JPH07259046A - Wave eliminating device - Google Patents

Wave eliminating device

Info

Publication number
JPH07259046A
JPH07259046A JP3085453A JP8545391A JPH07259046A JP H07259046 A JPH07259046 A JP H07259046A JP 3085453 A JP3085453 A JP 3085453A JP 8545391 A JP8545391 A JP 8545391A JP H07259046 A JPH07259046 A JP H07259046A
Authority
JP
Japan
Prior art keywords
wave
water
waves
caissons
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3085453A
Other languages
Japanese (ja)
Inventor
Takeshi Ijima
武士 井島
Takahiko Uetoko
隆彦 上床
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3085453A priority Critical patent/JPH07259046A/en
Publication of JPH07259046A publication Critical patent/JPH07259046A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

PURPOSE:To eliminate waves by allowing them to deform caissons installed underwater so that the caissons generate emissive waves having the opposite phase to the incident waves, and thereby reducing the wave height of the waves passing by. CONSTITUTION:A pair of caissons 3, 4 are immerged underwater parallel with the advancing direction of the waves in a water area having a depth (h), and to them 3, 4. water-tight films 1, 2 are attached which are deformable flexibly. The two films lie within the horizontal plane at a depth h' under the static water surface, and the caissons are positioned conversely up and down to each other and fixed while a spacing is reserved in between which corresponds to approx. half the wavelength L of the incident waves W. When the films 1, 2 are deformed by the pressure of the incident waves advancing in the OX direction, the air in the two caissons flows freely via a communication pipe 5 so that emissive waves are produced.

Description

【発明の詳細な説明】 本発明は水面下に設置された潜函の波による変形によっ
て入射波と逆位相の放射波を発生し通過波の波高を低減
させて消波を行う装置に関するもので従来の防波や消波
の方法とは異った原理に基づき低費用で容易に建設する
ことが出来る装置である。本発明の原理は以下に説明す
る通りである。第1図は入射波の進行方向に波峰と波底
が並んでいる様子を側面図によって示したもので波は の方向に進んでいるものとする。ここで水深をhとし水
底面をO′X′で示し水面からh′の深さに破線で示す
柔軟な膜面1及び2をもつ2個の潜函3及び4が約半波
長L/2隔った水底面上の2点A及びBの上方に固定さ
れており之等の内部の空気は中空管5により連通してお
りまた膜面1,2や版10,13などは充分の強さをも
ち比重は小なるほど望ましく海水のそれと同程度以下と
するのがよい。この装置で特に必須の条件は2つの潜函
が膜面1と2を含む水平面に関して上下反対の側にある
ということであるがこの理由については後述する。これ
ら一対の潜函の内部に空気を注入することよって波がな
いときは内部の空気圧が深さh′での外部流体の静水圧
と平衡して破線で示すように両方の膜面は同一水平面内
にあって平衡状態を保つことができる。このとき右方か
ら破線Wで示すような波長 をもつ入射波が進行して来て右潜函3の位置A上に波峰
があるときは膜面1では外部流体圧力が潜函3の内部空
気圧をこえることになる。この瞬間には左潜函4の位置
に波底があって膜面2では外部流体圧力は潜函4の内部
空気圧より低いため右潜函から左潜函への空気の流動が
起り右膜面1は第1図の6のように変形し周辺の流体を
吸引して潜函容積を収縮し同時に左膜面2は7のように
周辺流体を排除して潜函容積を膨ちょうすることとな
る。こうして第6図で示すように右潜函付近ではその直
上の入射波Wの波峰はその下の潜函3の体積減少(斜
線部分)に対応してWで示すように陥没低下し反対に
左潜函では潜函の体積増加(斜線部分)に対応して波底
はWで示すように上昇することとなる。こうして入射
波W(破線)はそれ自身による流体内部圧力の変動に
よって潜函体積の周期的変動を誘起しそれによって新た
に波を発生したものと考えることが出来るのである。こ
の波を放射波(Radiation Wave)と称し
第6図の波形における斜線部分がその振幅に対応するが
上述のように入射波の波峰は放射波の波底に対応しまた
入射波の波底が放射波の波峰に対応しているので位相は
逆転している訳である。之により潜函の膜変形による放
射波が潜函を通過する波の振幅を低減することになるの
である。従って入射波のエネルギーを消滅する砕波防波
堤や反射によって波をしゃ断する直立防波堤などとは全
く異なる機構により波を防ぐのが本消波装置の特徴とい
うことができる。更に第7図のように潜函が変形する膜
をもたない版構造であるときはこの潜函系が入射波W
の障害となり入射波Wに対し実線Wのように波峰の
低下と波底の上昇及び位相の変化を生ずる。之を散乱波
(Scattering Wave)といい本装置によ
る消波作用は放射波と散乱波の重合の結果通過波の波高
縮小として現はれるものである。従って本装置の機能は
入射波のエネルギーを散逸させるのではなく上記の2効
果によって波の通過を抑止することである。特に放射波
の効果を主とする点が本装置の特徴でその作用が水面下
の装置で行はれ装置自体が強大な波力を受けることがな
く建設維持が容易となる。本装置においては既述のよう
に2個の潜函について (i)変形する膜面の静止時の位置は静水面と平行な一
つの水平面内にあること。 (ii)潜函本体はこの水平面に関して上下反対の側に
在ること。を必須の2条件とするのがその特徴である。
それは放射波を発生するに必要な潜函膜面の静力学的安
定性の維持のために必要不可欠の要件でありかつ上記の
方法がそれを満足する唯一の方法であることによる。上
記の条件(i)は明白で両潜函の膜面が異なる水深に在
るときは深い方の潜函膜に作用する静水圧が浅い方の潜
函膜に対する静水圧より大であるから必然的に空気は浅
い方の潜函に集まり波による水圧変動に対応して膜面が
変形することが出来なくなるのである。条件(ii)は
第8図に示すように同一水深にある左右対称な一対の潜
函においては初めに両方の膜面に対する静水圧が等しい
状態にあった場合でももし右潜函の膜面1に微小な圧力
ρgΔh′(ρは海水の密度;gは重力の加速度)の不
均衡が起って膜面がΔh′だけ低下すると空気は非圧縮
性で全容積は一定であらねばならないのでこの不均衡の
ため右潜函内の空気の一部は左潜函に移動しその膜面2
をΔh′だけ押し上げることになる。その結果左膜面2
に外から作用する静水圧はρgΔh′だけ減少し右膜面
1に作用している静水圧との差は2ρgΔh′となる。
このため右膜面は更に低下し左膜面は上昇し両者の不均
衡は際限なく拡大を続けついに空気は左潜函に集まり右
潜函は容積を失って両者は潜函としての機能をなさない
ことになる。そこで第9図のように同一水深の膜面に関
して潜函を上下反対向に設置すれば膜面に不均衡Δh′
が生じてもそれに応ずる左右両膜面への外部水圧の変化
はその不均衡を打消す向に作用するので常に安定が維持
され波による変動圧力だけに対応した動作が実現するこ
とになるのである。なお第5図に示した構造は左潜函4
の膜面は必ずしも必要とは限らず之を取除いても空気は
常に水面より上に在るから本発明の消波装置はほぼその
機能を達成する。然しこの潜函内の水面に水平方向の振
動が発生することは不都合であるから之を防止するため
に潜函4内を鉛直方向に仕切る隔壁を設けるものであ
る。第10図は長さlが水深hの2倍(=2.0h)厚
さdが0.2倍(=0.2h)の長方形潜函に対し膜面
の水面からの深さをh′=0.2h潜函の間隔B′=
4.0hとしたとき膜面が変形する場合(第1図又は第
6図)と変形しない場合(第7図)における波の通過率
(通過波高と入射波高との比)を理論的に求めた結
果を水深と波長の比h/Lを横軸にとって示したもので
ある。実線が膜面変形の場合(放射波)破線は変形しな
い場合(散乱波)である。両者を比較すれば本発明の消
波装置によれば放射波の効果が顕著で通過率は充分に低
く有効な消波が行われることが明らかである。なお本発
明の実施について述べると潜函は常に没水状態にあって
内部の空気圧と外部の水圧との間にほとんど差はないの
で潜函及び膜面に大きな強度を与えておく必要がないと
いう特徴があり製作と施工の上で利点が大きい。
The present invention relates to a device for generating a radiation wave having a phase opposite to that of an incident wave by the deformation of a submarine installed below the surface of water and reducing the wave height of a passing wave to cancel the wave. It is a device that can be easily constructed at low cost based on a principle different from the method of wave-breaking and wave-dissipating. The principle of the present invention is as described below. Figure 1 shows a side view of the wave peaks and bottoms lined up in the traveling direction of the incident wave. It is assumed that it is proceeding in the direction of. Here, the water depth is h, the bottom of the water is indicated by O'X ', and two submarines 3 and 4 having flexible film surfaces 1 and 2 indicated by the broken line from the water surface to the depth of h'are separated by about half wavelength L / 2. It is fixed above the two points A and B on the bottom of the water, and the air inside them is connected by the hollow tube 5, and the membrane surfaces 1, 2 and the plates 10, 13 are sufficiently strong. The smaller the specific gravity is, the more desirable it is, and it is better to make it equal to or less than that of seawater. A particularly indispensable condition for this device is that the two enclosures are on opposite sides with respect to the horizontal plane containing the membrane surfaces 1 and 2, the reason for which will be described later. When there is no wave by injecting air into a pair of these submarines, the internal air pressure is in equilibrium with the hydrostatic pressure of the external fluid at the depth h ', and both membrane surfaces are in the same horizontal plane as indicated by the broken line. It is possible to maintain an equilibrium state. At this time, the wavelength as shown by the broken line W i from the right side When an incident wave with a wave propagates and there is a wave peak on the position A of the right sub-chamber 3, the external fluid pressure exceeds the internal air pressure of the sub-chamber 3 on the film surface 1. At this moment, since there is a wave bottom at the position of the left sub-chamber 4 and the external fluid pressure is lower than the internal air pressure of the sub-chamber 4 on the film surface 2, the flow of air from the right sub-chamber to the left sub-chamber occurs and the right membrane surface 1 is As shown by 6 in the figure, the surrounding fluid is sucked and the latent volume is contracted, and at the same time, the left membrane surface 2 eliminates the surrounding fluid and expands the latent volume as shown by 7. Thus, as shown in FIG. 6, in the vicinity of the right submarine, the wave peak of the incident wave W i immediately above it is depressed as shown by W r in correspondence with the volume decrease (hatched portion) of the submarine 3 below it, and conversely on the left. In the submarine, the wave bottom rises as indicated by W r in response to the increase in the volume of the submarine (hatched portion). In this way, it can be considered that the incident wave W i (broken line) induces a periodic fluctuation of the latent volume due to the fluctuation of the internal pressure of the fluid, thereby generating a new wave. This wave is called a radiation wave, and the shaded portion in the waveform of FIG. 6 corresponds to its amplitude, but as described above, the peak of the incident wave corresponds to the wave bottom of the radiation wave and the wave bottom of the incident wave is Since it corresponds to the peak of the radiated wave, the phase is reversed. As a result, the amplitude of the wave radiated by the film deformation of the submarine will pass through it. Therefore, it can be said that the characteristic feature of this wave breaking device is that the wave is prevented by a mechanism completely different from that of the breakwater breakwater that extinguishes the energy of the incident wave and the upright breakwater that cuts off the wave by reflection. Further, as shown in FIG. 7, when the latent box has a plate structure without a deformable film, this latent box system produces an incident wave W i
As shown by the solid line W s for the incident wave W i, the wave peak decreases, the wave bottom rises, and the phase changes. This is called a scattering wave, and the wave-dissipating action of this device appears as a reduction in the height of the passing wave as a result of the superposition of the radiated wave and the scattered wave. Therefore, the function of the device is not to dissipate the energy of the incident wave, but to suppress the passage of the wave by the above two effects. In particular, the effect of radiation waves is the main feature of this device, and its operation is carried out by an underwater device, and the device itself does not receive a large wave force, and construction maintenance is easy. In this device, as described above, (i) the positions of the deformed membrane surfaces at rest are within one horizontal plane parallel to the still water surface. (Ii) The main body of the submarine must be on the upside down side with respect to this horizontal plane. The feature is that the two conditions are essential.
Because it is an indispensable requirement for maintaining the static stability of the latent membrane surface necessary to generate the radiated wave, and the above method is the only way to satisfy it. The above condition (i) is obvious, and when the membrane surfaces of both sub-chambers are at different water depths, the hydrostatic pressure acting on the deeper sub-membrane is greater than the hydrostatic pressure for the shallower sub-membrane, so that it is inevitably air. Is gathered in the shallower submerged box and the membrane surface cannot be deformed in response to the water pressure fluctuation caused by the waves. In condition (ii), as shown in FIG. 8, in the case of a pair of bilaterally symmetrical submersibles at the same water depth, even if the hydrostatic pressures on both membrane surfaces were initially equal, a small amount was found on the membrane surface 1 of the right submerged vessel. When the pressure drops ρgΔh '(ρ is the density of seawater; g is the acceleration of gravity) and the membrane surface decreases by Δh', the air must be incompressible and the total volume must be constant. Because of this, a part of the air in the right sub-chamber moves to the left sub-chamber and its membrane surface 2
Will be pushed up by Δh '. As a result, left membrane surface 2
The hydrostatic pressure acting from the outside is reduced by ρgΔh ', and the difference from the hydrostatic pressure acting on the right membrane surface 1 is 2ρgΔh'.
As a result, the right membrane surface further decreases, the left membrane surface rises, and the imbalance between the two continues to expand indefinitely, and finally air gathers in the left submarine and the right subcellular loses its volume, and both do not function as a submarine. Become. Therefore, as shown in Fig. 9, if the submerged boxes are installed upside down and opposite to each other with respect to the film surface of the same water depth, an imbalance Δh '
Even if a pressure occurs, the change in the external water pressure on both the left and right membrane surfaces acts to cancel the imbalance, so that the stability is always maintained and the operation corresponding to only the fluctuation pressure due to the wave is realized. . The structure shown in FIG.
The film surface is not always necessary, and even if the film surface is removed, the air is always above the water surface, so the wave-eliminating device of the present invention achieves its function. However, since it is inconvenient for horizontal vibration to occur on the water surface in this sub-chamber, in order to prevent this, a partition wall for partitioning the sub-chamber 4 in the vertical direction is provided. FIG. 10 shows that the depth of the membrane surface from the water surface is h '= for a rectangular submersible where the length l is twice the water depth h (= 2.0 h) and the thickness d is 0.2 times (= 0.2 h). 0.2h Submarine spacing B '=
When the film surface is deformed (FIG. 1 or 6) and not deformed (FIG. 7) at 4.0 h, the wave passage rate K t (ratio between the wave height and the incident wave height) is theoretically calculated. The horizontal axis represents the water depth / wavelength ratio h / L. The solid line is the case where the film surface is deformed (radiated wave), and the broken line is the case where it is not deformed (scattered wave). Comparing the two, it is clear that the wave-eliminating device of the present invention has a remarkable effect of the radiated wave and the passing rate is sufficiently low to perform effective wave-elimination. Regarding the implementation of the present invention, since the submarine is always submerged and there is almost no difference between the internal air pressure and the external water pressure, there is a feature that it is not necessary to give great strength to the submarine and the membrane surface. Yes Great advantage in production and construction.

【図面の簡単な説明】 第1図 第2図 第3図 第4図 第5図は本発明の装
置の構成と構造に関する説明図,第6図 第7図 第8
図 第9図は本発明の原理に関する説明図 第10図は本発明の装置の効果を示す理論計算の結果を
表はす図である。 1,2…………膜面 3,4………潜函 2′……………潜函内の 1′,2″…上版及び下版 水面 4′……………左右対称 5……………連通管 の左潜函 6,7…………変形した 7′…………昇降した水面 膜面 8………………水平板 7″…………左右対称の左 潜函での変形した膜面 9,12 ……じゃ腹 10,13,15……版 11,14,16……ヒンジ 17 ………鉛直隔壁 OX……………静水面 O′X′……水底面 L………………波長 h,h′……水深及び潜函 膜面の深さ B′……………潜函の間隔 d……………潜函の厚さ l ……………潜函の長さ W……………通過波 W………入射波 W…………放射波 W………散乱波
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 is an explanatory diagram relating to the configuration and structure of the device of the present invention, FIG.
FIG. 9 is an explanatory diagram relating to the principle of the present invention. FIG. 10 is a diagram showing the result of theoretical calculation showing the effect of the device of the present invention. 1, 2 ………… Membrane surface 3, 4 ………… Submersible 2 ′ ……………… 1 ′, 2 ″ in the suburb… Upper and lower plates Water surface 4 ′ ……………… Bilateral symmetry 5 …… ………… Left submersible of communication pipe 6,7 ………… Deformed 7 ′ ………… Raised / lowered water surface Membrane surface 8 ……………… Horizontal plate 7 ″ ………… Symmetrical left submersible Deformed membrane surface 9,12 ・ ・ ・ Jack belly 10,13,15 ・ ・ ・ Version 11,14,16 …… Hinge 17 …… Vertical partition OX ………… Still water surface O′X ′ …… Water bottom surface L ……………… Wavelength h, h ′ …… water depth and depth of the submerged membrane surface B ′ ……………… Interval between submarines d ……………… Thickness of the submarine l …………… Length of the submarine W …………… Passed wave W i ……… Incident wave W r ……… Radiated wave W s ……… Scattered wave

Claims (1)

【特許請求の範囲】 (1) 第1図に示すように水深hの水域において波の
進行方向に平行に2個1対のほぼ同形の水密で堅固な中
空の函3及び4(以下之を潜函とよぶ)に柔軟に変形す
ることのできる水密な膜面1及び2を装着し両膜面は静
水面以下h′の水平面内にあり潜函は互に上下反対の位
置にあって入射波Wの波長Lの1/2程度の間隔を以
って固定し連通管5を用いて両方の潜函内の空気を自由
に流通させることによって図中の右から左 に進行する通過波Wの波高を低減する機能を表はすこと
を特徴とする消波装置 (2) 特許請求の範囲第1項に記載の消波装置におい
て潜函に装着する膜面1及び2を柔軟に変形させる代り
に第2図に示すように水平な版8をじゃ腹9により鉛直
に上下させる方式を用いる消波装置 (3) 特許請求の範囲第1項に記載の消波装置におい
て潜函の膜面1及び2の代りに第3図に示す版10とじ
ゃ腹12及びヒンジ11を用いる消波装置 (4) 特許請求の範囲第1項に記載の消波装置におい
て潜函の膜面1及び2の代りに第4図に示すように水平
面に版13とヒンジ14を設けまた潜函の鉛直側面に版
15とヒンジ16を設けることによって波の水平圧力の
作用をも利用して潜函内の空気容積の変化を大ならしめ
て消波効果を上昇させる消波装置 (5) 特許請求の範囲第1項に記載の消波装置におい
て第1図に示す左潜函4の膜面2の代りに第5図に示す
ように数枚の鉛直隔壁17を設けて潜函内の水面がほぼ
水平を維持し乍ら昇降することを可能とする消波装置
(1) As shown in FIG. 1, a pair of two water-tight and rigid hollow boxes 3 and 4 of substantially the same shape parallel to the traveling direction of the wave in the water area of water depth h (hereinafter referred to as The water-tight membrane surfaces 1 and 2 which can be flexibly deformed are attached to the sub-chamber. Both membrane surfaces are in the horizontal plane h'below the still water surface, and the sub-clauses are located upside down with respect to each other. i is fixed at an interval of about 1/2 of the wavelength L, and the communication tube 5 is used to allow the air in both sub-chambers to freely flow. A wave-eliminating device (2) having a function of reducing the wave height of a passing wave W traveling to the film. (2) In the wave-eliminating device according to claim 1, the film surfaces 1 and 2 to be attached to the submerged box. 2. A wave breaking device using a system of vertically moving a horizontal plate 8 vertically by a belly 9 as shown in FIG. 2 instead of flexibly deforming the plate (3) In the wave breaking device according to claim 1. A wave breaking device using a plate 10 and a belly 12 and a hinge 11 shown in FIG. 3 in place of the film surfaces 1 and 2 of the latent box (4). The wave breaking device according to claim 1, wherein As shown in FIG. 4, instead of 1 and 2, the plate 13 and the hinge 14 are provided on the horizontal plane, and the plate 15 and the hinge 16 are provided on the vertical side surface of the submarine. Wave extinction device that increases the wave extinction effect by increasing the change in air volume 5) In the wave canceling device according to claim 1, instead of the film surface 2 of the left submarine box 4 shown in FIG. 1, several vertical partition walls 17 are provided as shown in FIG. Wave-eliminating device that allows the water surface to maintain a substantially horizontal position and to move up and down
JP3085453A 1991-01-23 1991-01-23 Wave eliminating device Pending JPH07259046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085453A JPH07259046A (en) 1991-01-23 1991-01-23 Wave eliminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085453A JPH07259046A (en) 1991-01-23 1991-01-23 Wave eliminating device

Publications (1)

Publication Number Publication Date
JPH07259046A true JPH07259046A (en) 1995-10-09

Family

ID=13859304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085453A Pending JPH07259046A (en) 1991-01-23 1991-01-23 Wave eliminating device

Country Status (1)

Country Link
JP (1) JPH07259046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234002A (en) * 2013-06-14 2014-12-24 赵彦杰 Wave resistance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234002A (en) * 2013-06-14 2014-12-24 赵彦杰 Wave resistance device

Similar Documents

Publication Publication Date Title
US4522535A (en) Surf wave generator
JPH0151673B2 (en)
NO155762B (en) DEVICE FOR SIDE WAY PERFORMANCE OF A DEVICE TOOL BY A VESSEL USING A TOUGH CABLE.
JPH059037B2 (en)
SE8002884L (en) wave power
JPH07259046A (en) Wave eliminating device
EP3276615B1 (en) An acoustic device for forming a wall of sound underwater
ES473558A1 (en) Device for controlling the depth of an element towed in water
JPH0478513B2 (en)
AU2016318467B2 (en) Method of packaging and deploying marine vibrator
KR940009457B1 (en) Tide attenuator
US4284169A (en) Bubble noise reduction
JPH01142273A (en) Floating wave-removing type wave-power generating device
JPS60129313A (en) Wave spending device
JPS61122317A (en) Long wavelength type floating wave dissipating weir
JPH0711614A (en) Wave cut-off device
JPH0285410A (en) Spending caisson
SU484431A1 (en) Wave producer long waves
JPS62111006A (en) Breakwater device
JPS63233121A (en) Underground vibration-proof wall
JP2004161203A (en) Oscillation reduction device for floating structure
JPH0441214B2 (en)
Kee et al. Resonance and response of the submerged porous-membrane breakwaters in oblique seas
RU1775645C (en) Device for creating liquid stratification in experimental chute
Cherdantsev et al. Analysis of pontoon fluctuations with a seasonally changing parameter of stability on the astir surface of finite water depth