JPH0726177B2 - High strength fireproof bolt with excellent delayed fracture resistance - Google Patents

High strength fireproof bolt with excellent delayed fracture resistance

Info

Publication number
JPH0726177B2
JPH0726177B2 JP3044387A JP4438791A JPH0726177B2 JP H0726177 B2 JPH0726177 B2 JP H0726177B2 JP 3044387 A JP3044387 A JP 3044387A JP 4438791 A JP4438791 A JP 4438791A JP H0726177 B2 JPH0726177 B2 JP H0726177B2
Authority
JP
Japan
Prior art keywords
strength
delayed fracture
bolt
fracture resistance
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3044387A
Other languages
Japanese (ja)
Other versions
JPH04263047A (en
Inventor
猛彦 加藤
豊文 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3044387A priority Critical patent/JPH0726177B2/en
Publication of JPH04263047A publication Critical patent/JPH04263047A/en
Publication of JPH0726177B2 publication Critical patent/JPH0726177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は常温強度が100kgf/mm
2以上の耐火ボルトに関するものであり、本発明の耐火
ボルトは耐遅れ破壊性が優れているため火災等で数時間
程度の間、高温状態になることが懸念される土木建築物
や橋梁などに有用である。
FIELD OF THE INVENTION The present invention has a room temperature strength of 100 kgf / mm.
It relates to two or more fireproof bolts, and since the fireproof bolt of the present invention has excellent delayed fracture resistance, it can be used in civil engineering buildings and bridges where there is a concern that it will be in a high temperature state for several hours due to fire etc. It is useful.

【0002】[0002]

【従来の技術】構造用鋼板及び締結用ボルトは常温では
十分な強度を有しているが、火災等で高温にさらされた
場合は350℃位を境に大幅な強度低下を示すことが知
られている。そこでビルや住居等の建築物を建てる場合
には、鋼材自体の温度が350℃を超えないように耐火
被覆を施すことが建築基準法で義務付けられているが、
該耐火被覆に要するコストは建設コストを大幅に押しあ
げる原因となっている。
2. Description of the Related Art Structural steel plates and fastening bolts have sufficient strength at room temperature, but when exposed to high temperatures such as a fire, they show a significant decrease in strength at around 350 ° C. Has been. Therefore, when building buildings such as buildings and houses, the Building Standard Law requires that a fireproof coating be applied so that the temperature of the steel itself does not exceed 350 ° C.
The cost required for the refractory coating causes a significant increase in construction cost.

【0003】しかし昭和62年3月、建設省総合技術開
発プロジェクトで開発された新防火設計法により個々の
建築物に応じた設計法が可能となった。従って高温強度
の高い所謂耐火鋼材の使用による被覆低減または無被覆
設計が可能となり、建設コストの大幅な削減が期待でき
る状況となった。これに伴なって種々の耐火鋼材が報告
されている。特に耐火鋼板の報告は多く、例えば特開平
2−9647等が報告されている。
However, in March 1987, the new fire protection design method developed in the Ministry of Construction Comprehensive Technology Development Project made it possible to design a method according to each building. Therefore, the use of so-called refractory steel with high high-temperature strength enables the reduction of coating or uncoated design, and a significant reduction in construction cost can be expected. Along with this, various refractory steel materials have been reported. In particular, there are many reports of fire-resistant steel plates, for example, JP-A-2-9647.

【0004】しかし、建築物を建てる場合には板を締結
する為のボルトや溶接用材も必要であり、これらにも当
然耐火性が要求される。このような耐火用ボルトには常
温で100kgf/mm2以上、高温(例えば600℃)でも
30kgf/mm2以上の強度が求められる。また常温で10
0kgf/mm2以上を示す高強度ボルトの場合は使用中に突
然破断する遅れ破壊の危険があり、耐遅れ破壊性にも十
分留意する必要があるが、現時点では強度及び耐遅れ破
壊性の両者を満足する耐火用ボルトは存在していない。
However, when a building is built, bolts and welding materials for fastening the plates are also required, and these are naturally required to have fire resistance. Such room temperature at 100 kgf / mm 2 or more in the refractory bolt, high temperature (eg 600 ° C.) even 30 kgf / mm 2 or more strength is required. 10 at room temperature
In the case of high strength bolts showing 0 kgf / mm 2 or more, there is a risk of delayed fracture that suddenly breaks during use, and it is necessary to pay close attention to delayed fracture resistance, but at the present time, both strength and delayed fracture resistance are required. There is no fireproof bolt that satisfies

【0005】[0005]

【発明が解決しようとする課題】本発明は上記のような
事情に鑑みてなされたものであって、耐遅れ破壊性に優
れしかも常温及び高温強度に優れた高強度耐火ボルトを
提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a high-strength refractory bolt having excellent delayed fracture resistance and excellent room temperature and high temperature strength. It is a thing.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の第1発明は 0.15%≦ C≦0.30% 0.5%≦Mn≦1.2% 0.7%≦Cr≦1.5% 0.15%≦Mo≦0.6% P≦0.01% S≦0.008% Si≦0.2% を含有し、残部Feおよび不可避不純物から成る常温強
度(TS)が100kgf/mm以上の耐火ボルトで
あって、P,S及びMoが式 1590%P+386%S−34%Mo≦13 を満足し、しかもC,Mn,Cr及びMoが式 30≦ 19.8%C+3.9%Mn+18.5%Cr
+28.7%Mo−1.9 を満足する耐遅れ破壊性の優れた高強度耐火ボルトであ
り、第2発明は 0.15%≦ C≦0.30% 0.5%≦Mn≦1.2% 0.7%≦Cr≦1.5% 0.15%≦Mo≦0.6% P≦0.01% S≦0.008% Si≦0.2% および V≦0.15% Ti≦0.1% Nb≦0.1% の1種または2種以上を含有し、残部Feおよび不可避
不純物から成る常温強度(TS)が100kgf/mm
以上の耐火ボルトであって、P,S及びMoが式 1590%P+386%S−34%Mo≦13 を満足し、しかもC,Mn,Cr,Mo,V,Ti及び
Nbが式 30≦19.8%C+3.9%Mn+18.5%Cr+
28.7%Mo+84.9(%V+%Ti+%Nb)−
1.9 を満足する耐遅れ破壊性の優れた高強度耐火ボルトであ
る。
The first invention of the present invention which has been able to solve the above problems is 0.15% ≤C≤0.30% 0.5% ≤Mn≤1.2% 0.7% ≤ Cr ≤ 1.5% 0.15% ≤ Mo ≤ 0.6% P ≤ 0.01% S ≤ 0.008% Si ≤ 0.2% at room temperature strength consisting of balance Fe and unavoidable impurities ( TS) is a refractory bolt of 100 kgf / mm 2 or more, P, S and Mo satisfy the formula 1590% P + 386% S-34% Mo ≦ 13, and C, Mn, Cr and Mo are the formula 30 ≦ 19. 2.8% C + 3.9% Mn + 18.5% Cr
It is a high-strength refractory bolt that satisfies + 28.7% Mo-1.9 and has excellent delayed fracture resistance. The second invention is 0.15% ≤ C ≤ 0.30% 0.5% ≤ Mn ≤ 1. 2% 0.7% ≤ Cr ≤ 1.5% 0.15% ≤ Mo ≤ 0.6% P ≤ 0.01% S ≤ 0.008% Si ≤ 0.2% and V ≤ 0.15% Ti ≦ 0.1% Nb ≦ 0.1% of one kind or two kinds or more, and room temperature strength (TS) consisting of balance Fe and unavoidable impurities is 100 kgf / mm.
2 or more refractory bolts, P, S and Mo satisfy the formula 1590% P + 386% S-34% Mo ≦ 13, and C, Mn, Cr, Mo, V, Ti and Nb are the formula 30 ≦ 19. 2.8% C + 3.9% Mn + 18.5% Cr +
28.7% Mo + 84.9 (% V +% Ti +% Nb)-
It is a high-strength fireproof bolt satisfying 1.9 and having excellent delayed fracture resistance.

【0007】[0007]

【作用】本発明者等は耐遅れ破壊性に優れ、しかも高温
強度に優れた高強度耐火ボルトを得るために詳細な検討
を重ねた結果、含有元素の種類及び含有量を厳密に限定
することによりいずれの特性も満足させることができる
ことを見出した。含有元素及び含有割合について説明す
る。
The present inventors have conducted a detailed study to obtain a high-strength refractory bolt having excellent delayed fracture resistance and excellent high-temperature strength. As a result, the types and contents of the elements contained are strictly limited. It has been found that all properties can be satisfied by the above. The contained element and the content ratio will be described.

【0008】0.15%≦C≦0.30% Cは常温及び高温強度を確保するのに必要な元素であ
り、不足する場合には十分な強度(常温で100kgf/mm
2以上)を得るためには焼戻し温度を低くする必要があ
り、処理温度が脆性温度域にかかり易くなる。しかし多
すぎると靭性が低化し、耐遅れ破壊性が大幅に低下す
る。
0.15% ≤ C ≤ 0.30% C is an element necessary to secure the strength at room temperature and high temperature, and when it is insufficient, it has sufficient strength (100 kgf / mm at room temperature).
In order to obtain ( 2 or more), it is necessary to lower the tempering temperature, and the treatment temperature tends to be in the brittle temperature range. However, if the amount is too large, the toughness is lowered and the delayed fracture resistance is significantly lowered.

【0009】0.5 %≦Mn≦1.2 % Mnは脱酸および焼入性を向上させる効果を有する。こ
れらの効果を発揮させるためには 0.5%以上含有させる
必要があるが、多過ぎると結晶粒界に偏析し粒界を脆化
させ、結果的に耐遅れ破壊性を劣化させてしまう。
0.5% ≦ Mn ≦ 1.2% Mn has the effect of improving deoxidation and hardenability. In order to exert these effects, it is necessary to contain 0.5% or more, but if it is too large, it segregates to the grain boundaries and embrittles the grain boundaries, resulting in deterioration of delayed fracture resistance.

【0010】0.7 %≦Cr≦1.5 % Crは焼入性を向上させ、強度及び靭性をバランスよく
高める効果を有し、更に高温特性の改善に寄与する効果
を有している。これらの効果を発揮させるためには 0.7
%以上含有させる必要があるが、多過ぎると素材の変形
抵抗が高くなり過ぎてボルト成形に際して工具寿命の劣
化を引き起こす原因ともなるので上限を1.5 %とした。
0.7% ≤ Cr ≤ 1.5% Cr has the effect of improving the hardenability and the strength and toughness in a well-balanced manner, and further contributing to the improvement of the high temperature characteristics. 0.7 for these effects
%, But if too much, the deformation resistance of the material becomes too high, which may cause deterioration of the tool life during bolt forming, so the upper limit was made 1.5%.

【0011】0.15%≦Mo≦0.6 % Moは高温強度を向上させる効果と常温での靭性を向上
させる効果を有するので、耐遅れ破壊性を大幅に向上さ
せる効果を有する。これらの効果を発揮させるためには
0.15 %以上含有させる必要があるが、0.6 %を超えて
含有させてもそれらの効果は飽和し、コスト高になるば
かりでなく多過ぎると素材の変形抵抗が高くなり過ぎて
ボルト成形に際して工具寿命の劣化を引き起こす原因と
もなるので上限を0.60%とした。
0.15% ≤ Mo ≤ 0.6% Mo has the effect of improving the high temperature strength and the effect of improving the toughness at room temperature, and therefore has the effect of significantly improving the delayed fracture resistance. In order to exert these effects
It is necessary to contain 0.15% or more, but even if it exceeds 0.6%, the effects will be saturated, and not only the cost will increase, but also the deformation resistance of the material will become too high if it is too much, and the tool life during bolt forming will increase. Therefore, the upper limit was made 0.60%.

【0012】P≦0.01% S≦0.008 % P及びSは結晶粒界に偏析する元素であり、粒界を脆化
させ耐遅れ破壊性を劣化させるのできるだけ少ない方が
良い。
P.ltoreq.0.01% S.ltoreq.0.008% P and S are elements segregated at the crystal grain boundaries, and it is preferable that P and S be as small as possible so as to embrittle the grain boundaries and deteriorate the delayed fracture resistance.

【0013】Si≦0.2 % Siは脱酸元素として有効な元素であるが、変形抵抗を
も同時に高め、ボルト成型に際して工具寿命を劣化させ
るので、上限を0.2 %以下とした。
Si ≦ 0.2% Si is an element effective as a deoxidizing element, but since it also increases the deformation resistance and deteriorates the tool life during bolt molding, the upper limit was made 0.2% or less.

【0014】V≦0.15%(第2発明) Ti≦0.1 %(第2発明) Nb≦0.1 %(第2発明) VやTi,Nbは鋼中のCやNと結合して炭・窒化物を
生成するので高温での強度を大幅に改善する効果を持
ち、少量の添加でも高温降伏強度の改善効果が大きい。
しかも結晶粒を微細化することができ、耐遅れ破壊性を
向上させる効果を持っている。しかしいずれも高価な元
素であり、またある程度以上になると効果の大幅な増大
が認められなくなるので夫々の上限を設定した。
V ≦ 0.15% (second invention) Ti ≦ 0.1% (second invention) Nb ≦ 0.1% (second invention) V, Ti and Nb are combined with C and N in steel to form carbon / nitride. Since it has the effect of significantly improving the strength at high temperature, the effect of improving the high-temperature yield strength is large even if added in a small amount.
Moreover, the crystal grains can be made finer, which has the effect of improving delayed fracture resistance. However, all of them are expensive elements, and if the amount exceeds a certain level, a significant increase in the effect cannot be recognized, so the respective upper limits were set.

【0015】更に優れた耐遅れ破壊性を得るためにはM
o,P及びSの含有量が式 1590%P+386%S−34%Mo≦13 を満足する必要がある。
In order to obtain further excellent delayed fracture resistance, M
It is necessary that the contents of o, P and S satisfy the formula 1590% P + 386% S-34% Mo ≦ 13.

【0016】本発明者等が種々検討した結果、耐遅れ破
壊性を水中での引張りタイプの遅れ破壊試験における1
00時間で破断しない最大付加応力(σ100D)で表わし
た場合、上記元素の含有量とσ100D(kgf/mm2) が下記回
帰式で近似されることを見出した。 σ100D=183−(1590%P+386%S−34%Mo) また実務上耐遅れ破壊性はσ100Dで170kgf/mm2以上
必要であると判断されるので、上記式を整理することに
より、式 1590%P+386%S−34%Mo≦13 を導き出した。
As a result of various investigations by the present inventors, the delayed fracture resistance was determined by the 1
It was found that the content of the above elements and σ 100D (kgf / mm 2 ) are approximated by the following regression equation when expressed by the maximum additional stress (σ 100D ) that does not break at 00 hours. σ 100D = 183- (1590% P + 386% S-34% Mo) Also, in practice, it is determined that delayed fracture resistance of σ 100D is required to be 170 kgf / mm 2 or more. 1590% P + 386% S-34% Mo ≦ 13 was derived.

【0017】更にまた優れた高温強度を得るためには
C,Mn,Cr,Mo,V,Ti及びNbが式 30≦ 19.8%C+3.9%Mn+18.5%Cr+28.7%Mo+84.9(%V+%Ti+%Nb)-1.9 を満足する必要がある(但し第1発明において V,T
i及びNbは0%である)。即ち、高温強度を600℃
での引張り試験における降伏強度(YP600)で表わした
場合、上記元素の含有量とYP600が下記回帰式で近似
されることを見出した。 YP600= 19.8%C+3.9%Mn+18.5%Cr+28.7%Mo+84.9(%V+%Ti+%Nb)-1.9 高温強度は設計仕様上30kgf/mm2以上必要であると判
断されるので上記式を整理することにより、式 30≦ 19.8%C+3.9%Mn+18.5%Cr+28.7%Mo+84.9(%V+%Ti+%Nb)-1.9 を導き出した。
Furthermore, in order to obtain excellent high temperature strength, C, Mn, Cr, Mo, V, Ti and Nb are represented by the formula 30 ≦ 19.8% C + 3.9% Mn + 18.5% Cr + 28.7% Mo + 84.9 (% It is necessary to satisfy V +% Ti +% Nb) -1.9 (However, in the first invention, V, T
i and Nb are 0%). That is, high temperature strength of 600 ℃
It was found that the content of the above elements and YP 600 are approximated by the following regression equation when expressed by the yield strength (YP 600 ) in the tensile test at. YP 600 = 19.8% C + 3.9% Mn + 18.5% Cr + 28.7% Mo + 84.9 (% V +% Ti +% Nb) -1.9 Since it is judged that high temperature strength is required to be 30kgf / mm 2 or more according to the design specifications, the above By rearranging the formula, the formula 30 ≦ 19.8% C + 3.9% Mn + 18.5% Cr + 28.7% Mo + 84.9 (% V +% Ti +% Nb) -1.9 was derived.

【0018】尚、本発明ボルトの場合、脱酸剤としてA
lが0.05%以下の範囲で含有されていてもよい。
In the case of the bolt of the present invention, A is used as a deoxidizing agent.
1 may be contained in the range of 0.05% or less.

【0019】以下実施例によって本発明を更に詳述する
が、下記実施例は本発明を制限するものではなく、前・
後記の趣旨を逸脱しない範囲で変更実施することは全て
本発明の技術範囲に包含される。
The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention.
All modifications and implementations that do not depart from the spirit of the description below are included in the technical scope of the present invention.

【0020】[0020]

【実施例】表1及び表2に示すNo.1〜18の化学組成
の鋼材を22mmφの棒鋼に熱間圧延・球状化焼鈍後、多
段フォーマーにてM22ボルトを作製した。それらのボ
ルトについて焼入れ焼戻し処理を行ない、常温での引張
り強さが115kgf/mm2前後になるように調質した。得
られたボルトを用いて機械加工により、図1に示す高温
引張り試験片を作製し、600℃にて高温引張り試験を
実施した。さらに一部のものについて図2に示す切欠き
遅れ破壊試験片を作製し、水中の促進式遅れ破壊試験を
実施した。それらの結果を表2にまとめて示す。
EXAMPLE Steels having chemical compositions Nos. 1 to 18 shown in Tables 1 and 2 were hot-rolled and spheroidized into 22 mmφ steel bars, and M22 bolts were produced by a multistage former. These bolts were subjected to quenching and tempering treatment and tempered so that the tensile strength at room temperature was around 115 kgf / mm 2 . Using the obtained bolt, a high temperature tensile test piece shown in FIG. 1 was produced by machining, and a high temperature tensile test was carried out at 600 ° C. Further, notched delayed fracture test pieces shown in FIG. 2 were produced for some of them, and an accelerated delayed fracture test in water was carried out. The results are summarized in Table 2.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】実施例1の場合、600℃の高温降伏強度
が30kgf/mm2以上で、しかも100時間遅れ破壊強さ
が170kgf/mm2以上でありいずれの特性も優れてい
た。実施例2〜5はV,Ti,Nbを単独及び複合添加
した場合であるが、いずれも素材強度はあまり変化しな
いものの、高温降伏強度,100時間遅れ破壊強さが大
幅に上昇し、これらの元素が微量でも顕著な改善効果を
有していることが良く分かった。
In the case of Example 1, the high temperature yield strength at 600 ° C. was 30 kgf / mm 2 or more, and the 100-hour delayed fracture strength was 170 kgf / mm 2 or more, and all the characteristics were excellent. Examples 2 to 5 are cases in which V, Ti, and Nb are added individually or in combination, but the material strength does not change much in either case, but the high temperature yield strength and 100 hour delayed fracture strength are significantly increased. It was well understood that the element has a remarkable improving effect even in a small amount.

【0024】一方、Moが低い比較例6は高温降伏強度
が低く、Moが高い比較例7はボルト素材の硬度が高く
なり過ぎ、変形抵抗が上昇し好ましくない。比較例8は
(1590%P+386%S−34%Mo)の値が13
を超えているので、100時間遅れ破壊強さが大幅に低
下している。Mnが低い比較例9は素材強度が低く変形
抵抗の面で好ましいが、脱酸などが不十分となり、介在
物が増加し、切欠き感受性の増大につながり、遅れ破壊
特性が低下している。Mnが高い比較例10は素材強度
は高いがMnの粒界偏析のため、遅れ破壊特性が低下し
て好ましくない。
On the other hand, Comparative Example 6 having a low Mo content is low in high temperature yield strength, and Comparative Example 7 having a high Mo content is not preferable because the hardness of the bolt material becomes too high and the deformation resistance increases. Comparative Example 8 had a value of (1590% P + 386% S-34% Mo) of 13
The fracture strength after 100 hours is significantly reduced. Comparative Example 9 having low Mn is preferable in terms of low material strength and deformation resistance, but deoxidation and the like become insufficient, inclusions increase, notch sensitivity increases, and delayed fracture characteristics deteriorate. Comparative Example 10 in which Mn is high has a high material strength, but because of segregation of Mn grain boundaries, delayed fracture characteristics are deteriorated, which is not preferable.

【0025】更にCrが少なすぎる比較例11は十分な
高温降伏強度が得られず、Crが高い比較例12は素材
強度が大幅に上昇しており、工具寿命に悪影響を与える
と予想される。Pが高い比較例13は(1590%P+
386%S−34%Mo)の値が13を超えており、1
00時間遅れ破壊強さが大幅に低下している。Sが高す
ぎる比較例14は(1590%P+386%S−34%
Mo)の値は13以下を満足しているが、やはり100
時遅れ破壊強さが低下している。Siが高すぎる比較例
15は素材の硬度が高くなりすぎ好ましくない。
Further, Comparative Example 11 in which the amount of Cr is too small cannot obtain a sufficient high temperature yield strength, and Comparative Example 12 in which the amount of Cr is high is significantly increased in the material strength, which is expected to adversely affect the tool life. Comparative Example 13 in which P is high (1590% P +
386% S-34% Mo) exceeds 13 and 1
00 hour delay Fracture strength is significantly reduced. Comparative Example 14 in which S is too high is (1590% P + 386% S-34%
Mo) value satisfies 13 or less, but still 100
The delayed fracture strength is decreasing. Comparative Example 15 in which Si is too high is not preferable because the hardness of the material becomes too high.

【0026】また比較例16は微量元素のうちVを例に
とり、請求範囲を超えて添加した場合の結果を示すが、
素材強度が大幅に上昇し、工具寿命の劣化が懸念され好
ましくない。Cが低すぎる比較例17は強度を確保する
に際し、400℃未満の焼戻し脆性温度域での焼戻しに
なるので、100時間遅れ強さが大幅に低い。一方Cが
高すぎる比較例18は素材の硬度が上昇し、工具に悪い
影響を与えると共に調質ボルトの靭性が低下し100時
間遅れ破壊強さが低い。
Further, Comparative Example 16 shows the result when V is added out of the claimed range, taking V among the trace elements as an example.
This is not preferable because the material strength is significantly increased and the tool life may deteriorate. In Comparative Example 17 in which C is too low, when the strength is secured, the tempering occurs in the tempering brittleness temperature range of less than 400 ° C., and therefore the 100-hour delay strength is significantly low. On the other hand, in Comparative Example 18 in which C is too high, the hardness of the material is increased, the tool is adversely affected, the toughness of the heat treated bolt is reduced, and the 100-hour delayed fracture strength is low.

【0027】[0027]

【発明の効果】本発明は以上の様に構成されているの
で、引張り強さが100kgf/mm2以上であるにも拘ら
ず、優れた耐遅れ破壊性と更に高温での高強度を備えた
高強度耐火ボルトを提供することが可能となった。従っ
て本発明の高強度耐火ボルトと耐火鋼板等を組み合わせ
ることにより、建築物や構造物の一層の安全性向上とコ
ストダウンが図れることとなった。
EFFECTS OF THE INVENTION Since the present invention is constituted as described above, it has excellent delayed fracture resistance and high strength at high temperature even though the tensile strength is 100 kgf / mm 2 or more. It has become possible to provide high strength fireproof bolts. Therefore, by combining the high-strength fire-resistant bolt of the present invention with a fire-resistant steel plate or the like, it is possible to further improve the safety and cost of a building or structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における高温引張り試験に用いた試験片
の形状を示す図である。
FIG. 1 is a diagram showing the shape of a test piece used in a high temperature tensile test in Examples.

【図2】実施例における促進式遅れ破壊試験に用いた試
験片の形状を示す図である。
FIG. 2 is a diagram showing a shape of a test piece used for an accelerated delayed fracture test in Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】0.15%≦ C≦0.30%(重量%,以下特に
断わらない限り同じ) 0.5 %≦Mn≦1.2 % 0.7 %≦Cr≦1.5 % 0.15%≦Mo≦0.6 % P≦0.01% S≦0.008 % Si≦0.2 % を含有し、残部Feおよび不可避不純物から成る常温強
度(TS)が100kgf/mm2以上の耐火ボルトであっ
て、P,S及びMoが式 1590%P+386%S−34%Mo≦13 を満足し、しかもC,Mn,Cr及びMoが式 30≦ 19.8%C+3.9%Mn+18.5%Cr+28.7%Mo-1.9 を満足することを特徴とする耐遅れ破壊性の優れた高強
度耐火ボルト。
Claims: 0.15% ≤ C ≤ 0.30% (% by weight, the same unless otherwise specified) 0.5% ≤ Mn ≤ 1.2% 0.7% ≤ Cr ≤ 1.5% 0.15% ≤ Mo ≤ 0.6% P ≤ 0.01% S ≤ A refractory bolt containing 0.008% Si ≤ 0.2% and consisting of balance Fe and unavoidable impurities and having a room temperature strength (TS) of 100 kgf / mm 2 or more, wherein P, S and Mo are expressed by the formula 1590% P + 386% S-34%. Excellent delayed fracture resistance characterized by satisfying Mo ≦ 13, and C, Mn, Cr and Mo satisfying the formula 30 ≦ 19.8% C + 3.9% Mn + 18.5% Cr + 28.7% Mo-1.9 High strength fireproof bolt.
【請求項2】 0.15%≦ C≦0.30% 0.5%≦Mn≦1.2% 0.7%≦Cr≦1.5% 0.15%≦Mo≦0.6% P≦0.01% S≦0.008% Si≦0.2% および V≦0.15% Ti≦0.1% Nb≦0.1% の1種または2種以上を含有し、残部Feおよび不可避
不純物から成る常温強度(TS)が100kgf/mm
以上の耐火ボルトであって、P,S及びMoが式 1590%P+386%S−34%Mo≦13 を満足し、しかもC,Mn,Cr,Mo,V,Ti及び
Nbが式 30≦19.8%C+3.9%Mn+18.5%Cr+
28.7%Mo+84.9(%V+%Ti+%Nb)−
1.9 を満足することを特徴とする耐遅れ破壊性の優れた高強
度耐火ボルト。
2. 0.15% ≦ C ≦ 0.30% 0.5% ≦ Mn ≦ 1.2% 0.7% ≦ Cr ≦ 1.5% 0.15% ≦ Mo ≦ 0.6% P ≦ 0.01% S ≦ 0.008% Si ≦ 0.2% and V ≦ 0.15% Ti ≦ 0.1% Nb ≦ 0.1% One or more kinds are contained, and the balance Fe and Room temperature strength (TS) consisting of inevitable impurities is 100 kgf / mm
2 or more refractory bolts, P, S and Mo satisfy the formula 1590% P + 386% S-34% Mo ≦ 13, and C, Mn, Cr, Mo, V, Ti and Nb are the formula 30 ≦ 19. 2.8% C + 3.9% Mn + 18.5% Cr +
28.7% Mo + 84.9 (% V +% Ti +% Nb)-
A high-strength fire-resistant bolt having excellent delayed fracture resistance, which satisfies 1.9.
JP3044387A 1991-02-15 1991-02-15 High strength fireproof bolt with excellent delayed fracture resistance Expired - Fee Related JPH0726177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3044387A JPH0726177B2 (en) 1991-02-15 1991-02-15 High strength fireproof bolt with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044387A JPH0726177B2 (en) 1991-02-15 1991-02-15 High strength fireproof bolt with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JPH04263047A JPH04263047A (en) 1992-09-18
JPH0726177B2 true JPH0726177B2 (en) 1995-03-22

Family

ID=12690101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044387A Expired - Fee Related JPH0726177B2 (en) 1991-02-15 1991-02-15 High strength fireproof bolt with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPH0726177B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572913B (en) * 2022-09-08 2023-07-25 舞阳钢铁有限责任公司 Fireproof high-strength steel and production method thereof
CN116024499B (en) * 2022-12-28 2024-06-25 燕山大学 Steel for 10.9-grade bolt resistant to hydrogen-induced delayed fracture and preparation method of 10.9-grade bolt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117856A (en) * 1982-01-06 1983-07-13 Daido Steel Co Ltd High-strength bolt steel
JPS61130456A (en) * 1984-11-29 1986-06-18 Honda Motor Co Ltd High-strength bolt and its production
JPS61174326A (en) * 1985-01-29 1986-08-06 Sumitomo Metal Ind Ltd Production of machine structural steel having superior delayed fracture resistance
JP2609722B2 (en) * 1989-03-18 1997-05-14 新日本製鐵株式会社 Architectural heat-resistant bolts and nuts and their manufacturing method

Also Published As

Publication number Publication date
JPH04263047A (en) 1992-09-18

Similar Documents

Publication Publication Date Title
JPH0545660B2 (en)
GB2110239A (en) Steel and chain made from the steel
JP3546421B2 (en) High-strength, high corrosion-resistant nitrogen-containing austenitic stainless steel
WO2001042523A1 (en) Wear-resistant steel product and method for production thereof
JP3424599B2 (en) Austenitic stainless steel with excellent hot workability
JPH0726177B2 (en) High strength fireproof bolt with excellent delayed fracture resistance
JPH0770700A (en) High proof stress and high corrosion resistant austenitic stainless cast steel
JPH03243743A (en) Wear-resistant steel for ordinary and medium temperature use having high hardness in medium and ordinary temperature range
JPH06240409A (en) Steel for bolt and nut excellent in refractioriness
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
JP2551251B2 (en) Steel for bolts and nuts with excellent fire resistance
JP3326983B2 (en) High-strength bolt steel with excellent fire resistance
JP3319303B2 (en) Steel for high-strength bolts without annealing and excellent in fire resistance and method of manufacturing the same
JP3221309B2 (en) Steel for machine structure and method of manufacturing the same
JPS6035985B2 (en) High strength steel for pressure vessels
JPS596358A (en) High strength bolt
JP3088626B2 (en) Non-heat treated steel for nitriding
JP3718637B2 (en) Refractory steel with excellent weldability
JPH09143632A (en) Precipitation hardening stainless steel
JP3232118B2 (en) Hot-rolled steel strip for construction with excellent fire resistance and toughness and method for producing the same
JPH05255811A (en) Steel for bolt and nut excellent in fire resistance
JPH0598389A (en) Steel for bolt and nut excellent in fire resistance
JPS62199751A (en) Steel for header
JPH0140103B2 (en)
JP2000063983A (en) Case hardening steel excellent in bending strength

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980310

LAPS Cancellation because of no payment of annual fees