JPH07260428A - Method for measuring position of work - Google Patents

Method for measuring position of work

Info

Publication number
JPH07260428A
JPH07260428A JP5082194A JP5082194A JPH07260428A JP H07260428 A JPH07260428 A JP H07260428A JP 5082194 A JP5082194 A JP 5082194A JP 5082194 A JP5082194 A JP 5082194A JP H07260428 A JPH07260428 A JP H07260428A
Authority
JP
Japan
Prior art keywords
image
work
slit light
hole
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5082194A
Other languages
Japanese (ja)
Other versions
JP2932418B2 (en
Inventor
Koji Oda
幸治 小田
Naoji Yamaoka
直次 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP5082194A priority Critical patent/JP2932418B2/en
Publication of JPH07260428A publication Critical patent/JPH07260428A/en
Application granted granted Critical
Publication of JP2932418B2 publication Critical patent/JP2932418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the central position of a dark part, e.g. a hole part, on a work in a spatial coordinate system using a single camera. CONSTITUTION:A work A is irradiated with a light from a spot light source 2 and the image of the work is picked up by means of a camera 1. The image of the work is also picked up by irradiating the work with a slit light from a slit light source 3 such that the optical plane thereof intersects the optical axis (Z axis) of the camera obliquely. Variation of the work A in the direction of Z axis is measured based on the position on a screen of a slit optical image picked up during irradiation with slit light. The central coordinates on the screen of the image at an objective part B being picked up during irradiation with the slot light is then measured. Subsequently, the central position of the objective part B in a spatial coordinates is determined based on the central coordinates thus measured and the variation of the work A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ワークを撮像したとき
に暗く写る、ワークの孔部といった計測対象部の中心位
置を光学的に計測するワークの位置計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a work position measuring method for optically measuring a center position of a measurement target portion such as a hole portion of a work which appears dark when a work is imaged.

【0002】[0002]

【従来の技術】従来、ワークの孔部の中心位置を光学的
に計測する方法として、光軸が互に斜交するように配置
した2個の撮像手段を用い、ワークにスポット光を照射
した状態で両撮像手段によりワークを撮像し、各撮像手
段の画面に暗部として現われる孔部の像の画面上の中心
座標を計測し、これら中心座標から三角測量の原理で空
間座標系における孔部の中心位置を求める方法は知られ
ている。
2. Description of the Related Art Conventionally, as a method of optically measuring the center position of a hole of a work, two image pickup means arranged so that their optical axes intersect each other are used to irradiate the work with spot light. In this state, the work is imaged by both imaging means, the center coordinates on the screen of the image of the hole appearing as a dark part on the screen of each imaging means are measured, and from these center coordinates, the hole part in the spatial coordinate system is calculated by the principle of triangulation. A method for obtaining the center position is known.

【0003】ここで、孔部の像の中心座標の計測に際し
ては、一般に、撮像手段の画面上を水平x軸方向に走査
して孔部の像の周縁に合致するx軸方向2箇所の周縁点
の座標を求めることを垂直y軸方向に位置をずらしなが
ら繰返し、x軸方向2箇所の周縁点の中点のx座標を平
均化して孔部の中心のx座標を求め、同様に、画面上を
y軸方向に走査してy軸方向2箇所の周縁点の座標を求
めることをx軸方向に位置をずらしながら繰返し、y軸
方向2箇所の周縁点の中点のy座標を平均化して孔部の
像の中心のy座標を求めるようにしている(特開昭56
−155804号公報参照)。
Here, in measuring the center coordinates of the image of the hole, in general, the screen of the image pickup means is scanned in the horizontal x-axis direction so as to match the edges of the image of the hole with two peripheral edges. Repeating the calculation of the point coordinates while shifting the position in the vertical y-axis direction, the x-coordinates of the midpoints of the two peripheral points in the x-axis direction are averaged to obtain the x-coordinate of the center of the hole, and similarly, Repeatedly scanning the top in the y-axis direction to find the coordinates of the peripheral points at the two y-axis directions while shifting the position in the x-axis direction, averaging the y-coordinates of the midpoints of the peripheral points at the two y-axis directions. The y-coordinate of the center of the image of the hole is obtained (JP-A-56)
155804).

【0004】また、本願出願人が先に特願平5−679
77号で提案したように、孔部の像の周縁上の複数の点
をピックアップし、これらの点の座標から孔部の像を表
わす回帰楕円を求め、この回帰楕円の中心座標を孔部の
像の中心座標とする方法もある。
Further, the applicant of the present invention has previously filed Japanese Patent Application No. 5-679.
As proposed in No. 77, a plurality of points on the periphery of the image of the hole are picked up, a regression ellipse representing the image of the hole is obtained from the coordinates of these points, and the central coordinates of this regression ellipse are set to the center of the hole. There is also a method of using the center coordinates of the image.

【0005】[0005]

【発明が解決しようとする課題】孔部の像の中心座標の
計測処理には、上記何れの方法を採用しても時間がかか
り、この計測処理を2個の撮像手段の画面の夫々につい
て実行していたのでは、時間的な制約からオンラインで
の計測が困難になることがあり、更に、2個の撮像手段
を用いる関係で計測設備のコストが高くなる不具合があ
る。
It takes time to measure the center coordinates of the image of the hole regardless of which method is used, and this measuring process is executed for each of the screens of the two image pickup means. However, it may be difficult to perform online measurement due to time constraints, and the cost of the measurement equipment may increase due to the use of the two imaging means.

【0006】本発明は、以上の点に鑑み、計測対象部の
空間座標系における中心位置を1個の撮像手段で能率良
く計測し得るようにした方法を提供することをその目的
としている。
In view of the above points, an object of the present invention is to provide a method capable of efficiently measuring the center position of the measurement target portion in the spatial coordinate system with a single image pickup means.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すべく、
本発明は、ワークを撮像したときに暗く写るワークの計
測対象部の中心位置を光学的に計測するワークの位置計
測方法であって、ワークにスポット光を照射した状態で
撮像手段によりワークを撮像する工程と、前記撮像手段
の光軸に斜交する面に沿ったスリット光をワークに照射
した状態で当該撮像手段によりワークを撮像する工程
と、スポット光の照射時に撮像手段の画面に暗部として
現われる前記計測対象部の像の画面上の中心座標を計測
する工程と、スリット光の照射時に撮像手段の画面に明
部として現われるスリット光像の画面上の位置から撮像
手段の光軸方向におけるワークの変位量を求める工程
と、前記変位量と前記中心座標とから空間座標系におけ
る計測対象部の中心位置を求める工程と、から成ること
を特徴とする。
[Means for Solving the Problems] In order to achieve the above object,
The present invention relates to a work position measuring method for optically measuring the center position of a measurement target portion of a work that appears dark when the work is imaged, and the work is imaged by an imaging means in a state where the work is irradiated with spot light. And a step of capturing an image of the work by the image capturing means while irradiating the work with slit light along a surface obliquely intersecting the optical axis of the image capturing means, and as a dark portion on the screen of the image capturing means during irradiation of the spot light. A step of measuring the center coordinates on the screen of the image of the measurement target portion that appears, and a workpiece in the optical axis direction of the image pickup means from the position on the screen of the slit light image that appears as the bright portion on the screen of the image pickup means during irradiation of the slit light. And a step of obtaining the center position of the measurement target portion in the spatial coordinate system from the displacement amount and the center coordinates.

【0008】[0008]

【作用】ワークが撮像手段の光軸方向に変位すると、こ
の光軸に斜交する面にスリット光が沿うため、スリット
光像が画面上で平行に変位し、かくて画面上のスリット
光像の位置から光軸方向におけるワークの変位量を求め
られる。従って、撮像手段が1個であっても、空間座標
系における計測対象部の中心位置を求めることができ
る。
When the workpiece is displaced in the optical axis direction of the image pickup means, the slit light image is displaced in parallel on the screen because the slit light extends along the surface obliquely intersecting the optical axis, and thus the slit light image on the screen is displaced. The displacement amount of the work in the optical axis direction can be obtained from the position of. Therefore, the center position of the measurement target portion in the spatial coordinate system can be obtained even if there is only one imaging unit.

【0009】ここで、計測対象部の像の画面上の中心座
標の計測には時間がかかるが、スリット光像は直線状で
あるためその位置は瞬時に計測でき、この位置から簡単
な演算でワークの変位量を求められるから、2個の撮像
手段の画面について夫々計測対象部の像の中心座標の計
測処理を実行する場合に比し、処理時間は大幅に短縮さ
れる。
Here, it takes time to measure the center coordinates of the image of the measurement target portion on the screen, but since the slit light image is linear, its position can be measured instantaneously, and from this position, simple calculation is possible. Since the amount of displacement of the work can be obtained, the processing time is greatly shortened as compared with the case where the measurement processing of the center coordinates of the images of the measurement target portions is performed on the screens of the two image pickup means.

【0010】[0010]

【実施例】図1は自動車車体等のワークAに基準孔とし
て形成した円形の孔部Bの中心位置を計測する装置の概
要を示しており、該装置は、撮像手段たる1台のCCD
カメラ1と、スポット光を照射するスポット光源2と、
スリット光を照射するスリット光源3と、カメラ1から
の画像信号を入力する画像処理回路4とで構成されてい
る。カメラ1とスポット光源2とスリット光源3はロボ
ット等の移動機構の動作端に取付けられる図示しない測
定ヘッドに搭載され、該測定ヘッドを移動機構の作動に
よりワークAの孔部Bに対向する所定の測定位置に移動
して孔部Bの位置計測を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an outline of an apparatus for measuring the center position of a circular hole B formed as a reference hole in a work A such as an automobile body. The apparatus is one CCD as an image pickup means.
A camera 1 and a spot light source 2 for emitting spot light,
It is composed of a slit light source 3 which emits slit light, and an image processing circuit 4 which inputs an image signal from the camera 1. The camera 1, the spot light source 2, and the slit light source 3 are mounted on a measuring head (not shown) attached to the operating end of a moving mechanism such as a robot, and the measuring head is moved to a predetermined position facing the hole B of the work A by the operation of the moving mechanism. The position of the hole B is measured by moving to the measurement position.

【0011】ここで、カメラ1とスリット光源3とは、
カメラ1の光軸にスリット光の光面SP(以下スリット
光面と記す)が斜交するように所要の位置関係で前記測
定ヘッドに搭載されており、また、前記測定位置におい
てカメラ1の光軸CDがワークAの法線方向を向くよう
になっている。
Here, the camera 1 and the slit light source 3 are
The measuring head is mounted on the measuring head in a required positional relationship so that an optical surface SP of the slit light (hereinafter referred to as a slit light surface) obliquely intersects the optical axis of the camera 1, and the light of the camera 1 at the measuring position. The axis CD is oriented in the normal direction of the work A.

【0012】そして、測定ヘッドを測定位置に移動した
ところで、先ずスポット光源2からのスポット光をワー
クAに照射し、この状態でカメラ1によりワークAを撮
像してその画像データを画像処理回路4に送信記憶さ
せ、次にスリット光源3からのスリット光をワークAに
照射し、この状態で同じくカメラ1によりワークAを撮
像してその画像データを画像処理回路4に送信記憶させ
る。
When the measuring head is moved to the measuring position, first, the work A is irradiated with the spot light from the spot light source 2, the work A is imaged by the camera 1 in this state, and the image data is processed by the image processing circuit 4. Then, the work A is irradiated with the slit light from the slit light source 3, the work A is also imaged by the camera 1 in this state, and the image data is transmitted and stored in the image processing circuit 4.

【0013】スポット光の照射時にはカメラ1の画面に
図3(a)に示す如く孔部Bの像bが暗部となって現わ
れ、また、スリット光の照射時にはワークAがスリット
光により図1にSで示す線状に照らされて、カメラ1の
画面に図3(b)に示す如く線状のスリット光像sが明
部となって現われる。尚、スリット光が孔部Bを跨ぐよ
うに照射されると、スリット光像sは孔部Bに対する部
分b′で分断される。
When the spot light is radiated, the image b of the hole B appears as a dark portion on the screen of the camera 1 as shown in FIG. 3A, and when the slit light is radiated, the work A is lit by the slit light. Illuminated in a linear shape indicated by S, a linear slit light image s appears as a bright portion on the screen of the camera 1 as shown in FIG. When the slit light is applied so as to straddle the hole B, the slit light image s is divided at the portion b ′ with respect to the hole B.

【0014】ところで、カメラ1の光軸とスリット光面
SPとの交点を原点0、カメラ1の光軸をZ軸、Z軸に
直交するスリット光面SPに平行な座標軸をY軸、Y軸
及びZ軸に直交する座標軸をX軸とする空間座標系を考
え、この空間座標系のX−Y座標面への投影像がカメラ
1で撮像されるとすると、カメラ1の画面上に原点0に
対応する中心点を原点としてX軸に対応する水平のX軸
とY軸に対応する垂直のy軸をとった場合、画面のx軸
座標値とy軸座標値は空間座標系のX−Y座標面上での
原点0からの水平距離と垂直距離を表わすことになる。
そして図2に示す如く、孔部Bの像bの中心mの画面上
のx、y座標mx、myと孔部Bの中心Mの空間座標系
におけるX、Y座標MX、MYとの比はカメラ1から原
点0までの距離Lとカメラ1からワークAまでの距離と
の比に等しくなり、従って、ワークAのZ軸方向変位量
をdZとして、 MX=mx・(L−dZ)/L となり、同じく MY=my・(L−dZ)/L となり、孔部Bの中心Mの空間座標系におけるZ座標M
Zは、 MZ=dZ になる。
The intersection of the optical axis of the camera 1 and the slit light surface SP is the origin 0, the optical axis of the camera 1 is the Z axis, and the coordinate axes parallel to the slit light surface SP orthogonal to the Z axis are the Y axis and the Y axis. And a spatial coordinate system having a coordinate axis orthogonal to the Z axis as the X axis and a projection image of the spatial coordinate system on the XY coordinate plane is taken by the camera 1, the origin 0 on the screen of the camera 1 When the horizontal X-axis corresponding to the X-axis and the vertical y-axis corresponding to the Y-axis are taken with the center point corresponding to the origin as the origin, the x-axis coordinate value and the y-axis coordinate value of the screen are X- of the spatial coordinate system. It represents the horizontal distance and the vertical distance from the origin 0 on the Y coordinate plane.
Then, as shown in FIG. 2, the ratio of the x, y coordinates mx, my on the screen of the center m of the image b of the hole B and the X, Y coordinates MX, MY in the spatial coordinate system of the center M of the hole B is It becomes equal to the ratio of the distance L from the camera 1 to the origin 0 and the distance from the camera 1 to the work A. Therefore, assuming that the displacement amount of the work A in the Z-axis direction is dZ, MX = mx · (L−dZ) / L Similarly, MY = my · (L−dZ) / L, and the Z coordinate M in the spatial coordinate system of the center M of the hole B.
Z becomes MZ = dZ.

【0015】ここで、ワークAがZ軸方向に変位する
と、スリット光面SPがY軸に平行で且つZ軸に斜交す
るため、スリット光像sが画面上でx軸方向に変位す
る。そして、スリット光像sのx座標sxとワークA上
のスリット光の照射部SのX座標SXとの関係は、上記
と同様に、 SX=sx・(L−dZ)/L …(1) となり、また、Z軸に対するスリット光面SPの傾斜角
をθとして、 SX=dZ・tanθ …(2) となり、(1)式と(2)式から、 sx・(L−dZ)/L=dZ・tanθ …(3) となり、(3)式をdZについてまとめると、 dZ=sx・ L/(Ltanθ+sx) …(4) になる。かくて、スリット光像sのx座標sxを計測す
れば(4)式からワークAのZ軸変位量dZを算定でき、
孔部像bの画面上の中心座標mx、myとdZとから空
間座標系における孔部Bの中心位置MX、MY、MZを
求められる。
Here, when the work A is displaced in the Z axis direction, the slit light surface SP is parallel to the Y axis and obliquely intersects with the Z axis, so that the slit light image s is displaced in the x axis direction on the screen. The relationship between the x coordinate sx of the slit light image s and the X coordinate SX of the slit light irradiation portion S on the work A is SX = sx · (L−dZ) / L (1) Further, assuming that the inclination angle of the slit light surface SP with respect to the Z axis is θ, SX = dZ · tan θ (2), and from equations (1) and (2), sx · (L−dZ) / L = dZ · tan θ (3), and by summarizing equation (3) for dZ, dZ = sx · L / (Ltan θ + sx) (4) Thus, if the x coordinate sx of the slit light image s is measured, the Z-axis displacement amount dZ of the work A can be calculated from the equation (4),
The center positions MX, MY, MZ of the hole B in the spatial coordinate system can be obtained from the center coordinates mx, my of the hole image b on the screen and dZ.

【0016】孔部Bの像bの中心座標mx、myは、孔
部像bの周縁に合致する周方向複数箇所の周縁点の座標
から算定される。本実施例では、先ず孔部像bの画像重
心gを求め、図4(a)に示す如く画像重心gに関して
y軸方向に対称な2本のx軸走査線と交差する4箇所の
周縁点〜と、画像重心gに関してx軸方向に対称な
2本のy軸走査線と交差する4箇所の周縁点〜との
計8箇所の周縁点をピックアップしてその座標を検出す
る。ところで、孔部像bの周縁にはノイズ等による凹凸
が現われることがあり、ピックアップした周縁点にこの
ような異常な像の部分に位置する点が含まれることを考
慮して、以下の手順で中心座標mx、myを計測する。
The center coordinates mx and my of the image b of the hole B are calculated from the coordinates of the peripheral points at a plurality of circumferential positions that match the periphery of the hole image b. In the present embodiment, first, the image center of gravity g of the hole image b is obtained, and four peripheral points intersecting with two x-axis scanning lines symmetrical with respect to the image center of gravity g in the y-axis direction as shown in FIG. 4A. , And 4 peripheral points intersecting with two y-axis scanning lines symmetrical with respect to the image center of gravity g in the x-axis direction, a total of 8 peripheral points are picked up and their coordinates are detected. By the way, in consideration of the fact that unevenness due to noise or the like may appear on the periphery of the hole image b, and the picked up peripheral point includes a point located in such an abnormal image portion, the following procedure is performed. The central coordinates mx and my are measured.

【0017】先ず、画面上に、孔部像bが正常であれば
その周縁がエリア内に入るように、上記した画像重心g
を中心にして図4(a)に仮想線で示すような所定の環
状エリアを設定し、上記の如くピックアップした周縁点
のうち環状エリア外に存する周縁点は異常な像の部分に
位置する点であるとして削除する。図4の例ではの周
縁点が削除される。
First, if the hole image b is normal on the screen, the image center of gravity g is set so that the peripheral edge of the hole image b is within the area.
A predetermined annular area as shown by a virtual line in FIG. 4 (a) is set with the center as the center, and among the peripheral points picked up as described above, the peripheral points outside the annular area are points located in the abnormal image portion. And delete it. In the example of FIG. 4, the peripheral points of are deleted.

【0018】次に、残った周縁点の座標から図4(b)
に示す如く孔部像を表わす回帰楕円qを求める。この場
合、異常な像の部分であっても異常の程度が軽微であれ
ばそこからピックアップされた周縁点は環状エリア内に
入ってしまうが、このような周縁点は回帰楕円に対する
ずれ量が大きくなる。そこで、回帰楕円に対する各周縁
点のずれ量を算出し、これら周縁点のずれ量のうちの最
大ずれ量が所定値以上のときは最大ずれ量の周縁点を削
除した残りの周縁点の座標から再度回帰楕円を求めるこ
とを最大ずれ量が所定値未満になるまで繰返す。このよ
うにして求めた回帰楕円qは孔部Bの正常な像に合致
し、かくて孔部像bの中心座標mx、myを回帰楕円q
の中心座標として正確に求めることができる。尚、カメ
ラ1に孔部Bが正対していれば孔部像bは円形になり、
孔部Bがカメラ1の光軸からずれるに従って孔部像bは
楕円形に変形するが、孔部像bが円形であればその円、
楕円形であればその楕円を表わす回帰楕円が求められ、
孔部像bの中心座標mx、myの計測精度が向上する。
Next, from the coordinates of the remaining peripheral points, FIG.
A regression ellipse q representing the hole image is obtained as shown in. In this case, even if it is an abnormal image part, if the degree of abnormality is slight, the peripheral points picked up from it will enter the annular area, but such peripheral points have a large amount of deviation from the regression ellipse. Become. Therefore, the deviation amount of each peripheral point with respect to the regression ellipse is calculated, and when the maximum deviation amount of the deviation amounts of these peripheral points is equal to or greater than a predetermined value, the peripheral points of the maximum deviation amount are deleted from the coordinates of the remaining peripheral points. The calculation of the regression ellipse is repeated until the maximum deviation amount becomes less than the predetermined value. The regression ellipse q obtained in this way matches the normal image of the hole B, and thus the center coordinates mx and my of the hole image b are set to the regression ellipse q.
It can be accurately obtained as the center coordinate of. If the hole B faces the camera 1, the hole image b becomes circular,
The hole image b is deformed into an elliptical shape as the hole B is displaced from the optical axis of the camera 1, but if the hole image b is circular, the circle,
If it is an ellipse, a regression ellipse that represents that ellipse is obtained,
The measurement accuracy of the center coordinates mx and my of the hole image b is improved.

【0019】以上の如くして中心座標mx、myを計測
すると、次にスリット光照射時の画像データを呼び出し
て、スリット光像sのx座標sxを計測する。この計測
に際しては、予め回帰楕円qのy軸方向上端点qaと下
端点qbのy座標を求めておき、スリット光照射時の画
面に、図5に示す如く、上下の端点qa、qbから上下
に等距離だけ離してx軸方向に長手の上下1対の対称な
ウインドウWa、Wbを設定し、各ウインドウWa、W
b内のスリット光像sの画像重心ga、gbを検出し
て、両重心ga、gbのx座標の平均値をスリット光像
sのx座標sxとして求める。
When the center coordinates mx and my are measured as described above, the image data at the time of slit light irradiation is called next to measure the x coordinate sx of the slit light image s. In this measurement, the y coordinates of the upper end point qa and the lower end point qb of the regression ellipse q in the y-axis direction are obtained in advance, and as shown in FIG. A pair of symmetrical upper and lower windows Wa, Wb which are long in the x-axis direction and are separated from each other by an equal distance.
The image centroids ga and gb of the slit light image s in b are detected, and the average value of the x coordinates of both centroids ga and gb is obtained as the x coordinate sx of the slit light image s.

【0020】ところで、本実施例では、移動機構により
測定ヘッドを測定位置に移動したとき、X−Y座標面が
ワークAに平行になるようにしているため、スリット光
像sは画面のy軸に平行になり、前記両重心ga、gb
のx座標は互いに等しくなるが、ワークAが空間座標系
のX軸回りに傾くとスリット光像sがy軸に対し傾き、
両重心ga、gbのx座標が互いに異なった値になる。
そこで、両重心ga、gbの偏差が所定値以上になった
ときはその旨を表示する。尚、ワークAがX軸回りに傾
いても、ワークAのZ軸方向変位量dZを孔部Bの中心
MのZ軸方向変位量として計測すれば、孔部像bの中心
座標mx、myと孔部Bの中心座標MX、MYとの間に
は上記と同様の関係が成立する。ここで、孔部Bの中心
MのZ軸方向変位量は、孔部像bの中心mを通るx軸に
平行な線とスリット光像sに合致する線との交点のx座
標から上記(4)式によって求めることができる。そし
て、この交点は上記両重心ga、gbの中点となるか
ら、両重心ga、gbのx座標の平均値が交点のx座標
となる。従って、ワークAがX−Y座標面に対しX軸回
りに傾いていても、ワークAがX−Y座標面に平行であ
る場合と同様の処理で孔部Bの中心Mの位置を計測でき
る。
By the way, in this embodiment, since the XY coordinate plane is made parallel to the work A when the measuring head is moved to the measuring position by the moving mechanism, the slit light image s is the y-axis of the screen. Parallel to the center of gravity ga, gb
X-coordinates are equal to each other, but when the work A tilts around the X-axis of the spatial coordinate system, the slit light image s tilts with respect to the y-axis,
The x-coordinates of the center of gravity ga and gb have different values.
Therefore, when the deviation between the centers of gravity ga and gb exceeds a predetermined value, the fact is displayed. Even if the work A is tilted around the X axis, if the Z-axis displacement amount dZ of the work A is measured as the Z-axis displacement amount of the center M of the hole B, the center coordinates mx and my of the hole image b are measured. And the center coordinates MX and MY of the hole B have the same relationship as above. Here, the amount of displacement of the center M of the hole B in the Z-axis direction is calculated from the x-coordinate of the intersection point of a line parallel to the x-axis passing through the center m of the hole image b and a line matching the slit light image s. It can be obtained by the equation (4). Since this intersection is the midpoint between the centers of gravity ga and gb, the average value of the x-coordinates of the centers of gravity ga and gb is the x-coordinate of the intersection. Therefore, even if the work A is tilted around the X axis with respect to the XY coordinate plane, the position of the center M of the hole B can be measured by the same processing as that when the work A is parallel to the XY coordinate plane. .

【0021】以上、ワークAの孔部Bの中心位置の計測
について説明したが、図6に示す如くワークAに固着し
たナットCのねじ孔の中心位置を計測する場合、そのま
まではスポット光の照射時にナットCの内面からの反射
光によりねじ孔の像の輪郭がぼやけてしまうため、ナッ
トCにねじDを螺着し、ねじDの頭部を黒く着色して頭
部が暗く写るようにし、この頭部の中心位置をねじ孔の
中心位置として計測することが考えられる。この場合に
も上記と同様にスポット光とスリット光とを照射し、ス
ポット光照射時のねじ頭部の像の中心座標と、スリット
光照射時のスリット光像の位置とを計測して、空間座標
系におけるねじ頭部の中心位置を正確に求めることがで
きる。
The measurement of the center position of the hole B of the work A has been described above. However, when the center position of the screw hole of the nut C fixed to the work A is measured as shown in FIG. Since the outline of the image of the screw hole is sometimes blurred by the reflected light from the inner surface of the nut C, the screw D is screwed onto the nut C, and the head of the screw D is colored black so that the head looks dark. It is conceivable to measure the center position of the head as the center position of the screw hole. Also in this case, the spot light and the slit light are emitted in the same manner as above, the center coordinates of the image of the screw head at the time of the spot light irradiation, and the position of the slit light image at the time of the slit light irradiation are measured, and the space is measured. The center position of the screw head in the coordinate system can be accurately obtained.

【0022】ところで、上記の如くカメラ1の光軸にス
リット光面SPが斜交するようにカメラ1とスリット光
源3とを配置しておけば、光切断法によるワークの断面
計測も行い得られ、ワークが自動車車体である場合、ル
ーフサイドレールやサイドシルやピラー部等の断面計測
と、孔部といった暗く写る計測対象部の位置計測とを同
一の測定装置で行い得られるようになり、有利である。
By the way, if the camera 1 and the slit light source 3 are arranged so that the slit light surface SP obliquely intersects the optical axis of the camera 1 as described above, the cross-section measurement of the workpiece by the light cutting method can be performed. When the work is an automobile body, it becomes possible to measure the cross section of the roof side rail, side sill, pillar, etc. and the position of the measurement target part such as a hole that appears dark in the same measuring device, which is advantageous. is there.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、本発明
によれば、単一の撮像手段でワークの計測対象部の空間
座標系における中心位置を計測できると共に、同一の設
備でワークの断面計測も行うことができるため、計測設
備のコストダウンを図ることができ、更に、計測に要す
る時間を短縮でき、タクトタイムの短いラインでのオン
ライン計測も無理なく行い得られる。
As is apparent from the above description, according to the present invention, the center position in the spatial coordinate system of the measurement target portion of the work can be measured by a single image pickup means, and the cross section of the work can be measured by the same equipment. Since measurement can also be performed, the cost of measurement equipment can be reduced, the time required for measurement can be shortened, and online measurement on a line with a short takt time can be performed without difficulty.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法の実施に用いる計測装置の概要を
示す斜視図
FIG. 1 is a perspective view showing the outline of a measuring device used for carrying out the method of the present invention.

【図2】 (a)図1のY軸方向から見た図、(b)図
1のX軸方向から見た図
2A is a view seen from the Y-axis direction of FIG. 1, and FIG. 2B is a view seen from the X-axis direction of FIG.

【図3】 (a)スポット光照射時の画面を示す図、
(b)スリット光照射時の画面を示す図
FIG. 3 (a) is a diagram showing a screen at the time of spot light irradiation,
(B) The figure which shows the screen at the time of slit light irradiation

【図4】 (a)(b)孔部像の中心座標を計測するた
めの画像処理を示す図
4A and 4B are views showing image processing for measuring the center coordinates of the hole image.

【図5】 スリット光像の位置を計測するための画像処
理を示す図
FIG. 5 is a diagram showing image processing for measuring the position of a slit light image.

【図6】 本発明方法で位置計測するワークの他の例を
示す断面図
FIG. 6 is a sectional view showing another example of a work whose position is measured by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 カメラ(撮像手段) 2 スポット光源 3 スリット光源 4 画像処理回路 A ワーク B 孔部(計測対
象部) b 孔部の像 SP スリット光面 s スリット光像
1 camera (imaging means) 2 spot light source 3 slit light source 4 image processing circuit A work B hole part (measurement target part) b hole image SP slit light surface s slit light image

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ワークを撮像したときに暗く写るワーク
の計測対象部の中心位置を光学的に計測するワークの位
置計測方法であって、 ワークにスポット光を照射した状態で撮像手段によりワ
ークを撮像する工程と、 前記撮像手段の光軸に斜交する面に沿ったスリット光を
ワークに照射した状態で当該撮像手段によりワークを撮
像する工程と、 スポット光の照射時に撮像手段の画面に暗部として現わ
れる前記計測対象部の像の画面上の中心座標を計測する
工程と、 スリット光の照射時に撮像手段の画面に明部として現わ
れるスリット光像の画面上の位置から撮像手段の光軸方
向におけるワークの変位量を求める工程と、 前記変位量と前記中心座標とから空間座標系における計
測対象部の中心位置を求める工程と、 から成ることを特徴とするワークの位置計測方法。
1. A method for measuring the position of a work, which optically measures the center position of a measurement target portion of the work that appears dark when the work is imaged. A step of capturing an image, a step of capturing an image of the work by the image capturing means while irradiating the work with slit light along a surface obliquely intersecting the optical axis of the image capturing means, and a dark portion on the screen of the image capturing means during irradiation of the spot light. And a step of measuring the center coordinates on the screen of the image of the measurement target portion appearing as, in the optical axis direction of the imaging means from the position on the screen of the slit light image appearing as the bright portion on the screen of the imaging means during irradiation of the slit light. A step of obtaining a displacement amount of the work; and a step of obtaining the center position of the measurement target portion in the spatial coordinate system from the displacement amount and the center coordinates. Position measurement method.
JP5082194A 1994-03-22 1994-03-22 Work position measurement method Expired - Fee Related JP2932418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5082194A JP2932418B2 (en) 1994-03-22 1994-03-22 Work position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5082194A JP2932418B2 (en) 1994-03-22 1994-03-22 Work position measurement method

Publications (2)

Publication Number Publication Date
JPH07260428A true JPH07260428A (en) 1995-10-13
JP2932418B2 JP2932418B2 (en) 1999-08-09

Family

ID=12869436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5082194A Expired - Fee Related JP2932418B2 (en) 1994-03-22 1994-03-22 Work position measurement method

Country Status (1)

Country Link
JP (1) JP2932418B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236849A (en) * 2008-03-28 2009-10-15 Honda Motor Co Ltd Work measuring technique
JP2014163898A (en) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd Pore position acquisition method of construction object, and heat insulation coating method using the same
CN108857572A (en) * 2017-09-07 2018-11-23 湖南大学 Increase and decrease material Compound Machining coordinate Synergistic method based on contact type measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236849A (en) * 2008-03-28 2009-10-15 Honda Motor Co Ltd Work measuring technique
JP2014163898A (en) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd Pore position acquisition method of construction object, and heat insulation coating method using the same
CN108857572A (en) * 2017-09-07 2018-11-23 湖南大学 Increase and decrease material Compound Machining coordinate Synergistic method based on contact type measurement
CN108857572B (en) * 2017-09-07 2020-06-19 湖南大学 Material increase and decrease composite processing coordinate cooperation method based on contact measurement

Also Published As

Publication number Publication date
JP2932418B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JP2008107194A (en) Wheel alignment measuring device for vehicle
JP2932418B2 (en) Work position measurement method
JP2000193428A (en) Method and device for measuring object
US20210333097A1 (en) Non-contact vehicle orientation and alignment sensor and method
JP3758763B2 (en) Method for optical measurement of hole position
JP3318882B2 (en) Optical measuring device and measuring method
KR101833055B1 (en) 3-dimensional measuring system
JP3030176B2 (en) Shape inspection method using contour recognition method
JPH10105718A (en) Optical measurement method for hole position
JP4454714B2 (en) Method and apparatus for measuring object to be measured
JP3101801B2 (en) Abnormal inspection method of optical measuring device
JPH11230718A (en) Ball height measuring method of ball grid array
JP3054513B2 (en) Method for detecting lead lift of electronic components
JP2565771B2 (en) Method and apparatus for detecting inclination of work surface
JPH06281411A (en) Measuring method for hole position
JPH0894318A (en) Optical position measuring method
JP3162872B2 (en) Electronic component outline recognition apparatus and outline recognition method
JPH10105720A (en) Optical measurement method for hole position
JP2707047B2 (en) Workpiece edge position measurement method
JP2689070B2 (en) Measuring method of hole position
JPH10105721A (en) Detection of picture position
JPS5928608A (en) Detector for weld line
JPH06258024A (en) Image processing method in measurement of hole
JPH0835815A (en) Inspection method for optical measuring apparatus
JPH03186705A (en) Three-dimensional shape dimension measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees