れによって接続点Cの電位は負電圧から正電圧に徐々に
上昇していき、ダイオードD4を介して接続点Dも同様
に電位が上昇し、コンデンサC5が充電される。なお、
この閉ループはダイオードD3によって一方向にしか放
電できないため、接続点Bは不連続に負電圧まで変化
し、メインコンデンサC1の充電電圧に近い負電圧にな
る。
In order to achieve such an object, in the present invention, when this is embodied, it becomes as shown in FIG. 1, for example. That is, when a light emission start signal is applied to the control terminal TG of the IGBTQ, the collector and the emitter of the IGBTQ become conductive, and the connection point B becomes almost the same potential as the reference potential line Lb which is the reference potential. Also, IG
BTQ collector / emitter, diode D3, capacitor C3 as second voltage multiplying means, and inductor L
A closed loop is formed by 2 and LC resonance is started. As a result, the potential at the connection point C gradually rises from the negative voltage to the positive voltage, and the potential at the connection point D also rises via the diode D4, and the capacitor C5 is charged. In addition,
Since this closed loop can be discharged only in one direction by the diode D3, the connection point B discontinuously changes to a negative voltage and becomes a negative voltage close to the charging voltage of the main capacitor C1.

【0007】一方、充電されたコンデンサC5によって
第1の倍電圧印加手段としてのコンデンサC4と発光管
Xeとの接続点である点AにはメインコンデンサC1の
充電電圧の約2倍の電圧が印加される。したがって発光
管Xeの両端にはメインコンデンサC1の充電電圧より
も大きい電圧が印加されることになる。これによって発
光管Xeはより低い電圧まで発光可能となる。また、I
GBTQのコレクタ・エミッタ間とトリガコンデンサC
7とトリガトランスTの一次側巻線とで閉ループが構成
され、これによって発光管Xeにはトリガ電圧が印加さ
れて発光管Xeは発光を開始する。
On the other hand, by the charged capacitor C5, a voltage about twice the charging voltage of the main capacitor C1 is applied to the point A, which is the connection point between the capacitor C4 as the first voltage doubling voltage applying means and the arc tube Xe. To be done. Therefore, a voltage larger than the charging voltage of the main capacitor C1 is applied to both ends of the arc tube Xe. This allows the arc tube Xe to emit light to a lower voltage. Also, I
Between GBTQ collector-emitter and trigger capacitor C
7 and the primary winding of the trigger transformer T form a closed loop, whereby a trigger voltage is applied to the arc tube Xe and the arc tube Xe starts emitting light.

【0008】また、図示しない調光回路によって制御端
子TGの発光開始信号が消失すると、IGBTQのコレ
クタ・エミッタ間は不導通となり、発光管Xeの発光は
停止するとともにコンデンサC2,抵抗R6を介してサ
イリスタSCRのゲートに信号が印加され、サイリスタ
SCRのアノード・カソード間は導通する。これによっ
てコンデンサC5の電荷は急速に放電される。また、同
時にコンデンサC4には急速に電荷が充電される。さら
にコンデンサC3,トリガコンデンサC7も発光管Xe
を介して急速に充電され、これによって次回の発光準備
が完了される。
When the light emission start signal of the control terminal TG disappears by a dimmer circuit (not shown), the collector and emitter of the IGBTQ become non-conductive, the light emission of the arc tube Xe is stopped, and the capacitor C2 and the resistor R6 are used. A signal is applied to the gate of the thyristor SCR so that the anode and cathode of the thyristor SCR are electrically connected. As a result, the electric charge of the capacitor C5 is rapidly discharged. At the same time, the capacitor C4 is rapidly charged. Furthermore, the condenser C3 and the trigger condenser C7 are also the arc tube Xe.
The battery is rapidly charged via, and the next light emission preparation is completed.

【0009】[0009]

【作用】本発明においては、発光管Xeの両端にメイン
コンデンサC1の充電電圧より大きい電圧を印加するよ
うに構成されるので、連続発光などによりメインコンデ
ンサC1の充電電圧が低下しても、発光抜けなどを防止
することができる。また、電圧印加用のコンデンサを急
速充放電する回路によって高速繰り返し発光時でも毎回
大きな電圧を印加することが可能となる。
In the present invention, since a voltage higher than the charging voltage of the main capacitor C1 is applied to both ends of the arc tube Xe, even if the charging voltage of the main capacitor C1 decreases due to continuous light emission, light is emitted. It is possible to prevent falling out. Further, a circuit for rapidly charging and discharging the capacitor for voltage application makes it possible to apply a large voltage every time even when light is repeatedly emitted at high speed.

【0010】[0010]

【実施例】以下、本発明を図面を用いて詳細に説明す
る。図1は、本発明による電子閃光装置の発光制御回路
の一実施例による構成を説明する回路図であり、図2は
図1の各接続点での電圧変化を表すタイミングチャート
を示している。図1において、C1は発光管Xeの発光
エネルギーを蓄えるメインコンデサ、Qは発光制御素子
である絶縁ゲートバイポーラトランジスタ(IGBT)
であり、第2の倍電圧印加手段としてのコンデンサC3
とインダクタL2とダイオードD3とIGBTQとで閉
ループを構成している。この回路では、発光管Xeのカ
ソード側にメインコンデンサC1の充電電圧とは極性の
異なる電圧が印加される。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a circuit diagram illustrating a configuration of an embodiment of a light emission control circuit of an electronic flash device according to the present invention, and FIG. 2 is a timing chart showing a voltage change at each connection point in FIG. In FIG. 1, C1 is a main capacitor that stores the emission energy of the arc tube Xe, and Q is an insulated gate bipolar transistor (IGBT) that is an emission control element.
And the capacitor C3 as the second voltage multiplying means.
The inductor L2, the diode D3 and the IGBTQ form a closed loop. In this circuit, a voltage having a polarity different from the charging voltage of the main capacitor C1 is applied to the cathode side of the arc tube Xe.

【0011】また、第1の倍電圧印加手段としてのコン
デンサC4とコンデンサC5とで発光管Xeのアノード
側にメインコンデンサC1の充電電圧の約2倍の電圧が
印加される。さらにトリガトランスTとトリガコンデン
サC7とでトリガ回路を構成している。また、抵抗R4
と抵抗R5と抵抗R6とサイリスタSCRとコンデンサ
C2とコンデンサC6とでコンデンサC4,コンデンサ
C5のセット・リセットを行っている。
Further, the capacitor C4 and the capacitor C5 as the first voltage doubling means apply a voltage which is about twice the charging voltage of the main capacitor C1 to the anode side of the arc tube Xe. Furthermore, the trigger transformer T and the trigger capacitor C7 constitute a trigger circuit. Also, the resistor R4
The resistor R5, the resistor R6, the thyristor SCR, the capacitor C2, and the capacitor C6 set and reset the capacitors C4 and C5.

【0012】また、同図において、Laは高電圧が印加
されている電源ライン、Lbは基準電位ライン、TGは
IGBTQの制御端子である。また、ダイオードD2と
抵抗R1と発光管XeとコンデンサC4との接続点をA
点とし、発光管Xeと抵抗R1とコンデンサC3とダイ
オードD3とトリガトランスTとの接続点をB点とし、
ダイオードD4とコンデンサC3とインダクタL2との
接続点をC点とし、コンデンサC4とダイオードD4と
抵抗R4とコンデンサC5と抵抗R2との接続点をD点
とする。
In the figure, La is a power supply line to which a high voltage is applied, Lb is a reference potential line, and TG is a control terminal of the IGBTQ. Further, the connection point of the diode D2, the resistor R1, the arc tube Xe and the capacitor C4 is A
And the connection point of the arc tube Xe, the resistor R1, the capacitor C3, the diode D3, and the trigger transformer T is point B,
A connection point between the diode D4, the capacitor C3, and the inductor L2 is defined as a point C, and a connection point between the capacitor C4, the diode D4, the resistor R4, the capacitor C5, and the resistor R2 is defined as a point D.

【0013】このように構成された電子閃光装置の発光
制御回路の動作を図2に示すタイミングチャートを用い
て説明する。ここで、図示しない電源昇圧回路によって
メインコンデンサC1は所定の電圧まで充電されると、
コンデンサC3はダイオードD2,抵抗R1,コンデン
サC3,インダクタL2の経路を経て充電され、コンデ
ンサC4はダイオードD2,コンデンサC4,抵抗R2
の経路を経て充電される。また、コンデンサC7も抵抗
R1,トリガトランスTを介して充電される。
The operation of the light emission control circuit of the electronic flash device thus configured will be described with reference to the timing chart shown in FIG. Here, when the main capacitor C1 is charged to a predetermined voltage by a power supply boosting circuit (not shown),
The capacitor C3 is charged through the path of the diode D2, the resistor R1, the capacitor C3 and the inductor L2, and the capacitor C4 is charged by the diode D2, the capacitor C4 and the resistor R2.
It is charged via the route. Further, the capacitor C7 is also charged via the resistor R1 and the trigger transformer T.

【0014】この状態において、図2に示すように時刻
0 において図示しない制御回路から制御端子TGに図
2(a)に示すような発光起動信号が出力されると、I
GBTQのコレクタ・エミッタ間は導通し、接続点Bは
図2(c)に示すようにほぼ基準電位である接地電位に
なる。これによってコンデンサC3とインダクタL2と
ダイオードD3とIGBTQとの間で閉ループが形成さ
れてLC共振が開始され、接続点Cの電位は図2(d)
に示すように時刻t0から時刻t2まで変化する。
In this state, when a light emission activation signal as shown in FIG. 2A is output from the control circuit (not shown) to the control terminal TG at time t 0 as shown in FIG. 2, I
The collector and the emitter of the GBTQ are electrically connected, and the connection point B becomes the ground potential which is almost the reference potential as shown in FIG. 2 (c). As a result, a closed loop is formed between the capacitor C3, the inductor L2, the diode D3 and the IGBTQ, LC resonance is started, and the potential at the connection point C is shown in FIG.
As shown in, changes from time t 0 to time t 2 .

【0015】また、コンデンサC5は、接続点Cの電圧
変化を受けてダイオードD4を介して接続点Cとほぼ同
電位まで充電される(図2(e)の時刻t1から時刻
2)。なお、コンデンサC4は既に充電されているの
で、接続点Dの電位上昇に伴って接続点Aの電位も上昇
する(図2(b)の時刻t1 から時刻t2 )。これによ
って発光管Xeのアノード側にはメインコンデンサC1
の充電電圧の約2倍の電圧が印加される。
The capacitor C5 receives the voltage change at the connection point C and is charged to almost the same potential as the connection point C via the diode D4 (time t 1 to time t 2 in FIG. 2 (e)). Since the capacitor C4 has already been charged, the potential at the connection point A also rises as the potential at the connection point D rises (time t 1 to time t 2 in FIG. 2B). As a result, the main capacitor C1 is provided on the anode side of the arc tube Xe.
A voltage that is about twice the charging voltage is applied.

【0016】一方、接続点Bの電位はLC共振がダイオ
ードD3によって一方向にしか行われないため、図2の
時刻t2 で不連続に変化し、発光管Xeのカソード側に
はメインコンデンサC1の充電電圧とは極性の異なる電
位が印加される。これによって発光管Xeの両端には、
メインコンデンサC1の充電電圧の約3倍の電圧が印加
されることになる。また、同時にトリガトランスTの一
次側巻線とトリガコンデンサC7とダイオードD3とI
GBTQのコレクタ・エミッタ間とで構成される閉ルー
プによって発光管Xeには数1000Vのトリガ電圧が
印加され、これによって発光管Xeは励起されて発光す
る(図2(f))。
On the other hand, the potential of the connection point B changes discontinuously at time t 2 in FIG. 2 because the LC resonance is performed only in one direction by the diode D3, and the main capacitor C1 is provided on the cathode side of the arc tube Xe. A potential having a polarity different from that of the charging voltage is applied. As a result, at both ends of the arc tube Xe,
A voltage that is about three times the charging voltage of the main capacitor C1 will be applied. At the same time, the primary winding of the trigger transformer T, the trigger capacitor C7, the diode D3, and I
A trigger voltage of several thousand V is applied to the arc tube Xe by a closed loop formed between the collector and the emitter of the GBTQ, whereby the arc tube Xe is excited and emits light (FIG. 2 (f)).

【0017】また、発光管Xeの発光後、図示しない調
光回路によって発光停止信号が出力されると、IGBT
Qのゲートである制御端子TGの信号が消失され(図2
(a)の時刻t3 )、これによってIGBTQのコレク
タ・エミッタ間は不導通となり、図2(f)に示すよう
に発光管Xeの発光が停止する。同時にコンデンサC
2,抵抗R6を介してサイリスタSCRのゲートに信号
が出力され、サイリスタSCRのアノード・カソード間
は導通する。
When a light emission stop signal is output by a light control circuit (not shown) after the light emission of the arc tube Xe, the IGBT
The signal at the control terminal TG, which is the gate of Q, disappears (see FIG. 2).
At time t 3 in (a), the collector-emitter of the IGBTQ becomes non-conductive, and the light emission of the arc tube Xe is stopped as shown in FIG. 2 (f). At the same time capacitor C
2, a signal is output to the gate of the thyristor SCR via the resistor R6, and the anode and cathode of the thyristor SCR are electrically connected.

【0018】これによってコンデンサC4は抵抗R4を
介して急速充電され、コンデンサC5は抵抗R5を介し
て急速に放電される。また、コンデンサC3もインダク
タL2を介して急速に充電され、同様にトリガコンデン
サC7もトリガトランスTの一次側巻線を介して急速に
充電される。なお、コンデンサC3,コンデンサC7は
発光管Xeを流れる残留電流によって充電される。これ
によって次回の発光時に必要な設定が終了される。
As a result, the capacitor C4 is rapidly charged through the resistor R4, and the capacitor C5 is rapidly discharged through the resistor R5. The capacitor C3 is also rapidly charged via the inductor L2, and similarly, the trigger capacitor C7 is also rapidly charged via the primary winding of the trigger transformer T. The capacitors C3 and C7 are charged by the residual current flowing through the arc tube Xe. This completes the settings required for the next light emission.

【0019】なお、前述した実施例においては、発光制
御素子としてIGBTを用いた場合について説明した
が、本発明はこのIGBTに限定されるものではなく、
例えば複数個のトランジスタを組み合わせて形成した発
光制御素子または発光制御回路を用いても前述と同様の
効果が得られることは言うまでもない。
In the above-mentioned embodiments, the case where the IGBT is used as the light emission control element has been described, but the present invention is not limited to this IGBT.
Needless to say, the same effect as described above can be obtained by using a light emission control element or a light emission control circuit formed by combining a plurality of transistors.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、発
光管の発光時にはその両端にメインコンデンサの充電電
圧より大きい電圧を印加し、連続発光時に起こりがちな
発光抜けを防止し、さらに発光終了時に次回の設定を発
光電流などを利用して行うため、高速繰り返し発光時
(数十Hz〜数十KHz程度)でも、毎回発光管に大き
な電圧を印加できるように構成されているため、発光抜
けの心配がなくなるという極めて優れた効果が得られ
る。
As described above, according to the present invention, a voltage higher than the charging voltage of the main capacitor is applied to both ends of the arc tube during light emission to prevent light emission dropout that tends to occur during continuous light emission, and further to emit light. Since the next setting is performed by using the light emission current etc. at the end, it is configured so that a large voltage can be applied to the arc tube every time even during high-speed repeated light emission (several tens Hz to several tens KHz). An extremely excellent effect that there is no need to worry about omission is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電子閃光装置の発光制御回路の一
実施例による構成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration according to an embodiment of a light emission control circuit of an electronic flash device according to the present invention.

【図2】図1の回路図の動作を説明する各接続点におけ
るタイミングチャートを示す図である。
FIG. 2 is a diagram showing a timing chart at each connection point for explaining the operation of the circuit diagram of FIG.

【図3】従来の電子閃光装置の発光制御回路の構成を示
す回路図である。
FIG. 3 is a circuit diagram showing a configuration of a light emission control circuit of a conventional electronic flash device.

【符号の説明】[Explanation of symbols]

La 電源ライン Lb 基準電位ライン C1 メインコンデンサ Xe 発光管 Q 発光制御素子(IGBT) D3 ダイオード L2 インダクタ T トリガトランス C4 コンデンサ C5 コンデンサ C7 コンデンサ La power line Lb reference potential line C1 main capacitor Xe arc tube Q light emission control element (IGBT) D3 diode L2 inductor T trigger transformer C4 capacitor C5 capacitor C7 capacitor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電源電圧に接続された電源ラインと基準
電位ラインとの間に直列接続された発光管およびスイッ
チング素子と、 前記電源ラインと基準電位ラインとの間に接続され、か
つ前記電源電圧により充電されて前記発光管を発光させ
る電荷を蓄積するメインコンデンサと、 前記発光管にトリガ電圧を印加するトリガ回路と、 前記発光管の一端側に前記メインコンデンサの充電電圧
と極性の等しくかつ高い電圧を印加する第1の電圧印加
手段と、 前記発光管の他端側に前記メインコンデンサの充電電圧
と極性の異なる電圧を印加する第2の電圧印加手段と、
を備えたことを特徴とする電子閃光装置の発光制御回
路。
1. An arc tube and a switching element connected in series between a power supply line connected to a power supply voltage and a reference potential line; and a power supply voltage connected between the power supply line and the reference potential line. A main capacitor that stores electric charge that causes the arc tube to emit light, a trigger circuit that applies a trigger voltage to the arc tube, and a charging voltage of the main capacitor that has the same polarity and is high at one end of the arc tube. First voltage applying means for applying a voltage, and second voltage applying means for applying a voltage having a polarity different from the charging voltage of the main capacitor to the other end side of the arc tube,
A light emission control circuit for an electronic flash device, comprising:
【請求項2】 電源電圧に接続された電源ラインと基準
電位ラインとの間に直列接続された発光管およびスイッ
チング素子と、 前記発光管と前記スイッチング素子との間に接続された
一方向性素子と、 前記電源ラインと基準電位ラインとの間に接続され、か
つ前記電源電圧により充電されて前記発光管を発光させ
る電荷を蓄積するメインコンデンサと、 前記発光管にトリガ電圧を印加するトリガ回路と、 前記発光管の一端側に前記メインコンデンサの充電電圧
と極性の等しくかつ高い電圧を印加する第1の電圧印加
手段と、 前記発光管の他端側に前記メインコンデンサの充電電圧
と極性の異なる電圧を印加する第2の電圧印加手段と、
を備えたことを特徴とする電子閃光装置の発光制御回
路。
2. An arc tube and a switching element connected in series between a power supply line connected to a power supply voltage and a reference potential line, and a unidirectional element connected between the arc tube and the switching element. A main capacitor that is connected between the power supply line and a reference potential line and that stores a charge that is charged by the power supply voltage to cause the arc tube to emit light; and a trigger circuit that applies a trigger voltage to the arc tube. A first voltage applying means for applying a voltage having a polarity equal to and higher than the charging voltage of the main capacitor to one end side of the arc tube, and having a polarity different from the charging voltage of the main capacitor at the other end side of the arc tube. Second voltage applying means for applying a voltage,
A light emission control circuit for an electronic flash device, comprising:
【請求項3】 請求項1または請求項2において、前記
第1の電圧印加手段および第2の電圧印加手段は、それ
ぞれコンデンサにより構成され、前記スイッチング素子
がオフし、前記発光管の発光が停止した時点で急速充電
されることを特徴とする電子閃光装置の発光制御回路。
3. The light emitting device according to claim 1, wherein the first voltage applying means and the second voltage applying means are each formed of a capacitor, the switching element is turned off, and the light emission of the arc tube is stopped. A light emission control circuit for an electronic flash device, which is characterized in that it is rapidly charged at the point of time.
JP7293694A 1994-03-18 1994-03-18 Light emission control circuit for electronic flash device Expired - Lifetime JP3743009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7293694A JP3743009B2 (en) 1994-03-18 1994-03-18 Light emission control circuit for electronic flash device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7293694A JP3743009B2 (en) 1994-03-18 1994-03-18 Light emission control circuit for electronic flash device

Publications (2)

Publication Number Publication Date
JPH07263167A true JPH07263167A (en) 1995-10-13
JP3743009B2 JP3743009B2 (en) 2006-02-08

Family

ID=13503759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7293694A Expired - Lifetime JP3743009B2 (en) 1994-03-18 1994-03-18 Light emission control circuit for electronic flash device

Country Status (1)

Country Link
JP (1) JP3743009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851717A1 (en) * 1996-12-25 1998-07-01 Canon Kabushiki Kaisha Electronic flash device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851717A1 (en) * 1996-12-25 1998-07-01 Canon Kabushiki Kaisha Electronic flash device

Also Published As

Publication number Publication date
JP3743009B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JPH06500887A (en) Arc discharge ballast circuit suitable for automotive applications
JP2841756B2 (en) Electronic flash device
US5107292A (en) Electronic flash unit
JP3743009B2 (en) Light emission control circuit for electronic flash device
JPH03230136A (en) Electronic flash device
JP2507147B2 (en) Strobe device
JP3167353B2 (en) Flash light emitting device
JP2722595B2 (en) Electronic flash device
JPH0836221A (en) Lamp starting system of liquid crystal projector
JP3927616B2 (en) Flash device
JP3297453B2 (en) Strobe device
JP2584577Y2 (en) Strobe device
JP2506674B2 (en) Strobe device
JP2778778B2 (en) Dimmable strobe control circuit
JP3297451B2 (en) Strobe device
JPH02100028A (en) Automatic stroboscopic device
JPH0737693A (en) Flash control circuit for electronic frash device
JP3937481B2 (en) Flash device
JP2550399Y2 (en) Strobe device
JPH03223730A (en) Control circuit for dimming type storoboscope
JP3720504B2 (en) Flash light emitting device
JPH10123596A (en) Capacitor boosting circuit
JPH0737694A (en) Flash control circuit for electronic flash device
JPH10186468A (en) Flash light emitting device
JPH05101896A (en) Stroboscopic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 9

EXPY Cancellation because of completion of term