JPS63233121A - Underground vibration-proof wall - Google Patents

Underground vibration-proof wall

Info

Publication number
JPS63233121A
JPS63233121A JP30635986A JP30635986A JPS63233121A JP S63233121 A JPS63233121 A JP S63233121A JP 30635986 A JP30635986 A JP 30635986A JP 30635986 A JP30635986 A JP 30635986A JP S63233121 A JPS63233121 A JP S63233121A
Authority
JP
Japan
Prior art keywords
vibration
wall
vibration isolation
waves
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30635986A
Other languages
Japanese (ja)
Inventor
Seiji Wakamatsu
精次 若松
Hiroaki Nagaoka
長岡 弘明
Nobuaki Sakaki
榊 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Publication of JPS63233121A publication Critical patent/JPS63233121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)

Abstract

PURPOSE:To obtain an underground vibration-proof wall having excellent durability by a simplifed work i which a wall made of a swelling material, e.g., bentonite or clay is provided between a vibration-proof body and the vibration source. CONSTITUTION:On an adequate position in the direction of the vibration source 11 from a vibration-proof body 12, a vibration-proof wall 2 made of a swelling material such as bentonite or volcanic clay, having a thickness of about 0.8m, is constructed. An upper cover 3 is attached at almost the same level as the ground's surface 1b to the upside of the wall 2. Waves 13 from the source 11 are partly reflected on the wall 2 and partly absorbed by the inside of the wall 2. Only the remaining weal waves 13a reach the vibration-proof body 12.

Description

【発明の詳細な説明】 この発明は例えは地盤を伝播する振動を遮断する池中壁
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to, for example, a pond wall that blocks vibrations propagating through the ground.

〔従来の技術〕[Conventional technology]

従来の地盤振動遮断用の地中壁(以下防振壁と称する)
としては以下のものかある。
Conventional underground walls for ground vibration isolation (hereinafter referred to as vibration isolation walls)
Some of them are as follows.

(1)地表より一定の深さと幅を有する空溝、(2)こ
の空溝に発泡スチロール等発泡材料を入れた壁、(3)
コンクリート壁、(4)鋼壁(鋼矢板壁を含む)、(5
)発泡材料とコンクリートの複合壁、(61tii!矢
板に発泡打算振動遮断材(ゴム等を含む)をはりつけた
壁、(7)乾燥砂を防振材に用いた壁、(8)空気袋を
空溝に詰めた壁などである。
(1) A trench with a certain depth and width from the ground surface, (2) A wall filled with foam material such as Styrofoam in this trench, (3)
Concrete wall, (4) Steel wall (including steel sheet pile wall), (5
) Composite wall of foam material and concrete, (61tii! Wall with foam vibration isolation material (including rubber, etc.) attached to sheet pile, (7) Wall using dry sand as vibration isolation material, (8) Air bag This is a wall filled in a hollow trench.

以上の防振壁の振動遮断の原理は、隣接する媒質の波動
のインピーダンスρ■(ρは媒質の密度、■は振動の伝
播速度)の差による波動の反射の性質を利用したもので
ある。
The above-mentioned principle of vibration isolation by vibration isolation walls utilizes the property of wave reflection due to the difference in wave impedance ρ■ (ρ is the density of the medium, and ■ is the vibration propagation speed) of adjacent media.

従って、波動の反射の割合が大きいこと、換云すれは波
動の透過量の少ない材料と壁厚を選らべはよい。
Therefore, it is better to choose a material and wall thickness that has a large proportion of wave reflection, or in other words, a material and wall thickness that has a small amount of wave transmission.

防振壁で反射した波動は、地盤の水平方向あるいは鉛直
方向に伝播し逸散していく。防振壁の謀さは有限である
ため、鉛直方向に伝播した波動の一部は、防振壁の下端
より下方の地盤で回折してまわり込み、防振壁に対して
振動源と反対側の地盤に達し、その地表面に達する波動
の成分もある。
Waves reflected by vibration isolation walls propagate horizontally or vertically to the ground and are dissipated. Since the width of the vibration isolation wall is finite, some of the waves propagated in the vertical direction will be diffracted at the ground below the lower end of the vibration isolation wall and will go around the vibration isolation wall on the opposite side of the vibration source. There is also a wave component that reaches the ground and reaches the ground surface.

このように、防振壁に対して振動源と反対側に伝播する
波動は、防振壁を透過する波動と、防振壁の下端から廻
り込む波動の和である。
In this way, the waves that propagate to the opposite side of the vibration isolation wall from the vibration source are the sum of the waves that pass through the vibration isolation wall and the waves that go around from the lower end of the vibration isolation wall.

防振壁の下端から回折してまわり込む波動は、防振壁の
深さを必要な深さにとることによって低減できる。つま
り、防振壁を深くすることによって、防振壁下端からま
わり込む波動の多くの成分は地中下方遠方に逸散させ、
地表近くに下方から伝播してくる波動の成分を減少させ
ることかできるのである。
Waves diffracted from the lower end of the vibration isolation wall can be reduced by making the vibration isolation wall as deep as necessary. In other words, by deepening the vibration isolation wall, many of the components of the waves that wrap around from the bottom of the vibration isolation wall are dissipated far below the ground.
It is possible to reduce the wave component that propagates from below near the earth's surface.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

上記のような従来の地中防振壁においては以下に示すよ
うな問題かあった。
The conventional underground vibration isolation walls as described above have the following problems.

空溝は、水や空気以外に波動を伝える媒体は存在しない
ため、防振壁を透過する波動は無視てきるほど小さく、
波動の反射を利用した防振壁としては最も効果のあるも
のである。しかし、十分な防振効果を得ようとすれば、
防振壁の深さを、遮断しようとする波動の波長程度にと
らなけれはならない。空溝の壁面は深くなるほと崩落し
ゃすく、長い期間にわたって空溝を維持することは不可
能である。矢板壁等で空溝を維持しようとしても、土庄
のため、横梁を挿入する必要か生しるなと、実質的に空
(jiを構成することはむつかしい。
Since there is no medium for transmitting waves other than water and air in the air groove, the waves that pass through the vibration isolation wall are so small that they can be ignored.
This is the most effective anti-vibration wall that utilizes wave reflection. However, if you want to obtain a sufficient anti-vibration effect,
The depth of the vibration isolation wall must be approximately equal to the wavelength of the wave to be blocked. The deeper the wall of the trench, the more likely it is to collapse, making it impossible to maintain the trench for a long period of time. Even if an attempt was made to maintain the hollow groove with sheet pile walls, etc., it would be difficult to construct a hollow (ji), as it would be necessary to insert cross beams due to the tonosho.

発泡スヂロール等発泡材料を用いた防振壁は、防振材料
の比重が1よりかなり小さいため、地下水かある場合は
、浮力で防振材料か浮上かってしまう。地盤にアンカー
をとるとしても、材料の強度か小さいため、そわはむつ
かしい。また壁か深くなるに従い。土圧に耐えられない
なと実現するにはf重々の問題かある。
In vibration isolation walls made of foamed material such as expanded foam, the specific gravity of the vibration isolation material is much lower than 1, so if there is groundwater, the vibration isolation material will float to the surface due to buoyancy. Even if an anchor is placed in the ground, it is difficult to loosen it due to the strength of the material. Also, as the wall gets deeper. There are many problems in realizing that it cannot withstand the earth pressure.

コンクリ−ト壁は波動が防振壁を透過するため必要な防
振効果は得られない。
Concrete walls do not provide the necessary vibration isolation effect because waves pass through the vibration isolation wall.

これは、無限地盤に防振壁がある場合の波動の伝達率で
(τ−透過波動の振幅/入射波動の振幅)を求める次の
式から得られる。
This can be obtained from the following equation, which calculates the wave transmissibility (τ - amplitude of transmitted wave/amplitude of incident wave) when there is a vibration isolation wall on infinite ground.

τ= 4α/((1+α)’+(1−α)4−2(1−
α2)2cos4 yr fll/v2) l/2− 
(1)ここにα−ρ2v2/ρ、V、 、 H防振壁厚
、f 振動数、pl 、地盤密度、Vl 、地盤を伝わ
る波動の速度5 p2 防振壁材料の密度、V2 ・防
振壁材料を伝わる波動の速度である。
τ= 4α/((1+α)'+(1-α)4-2(1-
α2)2cos4 yr flll/v2) l/2-
(1) Here α-ρ2v2/ρ, V, , H vibration isolation wall thickness, f frequency, pl, ground density, Vl, velocity of wave propagating through the ground 5 p2 density of vibration isolation wall material, V2 ・Vibration isolation It is the speed of waves traveling through the wall material.

例えば、幅50Cmのコンクリ−1・壁で、10Hzの
場合 で=092である。
For example, in the case of a concrete wall with a width of 50 cm and a frequency of 10 Hz, the value is 092.

鋼壁は波動の多くが透過するため、十分な防振効果は得
られない。例えば幅5cmの鋼の場合10Hzで伝達率
は(1)式によると て=0.995である。
Since steel walls allow most of the wave motion to pass through them, sufficient vibration isolation effects cannot be achieved. For example, in the case of steel with a width of 5 cm, the transmissibility at 10 Hz is 0.995 according to equation (1).

発泡材料とコンクリ−1・の複合壁は比重か1より小さ
い発泡44 KEIの重しの役目をはたずために採用さ
れたものである。コンクリートの防振効果は前述のよう
に期待できない。十分な防振効果を得るためには、発泡
材料のヤング率を小さなものとしなければならないか、
そのとき、発泡材料は土圧にたえられなくなる欠点があ
る。
The composite wall of foamed material and concrete 1.0 was adopted to serve as a weight for the foamed 44 KEI, which has a specific gravity of less than 1. As mentioned above, the anti-vibration effect of concrete cannot be expected. In order to obtain sufficient vibration damping effect, the Young's modulus of the foam material must be small.
At that time, the foam material has the disadvantage of not being able to withstand earth pressure.

鋼矢板に発泡打算振動遮断材をはりつけた壁の欠点は発
泡材料とコンクリートの複合壁の場合と同様である。
The disadvantages of walls made of steel sheet piles with foam vibration isolators are the same as those of foam and concrete composite walls.

乾燥砂を防振月に用いた防振壁は、防振材のヤング率と
密度は地盤と同様な値となるため、波動の反射による防
振効果は無視できる程小さい。この防振壁は乾燥砂の内
部摩擦による減衰を防振の原理として用いていると思わ
れる。
In a vibration isolation wall using dry sand for the vibration isolation material, the Young's modulus and density of the vibration isolation material are similar to those of the ground, so the vibration isolation effect due to wave reflection is negligible. This vibration isolation wall seems to use damping due to the internal friction of dry sand as the principle of vibration isolation.

この内部減衰は地盤の動的なひずみの大ぎさによって変
化することは良く知られた事実である。
It is a well-known fact that this internal damping changes depending on the magnitude of dynamic strain in the ground.

一般にそのひずみか大きくなると、内部減衰は増大する
。ここで防振材として用いている乾燥砂も地盤と同様と
考えることができる。実際の地盛振動時の地盤のひずみ
はきわめて小さい(10−6〜io−’程度)ため、そ
の内部減衰も小さく、乾燥砂による防振壁の有効な効果
は見込めない。
Generally, as the strain increases, internal damping increases. The dry sand used here as a vibration isolator can be considered to be the same as the ground. Since the strain in the ground during actual ground vibration is extremely small (approximately 10-6 to io-'), the internal damping is also small, and no effective effect of vibration isolation walls made of dry sand can be expected.

空気袋を空溝に詰めた壁は、空気は密度か小さいため、
空気袋は非常に軽いものとなる。防振壁は、交通振動等
一般に振動公害て問題になる振動数に対しては10m以
上の深さが必要となる。その場合防振壁中に地下水が存
在することになる。
A wall filled with air bags in an empty groove has a low density, so
The air bladder will be very light. The vibration isolation wall needs to have a depth of 10 m or more for vibration frequencies that generally cause problems due to vibration pollution, such as traffic vibration. In that case, groundwater will exist within the vibration isolation wall.

地下水が存在すると空気袋は浮力で浮上ることになる。If groundwater is present, the air bladder will float due to buoyancy.

浮力に打ち勝つ程の重しをつけると防振効果がなくなる
等の欠点をもつ。また袋材の劣化などにより、それにビ
ンポール程度の穴がおいても中の空気か抜けてしまい、
全く防振効果がなくなるなど耐久性にも問題かある。
If weight is added to overcome the buoyancy, the anti-vibration effect will be lost. Also, due to deterioration of the bag material, even if a hole the size of a bottle pole is made, the air inside will still escape.
There are also problems with durability, such as the lack of anti-vibration effects.

(問題点を解決するための手段) この発明に係る地中防振壁においては、防振体と振動源
の間にヘントナイトなどの膨潤性月料から成る壁面を設
けたものである。
(Means for Solving the Problems) In the underground vibration isolation wall according to the present invention, a wall surface made of a swellable material such as hentonite is provided between the vibration isolation body and the vibration source.

〔作用] この発明においては振動源から発した波動は防振壁によ
って反oJされることの他に防振壁を構成するベントナ
イトなどの膨潤性を有する材料によって吸収される。
[Function] In the present invention, waves emitted from a vibration source are not only reflected by the vibration isolation wall, but also absorbed by a swelling material such as bentonite that constitutes the vibration isolation wall.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の地中防振壁の断面図であ
る。図において、1は振動源11が存在する地盤、1a
は防振体12か存在する地盤、1bは地表面、2は厚さ
か0.8mのヘントナイト材又はポルクレイ(Vol、
clay)から成る防振壁、3は地表面1bとほとんど
同一面上で防振壁2の」二部に設C′)た上蓋、13.
13aは波動の移動方向を示す矢印である。
FIG. 1 is a sectional view of an underground vibration isolation wall according to an embodiment of the present invention. In the figure, 1 is the ground where the vibration source 11 exists, 1a
is the ground where the vibration isolator 12 exists, 1b is the ground surface, and 2 is the hentonite material or polclay with a thickness of 0.8 m (Vol.
13. An anti-vibration wall made of clay;
13a is an arrow indicating the moving direction of the wave.

次にこの動作について説明する。今、防振体12と振動
源11の間に防振壁2を設ければ、振動源11より発し
た波動は矢印】3の方向に進み防振壁2によって一部反
射されると共に他の一部は内部に吸収され残りは弱まっ
て矢印13aから防振体12に到達する。
Next, this operation will be explained. Now, if the vibration isolation wall 2 is provided between the vibration isolation body 12 and the vibration source 11, the waves emitted from the vibration source 11 will proceed in the direction of arrow ]3 and will be partially reflected by the vibration isolation wall 2, while others will be A part is absorbed inside, and the rest weakens and reaches the vibration isolator 12 from the arrow 13a.

第2図、第3図2第4図はヘンI・ナイトを防振壁2の
主材として用いた場合の効果を示すシュミレーション線
図である。図において縦軸は防振壁の振動の伝達率(π
)を、横軸は振動の周波数(Hz)を示す。
FIGS. 2, 3, 2 and 4 are simulation diagrams showing the effect when Hen I Knight is used as the main material of the vibration isolation wall 2. In the figure, the vertical axis is the vibration transmissibility of the vibration isolation wall (π
), and the horizontal axis indicates the vibration frequency (Hz).

ここて伝達率π−(防振壁透過後の振動振幅/防振壁へ
入射前の振動の振幅)で表される。
Here, the transmissibility is expressed as π-(vibration amplitude after passing through the vibration isolation wall/amplitude of vibration before entering the vibration isolation wall).

第2〜4図の伝達率は、−次元の波動方程式を解いて求
めたものである。従って、防振壁2の深さは無限大の場
合に対応する。実際の防振壁2は有限の深さであるか、
その深さは、防振壁2の下端からまわりこんて伝わる波
動が無視てきる程度の深さをとれはよい。
The transmissibility shown in FIGS. 2 to 4 was obtained by solving a -dimensional wave equation. Therefore, the depth of the vibration isolation wall 2 corresponds to an infinite case. Does the actual vibration isolation wall 2 have a finite depth?
The depth should be such that the waves traveling around from the lower end of the vibration isolation wall 2 can be ignored.

この実bfU例の地盤定数は、ヤング率E=7900t
f/m2.単位体積重量1.st7m3.ポアソン比シ
=0.494.減衰定数h=0.03である。防振材と
して用いたベントナイトの定数はE=lOH/m2 (
第2図)、100tf/m2 (第3図)、200tf
/m2 (第4図)、単位体積重fi+ 、  65 
t; f 7m3ポアソン比ν=0.48.減衰定数h
=0.03である。
The ground constant of this real bfU example is Young's modulus E = 7900t
f/m2. Unit volume weight 1. st7m3. Poisson's ratio = 0.494. Attenuation constant h=0.03. The constant of bentonite used as a vibration isolator is E=lOH/m2 (
Figure 2), 100tf/m2 (Figure 3), 200tf
/m2 (Fig. 4), unit volume weight fi+, 65
t; f 7m3 Poisson's ratio ν=0.48. damping constant h
=0.03.

交通振動筒一般に振動公害として問題になる振動数は3
〜301−1 z程度である。また、振動の低減量とし
て最低2dB(伝達率で078)必要とされている。こ
れらの条件を満すものとして、防振材どしたヘントナイ
]・のヤング率E=200tf/m2以下のものか必要
となる。
Traffic vibration cylinders generally have a vibration frequency of 3 that causes problems as vibration pollution.
~301-1z. In addition, a minimum amount of vibration reduction of 2 dB (078 in terms of transmission rate) is required. In order to satisfy these conditions, it is necessary that the vibration damping material has a Young's modulus E of 200 tf/m2 or less.

2dB以上の低減Nは人体の感覚からどうしても必要と
されるものである。
A reduction N of 2 dB or more is absolutely necessary from the human body's senses.

第2図、第3図、第4図において、P波(縦波)とS波
(横波)の伝達率(π)か振動数(Hz)の変化と共に
興味深い効果を示している。
2, 3, and 4 show interesting effects with changes in the transmissibility (π) or frequency (Hz) of P waves (longitudinal waves) and S waves (transverse waves).

この事実から地中防振壁2の厚さを適当に選び防振効果
を向上させることか出来る。
From this fact, it is possible to improve the vibration isolation effect by appropriately selecting the thickness of the underground vibration isolation wall 2.

又防振壁2を設けるに当って深い溝を開削すれば壁面の
崩壊と地下水の進出を受けることが多い、幸いにもヘン
]・ナイトは防水効果を有するのみならず膨潤圧γによ
って此の対策を兼ねることか出来る。
Furthermore, if a deep groove is excavated when installing the vibration isolation wall 2, the wall surface often collapses and underground water infiltrates.Fortunately, hen]-night not only has a waterproof effect, but also has a swelling pressure γ that prevents this. It is possible to take countermeasures.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、防振体と振動源の間に溝
を設り、この714の中にヘントナイト相又は膨潤性の
材料(Volclay)を挿入した地中防振壁としたの
で、振動源より発した有害な振動を反射したり吸収して
防振体に達する振動エネルギーを抑制する効果かある。
As explained above, this invention is an underground vibration isolation wall in which a groove is provided between the vibration isolator and the vibration source, and a hentonite phase or a swellable material (Volclay) is inserted into this groove. It has the effect of suppressing the vibration energy that reaches the vibration isolator by reflecting or absorbing harmful vibrations emitted from the source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の断面図、第2図はこの発
明の防振壁のヤング率E=+Otf/m2としたときの
防振効果を示したシュミレーション線図、第3図はこの
発明の防振壁のヤング率E−100tf/m2としたと
きの効果を示したシュミレーション線図、第4図はこの
発明の防振壁のヤング率E=200tf/m2としたと
きの効果を示したシュミレーション線図である。 図において1.〕aは地盤、1bは地表面、2は地中防
振壁、3は上蓋、11は振動源、12は防振体、13は
波動の進行方向を示す矢印である。 なお各図中、同一符号は同−又は相当部分を示ず。
Figure 1 is a sectional view of an embodiment of the present invention, Figure 2 is a simulation diagram showing the vibration isolation effect when Young's modulus E = +Otf/m2 of the vibration isolation wall of this invention, and Figure 3 is A simulation diagram showing the effect when the Young's modulus of the vibration isolation wall of this invention is set to E-100 tf/m2, and FIG. 4 is a simulation diagram showing the effect when the Young's modulus of the vibration isolation wall of this invention is set to E=200 tf/m FIG. 3 is a simulation diagram shown in FIG. In the figure 1. ] a is the ground, 1b is the ground surface, 2 is the underground vibration isolation wall, 3 is the upper cover, 11 is the vibration source, 12 is the vibration isolator, and 13 is an arrow indicating the direction of wave motion. In each figure, the same reference numerals do not indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 防振体と振動源の間にベントナイトなどの膨潤性材料か
ら成る壁面を設けたことを特徴とする地中防振壁。
An underground vibration isolation wall characterized by providing a wall surface made of a swellable material such as bentonite between a vibration isolation body and a vibration source.
JP30635986A 1986-10-31 1986-12-24 Underground vibration-proof wall Pending JPS63233121A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-258473 1986-10-31
JP25847386 1986-10-31

Publications (1)

Publication Number Publication Date
JPS63233121A true JPS63233121A (en) 1988-09-28

Family

ID=17320710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30635986A Pending JPS63233121A (en) 1986-10-31 1986-12-24 Underground vibration-proof wall

Country Status (1)

Country Link
JP (1) JPS63233121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032712A (en) * 2009-07-31 2011-02-17 Shimizu Corp Foundation structure
JP2012031662A (en) * 2010-07-30 2012-02-16 Shimizu Corp Ground displacement absorbing base isolation structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032712A (en) * 2009-07-31 2011-02-17 Shimizu Corp Foundation structure
JP2012031662A (en) * 2010-07-30 2012-02-16 Shimizu Corp Ground displacement absorbing base isolation structure

Similar Documents

Publication Publication Date Title
DK3051026T3 (en) DEVICE FOR DAMPING AND DISTRIBUTING HYDRAULIC SOUND IN A LIQUID
US9607601B2 (en) Underwater noise abatement panel and resonator structure
JP2980604B1 (en) Vibration isolation foundation structure of building and its construction method
CN110273438A (en) A kind of step type vibration isolation ditch barrier and preparation method thereof
JPH059037B2 (en)
JPS63233121A (en) Underground vibration-proof wall
JPS63114726A (en) Underground vibration-insulating wall
JP2015078577A (en) Vibration proof underground wall and sandbag for the same
JP7245196B2 (en) Underwater noise suppression composition, manufacturing method thereof, underwater noise suppression structure and underwater noise suppression method using the same
RU2713837C1 (en) Device for protection of buildings or structures against buried explosions
JPS5818486B2 (en) How to build a vibration isolation wall
JPS6397726A (en) Underground vibration-insulating wall
JP4278135B2 (en) Anti-vibration structure of ground and its construction method
JP7410833B2 (en) Underwater noise reflection/absorption structure, underwater noise suppression structure, and underwater noise suppression method
JPS6397727A (en) Underground vibration-insulating wall
US11993907B2 (en) Device for damping and scattering hydrosound in a liquid
JP2004124548A (en) Pile foundation, underground wall structure, and construction method
JP2004100286A (en) Floor slab structure and block for use therein
JP3555054B2 (en) Construction method of anti-vibration and soundproof underground wall
JP2010229742A (en) Improved ground
JPH11200360A (en) Vibrationproof wall and construction thereof
JP3530725B2 (en) Underground vibration isolation wall structure of building
JPH02157320A (en) Banking structure
JPS6397728A (en) Underground vibration-insulating wall
CN109537639A (en) Furrow width gradual change type shock insulation ditch