JP2012031662A - Ground displacement absorbing base isolation structure - Google Patents

Ground displacement absorbing base isolation structure Download PDF

Info

Publication number
JP2012031662A
JP2012031662A JP2010173015A JP2010173015A JP2012031662A JP 2012031662 A JP2012031662 A JP 2012031662A JP 2010173015 A JP2010173015 A JP 2010173015A JP 2010173015 A JP2010173015 A JP 2010173015A JP 2012031662 A JP2012031662 A JP 2012031662A
Authority
JP
Japan
Prior art keywords
underground
bentonite
seismic isolation
ground
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010173015A
Other languages
Japanese (ja)
Other versions
JP5747458B2 (en
Inventor
Shiko Cho
至鎬 張
Takeyoshi Fukutake
毅芳 福武
Taku Ishii
卓 石井
Hiroyuki Kimata
宏之 木全
Shinichi Nishimura
晋一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010173015A priority Critical patent/JP5747458B2/en
Publication of JP2012031662A publication Critical patent/JP2012031662A/en
Application granted granted Critical
Publication of JP5747458B2 publication Critical patent/JP5747458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground displacement absorbing base isolation structure in which prolonged stability of an underground base isolation wall is secured and stress acting on an underground structure such as an open-cut tunnel at the time of an earthquake is reduced.SOLUTION: The present invention is an underground base isolation wall 4 which has a continuous wall structure made of a clay-based material with a water swelling property and is placed between an underground structure 2 and the surrounding ground. The underground base isolation wall 4 has a width D of 0.2 to 2.5 m and is made of the clay-based material which is a mixture of bentonite and water having a bentonite effective dry density of 300 to 1200 kg/min a region filled with the mixture.

Description

本発明は、地震時の開削トンネルなどの地中構造物への応力低減を図るための地盤変位吸収免震構造に関する。   The present invention relates to a ground displacement absorbing base isolation structure for reducing stress on underground structures such as open tunnels during an earthquake.

従来、開削トンネルなどの地中構造物への地震時の応力低減を目的とした地中免震壁として、地中構造物に接する形で延長方向に連続的に設置することが一般的であり、この設置位置であれば、地中構造物の建設時に同時に構築することができる。このような地震時の地中構造物への応力低減を目的とする地中免震壁として、ポリマー改良土を打設した地盤変位吸収工法が例えば特許文献1に提案されている。   Conventionally, as an underground seismic isolation wall for the purpose of reducing stress during earthquakes to underground structures such as open tunnels, it has been common to install continuously in the extending direction in contact with the underground structure If it is this installation position, it can be constructed simultaneously with the construction of the underground structure. For example, Patent Document 1 proposes a ground displacement absorbing method in which polymer improved soil is cast as an underground seismic isolation wall for the purpose of reducing stress on underground structures during an earthquake.

一方、開削トンネルなどの地中構造物に対する地中免震壁として、地中構造物の延長方向に連続的に設置しない構造のものが例えば非特許文献1に開示されている。この非特許文献1では、地中に鉛直円柱状のポリマー改良土を地中構造物に沿って飛び飛びに断続的に配置している。   On the other hand, Non-Patent Document 1, for example, discloses an underground seismic isolation wall for an underground structure such as an open-cut tunnel that is not continuously installed in the extending direction of the underground structure. In this nonpatent literature 1, the vertical cylinder-shaped polymer improvement soil is intermittently arrange | positioned in the ground along the underground structure.

特開2006−112182号公報JP 2006-112182 A

室野剛隆、館山勝、桐生郷史、小林正介著、「ポリマー免震壁による既設開削トンネルの補強」、基礎工、2007.3、P69−71Tsuyoshi Murono, Masaru Tateyama, Fumi Kiryu, Shosuke Kobayashi, “Reinforcement of existing excavated tunnels with polymer seismic isolation walls”, Foundation work, 2007.3, P69-71

しかしながら、従来の地中免震壁では、以下のような問題があった。
すなわち、特許文献1で開示されるようなポリマー改良土を打設する工法では、常時の土圧などの影響によりポリマー免震材が大きく圧縮変形する。そのため、施工時に設定した所定の地中免震壁の壁厚は、初期の壁厚を長期的に保持できず、場合によっては免震壁が潰れてしまう懸念があった。このような免震壁厚の変化は、ポリマー材免震壁の変位吸収性能が低下して地中免震壁による地盤変位吸収効果が十分に発揮されず、地震時の地中構造物の応力低減効果が低下するという問題があった。
However, the conventional underground seismic isolation wall has the following problems.
That is, in the construction method for placing the polymer improved soil as disclosed in Patent Document 1, the polymer seismic isolation material is greatly compressed and deformed due to the influence of normal earth pressure and the like. Therefore, the wall thickness of the predetermined underground seismic isolation wall set at the time of construction cannot maintain the initial wall thickness for a long time, and there is a concern that the seismic isolation wall may be crushed in some cases. Such a change in the thickness of the base isolation wall is caused by a decrease in the displacement absorption performance of the polymer base isolation wall, and the effect of absorbing the ground displacement by the underground base isolation wall is not fully exhibited. There was a problem that the reduction effect was reduced.

この対応として、地中免震壁を開削トンネルなどの地中構造物に沿って連続的に配置することを避け断続的な配置とした非特許文献1が検討される。しかし、連続して配置されない地中免震壁では、周辺地盤と構造物とが土で繋がっているため、本来の目的である変位を十分に吸収するという免震効果が著しく低下するという欠点があった。
また、ポリマー材は、地下水位が存在する地盤においては、ポリマー材が水に溶けてしまうため、施工が容易ではないという問題もあった。さらに、ポリマー免震材には、所定の加強剤を添加しなければならないが、環境上の配慮から高価な加強剤が必要とされ、コストがかかるという問題があった。
As a countermeasure, Non-Patent Document 1 is considered in which the underground seismic isolation wall is intermittently arranged so as to avoid the continuous arrangement along underground structures such as open tunnels. However, in the seismic isolation walls that are not arranged continuously, the surrounding ground and the structure are connected by soil, so that the seismic isolation effect of sufficiently absorbing the original displacement is significantly reduced. there were.
Moreover, since the polymer material is dissolved in water in the ground where the groundwater level exists, there is a problem that the construction is not easy. Furthermore, although a predetermined reinforcing agent must be added to the polymer seismic isolation material, there is a problem that an expensive reinforcing agent is required for environmental considerations and costs are increased.

このように、開削トンネルのような地中構造物に沿って地中免震壁を設ける場合には、地中免震壁に作用する土圧に対して十分に抵抗でき長期的安定性が確保できる材料である一方で、免震効果を発揮するためには、材料の剛性が小さいことが望ましいとされ、この両者がバランスよく設けられる地中免震壁が求められており、その点で改良の余地があった。   In this way, when an underground seismic isolation wall is provided along an underground structure such as an open-cut tunnel, it can sufficiently resist the earth pressure acting on the underground isolation wall and ensure long-term stability. On the other hand, in order to exert the seismic isolation effect, it is desirable that the material has low rigidity, and there is a need for an underground seismic isolation wall that provides a good balance between the two. There was room for.

本発明は、上述する問題点に鑑みてなされたもので、地中免震壁の長期安定性を確保できるうえ、地震時の開削トンネルなどの地中構造物への応力低減を図ることができる地盤変位吸収免震構造を提供することを目的とする。   The present invention has been made in view of the above-described problems. In addition to ensuring the long-term stability of the underground seismic isolation wall, it is possible to reduce stress on underground structures such as an open tunnel during an earthquake. The purpose is to provide a ground displacement absorbing base isolation structure.

上記目的を達成するため、本発明に係る地盤変位吸収免震構造では、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中免震壁を設置することを特徴としている。   In order to achieve the above object, in the ground displacement absorbing structure according to the present invention, a continuous wall-shaped underground seismic isolation wall made of a clay-based material having water absorption and swelling is installed between the surrounding ground and the structure. It is characterized by doing.

本発明では、地中免震壁が吸水膨潤性を有する粘土系材料から構成され、その材料の吸水膨潤性より土圧に対して反発して膨張するので、材料の周囲の地盤から受ける常時の土圧に抵抗でき、地中免震壁の壁幅を一定に保つことができ、長期安定性を確保できるとともに、材料密度変化の安定性に優れる。
そして、粘土系材料は周囲の地盤に比べて剛性を小さく設定することができるので、地震時の地盤の変形を緩和することで、免震効果を発揮することができる。
In the present invention, the underground seismic isolation wall is composed of a clay-based material having water-absorbing swellability, and expands in response to soil pressure due to the water-absorbing swellability of the material, so It can resist earth pressure, keep the wall width of underground seismic isolation walls constant, ensure long-term stability, and excel in stability of material density change.
And since clay system material can set rigidity small compared with the surrounding ground, a seismic isolation effect can be exhibited by relieving the deformation of the ground at the time of an earthquake.

また、本発明に係る地盤変位吸収免震構造では、地中免震壁の壁幅は、0.2〜2.5mであることが好ましい。
本発明では、地中免震壁の壁幅が0.2〜2.5mの範囲であれば、せん断力低減率(地中免震壁を設けた場合の地中構造物に生じるせん断力を地中免震壁が無い場合の地中構造物に生じるせん断力で除した値)が1より小さくなり、地中構造物に生じるせん断力を低減する効果がある。これは、鉛直円柱状のポリマー改良土を地中に飛び飛びに配置して施工した場合の従来のポリマー工法よりも対策範囲(地中免震壁を配置する平面領域)が小さくなることから、大きな低減効果を得ることができ、コストダンウンを図ることも可能となる。
Moreover, in the ground displacement absorption seismic isolation structure according to the present invention, the wall width of the underground seismic isolation wall is preferably 0.2 to 2.5 m.
In the present invention, if the wall width of the underground seismic isolation wall is in the range of 0.2 to 2.5 m, the shear force reduction rate (the shear force generated in the underground structure when the underground isolation wall is provided) The value divided by the shear force generated in the underground structure when there is no underground seismic isolation wall) is smaller than 1, which has the effect of reducing the shear force generated in the underground structure. This is because the range of countermeasures (planar area where underground seismic isolation walls are located) is smaller than the conventional polymer method when vertical cylindrical polymer improved soil is placed in the ground. A reduction effect can be obtained and cost reduction can be achieved.

また、本発明に係る地盤変位吸収免震構造では、周辺地盤と地中免震壁の粘土系材料のせん断波速度比は、0.6以下であることが好ましい。
この場合、周辺地盤よりも著しくせん断剛性が小さく、柔らかい部材を用いる必要がないので、材料の設計が容易になるという利点がある。
Further, in the ground displacement absorbing base isolation structure according to the present invention, the shear wave velocity ratio of the clay-based material of the surrounding ground and the underground base isolation wall is preferably 0.6 or less.
In this case, the shear rigidity is remarkably smaller than that of the surrounding ground, and it is not necessary to use a soft member.

また、本発明に係る地盤変位吸収免震構造では、粘土系材料は、ベントナイトと水の混合物であることが好ましい。
また、本発明に係る地盤変位吸収免震構造では、粘土系材料は、ベントナイトと骨材と水との混合物であってもよい。
本発明では、ベントナイトの吸水膨張特性を十分に活用することから、地下水位が高い地盤環境下においても施工が容易である。そして、地下水位が低くても地盤が乾燥していなければ、ベントナイトは自らの吸水膨潤性を発揮して構築時に保水した水を保持し続けるので、乾燥によって剛性が変化することはなく、地下水位が低くても機能が失われることはない。また、ベントナイトは吸水膨張する特性を有しており、ひび割れや何らかの損傷が生じたとしても、地下水が浸透してくる条件下ではその損傷を自己修復することができ、連続体としての特長を保護しつつ周囲の地盤からの土圧によって地中免震壁の壁幅が減少することがない利点がある。
Moreover, in the ground displacement absorption seismic isolation structure according to the present invention, the clay-based material is preferably a mixture of bentonite and water.
Moreover, in the ground displacement absorption seismic isolation structure according to the present invention, the clay-based material may be a mixture of bentonite, aggregate, and water.
In the present invention, since the water absorption and expansion characteristics of bentonite are fully utilized, the construction is easy even in a ground environment where the groundwater level is high. And even if the groundwater level is low, if the ground is not dry, bentonite will exhibit its water absorption swellability and keep the water retained at the time of construction, so the rigidity does not change due to drying, and the groundwater level Even if it is low, the function is not lost. In addition, bentonite has the property of absorbing and expanding, and even if cracking or some damage occurs, it can self-repair under conditions where groundwater penetrates, protecting the features as a continuum. However, there is an advantage that the wall width of the underground seismic isolation wall does not decrease due to earth pressure from the surrounding ground.

また、本発明に係る地盤変位吸収免震構造では、粘性土系材料におけるベントナイトと水の混合物からなる材料で満たされている領域は、ベントナイト有効乾燥密度で300〜1200kg/mであることがより好ましい。
また、本発明に係る地盤変位吸収免震構造では、粘性土系材料におけるベントナイトと骨材と水の混合物からなる材料において、ベントナイトと水で満たされている領域は、ベントナイト有効乾燥密度で300〜1200kg/mであることがより好ましい。
本発明では、吸水膨潤圧が0.03〜0.3MPaとなるため、地盤の水中質量を約1g/cmと仮定して、側方土圧が土被り圧の1倍とすると、深さ30mまでの土圧に耐えることができる。また、地中免震壁の設置する深さに応じて、材料のベントナイト有効乾燥密度を適宜調整して構築することでより効果的な地中免震壁を設けることができる。
Moreover, in the ground displacement absorption seismic isolation structure according to the present invention, the region filled with a material composed of a mixture of bentonite and water in the viscous earth material is 300 to 1200 kg / m 3 in terms of an effective dry density of bentonite. More preferred.
Moreover, in the ground displacement absorption seismic isolation structure according to the present invention, in a material composed of a mixture of bentonite, aggregate, and water in a viscous earth-based material, the region filled with bentonite and water has a bentonite effective dry density of 300 to More preferably, it is 1200 kg / m 3 .
In the present invention, since the water absorption swelling pressure is 0.03 to 0.3 MPa, it is assumed that the soil underwater mass is about 1 g / cm 3, and the lateral earth pressure is 1 times the earth covering pressure. It can withstand earth pressure up to 30m. In addition, a more effective underground seismic isolation wall can be provided by appropriately adjusting the bentonite effective dry density of the material according to the depth at which the underground isolation wall is installed.

本発明の地盤変位吸収免震構造によれば、地中免震壁を構成する粘土系材料が吸水膨潤性を有し、周囲の地盤から受ける常時の土圧に抵抗でき、地中免震壁の壁幅を一定に保つことができることから、長期安定性を確保できる。そのうえ、地震時の開削トンネルなどの地中構造物への応力低減を図ることができる効果を奏する。   According to the ground displacement absorbing base isolation structure of the present invention, the clay-based material constituting the underground seismic isolation wall has water-absorbing swell, can resist normal earth pressure received from the surrounding ground, and the underground seismic isolation wall Since the wall width can be kept constant, long-term stability can be ensured. In addition, it has the effect of reducing stress on underground structures such as open tunnels during an earthquake.

本発明の実施の形態による地盤変位吸収免震構造の地中免震壁の一例を模式的に示した概略斜視図である。It is the schematic perspective view which showed typically an example of the underground seismic isolation wall of the ground displacement absorption seismic isolation structure by embodiment of this invention. ベントナイト有効乾燥密度と膨潤圧の関係を示す図である。It is a figure which shows the relationship between a bentonite effective dry density and swelling pressure. ベントナイト配合による混合物の三軸試験結果を示す図である。It is a figure which shows the triaxial test result of the mixture by a bentonite mixing | blending. 動的三軸圧縮試験装置で求めたベントナイト繰返し非線形特性(応力−ひずみ関係)を示す図である。It is a figure which shows the bentonite repetitive nonlinear characteristic (stress-strain relationship) calculated | required with the dynamic triaxial compression test apparatus. 実施例による地中免震壁の解析モデルを示す図である。It is a figure which shows the analysis model of the underground seismic isolation wall by an Example. 実施例による解析結果を示す図であって、地中免震壁の壁幅とせん断力低減率の関係を示す図である。It is a figure which shows the analysis result by an Example, Comprising: It is a figure which shows the relationship between the wall width of an underground seismic isolation wall, and a shear-force reduction rate. 実施例による解析結果を示す図であって、地盤のせん断波速度比とせん断力低減率の関係を示す図である。It is a figure which shows the analysis result by an Example, Comprising: It is a figure which shows the relationship between the shear wave velocity ratio of a ground, and a shear force reduction rate. 実施例による解析結果を示す図であって、地中構造物からの距離とせん断力低減率の関係を示す図である。It is a figure which shows the analysis result by an Example, Comprising: It is a figure which shows the relationship between the distance from an underground structure, and a shear-force reduction rate.

以下、本発明の実施の形態による地盤変位吸収免震構造について、図面に基づいて説明する。   Hereinafter, a ground displacement absorption seismic isolation structure according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本実施の形態による地盤変位吸収免震構造1は、開削トンネルなどの地中構造物2に作用する地震時の応力を低減するためのものである。地中構造物2は、ボックスカルバートなどの鉄筋コンクリート製の構造物であり、上層地盤3Aに埋設された状態で所定方向(図1に示す矢印X方向)に延びて構築されている。地中構造物2が埋設される上層地盤3Aは、弾性波速度Vsが例えば100〜200m/sの軟弱地盤であり、弾性波速度Vsが例えば300〜500m/sの下層地盤3B上に存在している。   As shown in FIG. 1, the ground displacement absorption seismic isolation structure 1 according to the present embodiment is for reducing stress during an earthquake that acts on an underground structure 2 such as an open-cut tunnel. The underground structure 2 is a reinforced concrete structure such as a box culvert, and is constructed to extend in a predetermined direction (in the direction of the arrow X shown in FIG. 1) while being embedded in the upper ground 3A. The upper layer ground 3A in which the underground structure 2 is embedded is a soft ground having an elastic wave velocity Vs of, for example, 100 to 200 m / s, and exists on the lower layer ground 3B having an elastic wave velocity Vs of, for example, 300 to 500 m / s. ing.

地中構造物2と周辺地盤の上層地盤3Aとの間には、吸水膨潤性を有する粘土系材料からなる連続した壁状の地中免震壁4が設置されている。地中免震壁4は、所定の壁幅D(図1参照)を有し、地中構造物2の左右両側に接した状態で配置され、地中構造物2の延長方向に連続する壁状態である。この地中免震壁4は、上層地盤3A内に配置されており、地表部分から地中構造物2の下端と略同じ深さまで設けられている。なお、地中免震壁4は、延設される地中構造物2の全長にわたって設けられることに限定されず、延長方向で部分的に設けられていてもよい。   Between the underground structure 2 and the upper ground 3A of the surrounding ground, a continuous wall-shaped underground seismic isolation wall 4 made of a clay-based material having water absorption and swelling properties is installed. The underground seismic isolation wall 4 has a predetermined wall width D (see FIG. 1), is arranged in contact with both the left and right sides of the underground structure 2, and is a wall continuous in the extending direction of the underground structure 2. State. The underground seismic isolation wall 4 is disposed in the upper ground 3 </ b> A, and is provided from the ground surface portion to substantially the same depth as the lower end of the underground structure 2. In addition, the underground seismic isolation wall 4 is not limited to being provided over the entire length of the underground structure 2 to be extended, and may be provided partially in the extending direction.

地中免震壁4を構成する粘土系材料として、ベントナイトと水の混合物(以下、「第1混合物」という)、或いはベントナイトと骨材と水との混合物(以下、「第2混合物」という)が用いられる。
そして、第1混合物からなる材料で満たされている領域は、ベントナイト有効乾燥密度で300〜1200kg/mである。また、第2混合物からなる材料において、ベントナイトと水で満たされている領域は、ベントナイト有効乾燥密度(ベントナイトと骨材を混合した材料の場合で、骨材間隙を満たしているベントナイト部分の密度を乾燥密度で示した値)で300〜1200kg/mである。なお、第2混合物の骨材とは、砂や砂礫などの土質材料、或いはガラスビーズなどの長期変質しにくい人工材料を採用することができる。
なお、上述した第1混合物で骨材が入っていない材料の場合は、ベントナイト密度のみなのでベントナイト乾燥密度であるが、ここでは「ベントナイト有効乾燥密度」として以下統一して用いる。
As a clay-based material constituting the underground seismic isolation wall 4, a mixture of bentonite and water (hereinafter referred to as "first mixture") or a mixture of bentonite, aggregate and water (hereinafter referred to as "second mixture"). Is used.
And the area | region filled with the material which consists of a 1st mixture is 300-1200 kg / m < 3 > in a bentonite effective dry density. In the material composed of the second mixture, the region filled with bentonite and water is the bentonite effective dry density (in the case of a material in which bentonite and aggregate are mixed, the density of the bentonite portion that fills the aggregate gap). It is 300 to 1200 kg / m 3 in terms of dry density. In addition, as the aggregate of the second mixture, a soil material such as sand or gravel, or an artificial material such as glass beads that hardly deteriorates for a long time can be employed.
In addition, in the case of the material which does not contain aggregate in the 1st mixture mentioned above, since it is only a bentonite density, it is a bentonite dry density, but here it uses uniformly as "bentonite effective dry density" below.

また、地中免震壁4の壁幅Dは、0.2〜2.5mであることが好ましく、より好ましくは0.25〜1.0mとされる。なお、施工的に地中免震壁4の壁幅Dは、一般的な施工装置の使用が可能なため0.5〜1.0mが良い。
このような粘土系材料は、地震時に繰り返し応力がかかると、履歴減衰によって地震エネルギーを吸収して塑性変形し、地震が終わると元に戻る特性を有している。
The wall width D of the underground seismic isolation wall 4 is preferably 0.2 to 2.5 m, and more preferably 0.25 to 1.0 m. The wall width D of the underground seismic isolation wall 4 is preferably 0.5 to 1.0 m because a general construction apparatus can be used.
Such a clay-based material has a characteristic that when a stress is repeatedly applied during an earthquake, it absorbs the earthquake energy by hysteresis damping and plastically deforms, and returns to its original state after the earthquake ends.

次に、上述した地盤変位吸収免震構造1の作用について詳細に説明する。
図1に示すように、本地盤変位吸収免震構造1では、地中免震壁4として選定した粘性土系材料を用いれば、連続した壁状にできることから、地中構造物4への応力低減効果を大きくすることができる。そして、粘土系材料は周囲の上層地盤3Aに比べて0.6倍以下の剛性とすることで、地中構造物2のせん断力低減効果が得られ、地震時の地盤の変形を緩和することができ、免震効果を発揮することができる。
Next, the effect | action of the ground displacement absorption seismic isolation structure 1 mentioned above is demonstrated in detail.
As shown in FIG. 1, in the ground displacement absorbing base isolation structure 1, if a clay soil material selected as the underground seismic isolation wall 4 is used, a continuous wall shape can be formed. The reduction effect can be increased. And, by making the clay-based material less than 0.6 times the rigidity of the surrounding upper ground 3A, the effect of reducing the shear force of the underground structure 2 can be obtained, and the deformation of the ground during an earthquake can be mitigated And can exhibit seismic isolation effects.

また、地中免震壁4の粘土系材料がベントナイトと水の第1混合物、或いはベントナイトと骨材と水の第2混合物である場合には、ベントナイト有効乾燥密度を調整することにより、所定の膨潤圧を発揮することができるため、周囲の地盤から受ける常時の土圧に抵抗する反力を確保することができる。   Further, when the clay-based material of the underground seismic isolation wall 4 is a first mixture of bentonite and water, or a second mixture of bentonite, aggregate, and water, by adjusting the bentonite effective dry density, Since the swelling pressure can be exerted, it is possible to secure a reaction force that resists the normal earth pressure received from the surrounding ground.

そして、第1混合物の場合において、ベントナイトと水で満たされている領域がベントナイト有効乾燥密度の値で300〜1200kg/mの範囲であるので、この密度範囲であれば、図2に示すように吸水膨潤圧が0.03〜0.3MPaとなる。そのため、地盤(上層地盤3A)の水中質量を約1g/cmと仮定して、側方土圧が土被り圧の1倍とすると、深さ30mまでの土圧に耐えることができる。地中免震壁4の設置する深さに応じて、材料の密度を適宜調整して構築することでより効果的にできる。
ここで、図2は、非特許文献2(「締固めたベントナイト試料の膨潤圧測定方法に関する検討」、第40回地盤工学研究発表会、2005年7月、2574頁)に記載されている。なお、非特許文献2の「有効ベントナイト乾燥密度」は、「ベントナイト有効乾燥密度」と同じである。
And in the case of a 1st mixture, since the area | region filled with bentonite and water is the range of 300-1200 kg / m < 3 > in the value of a bentonite effective dry density, if it is this density range, as shown in FIG. The water absorption swelling pressure is 0.03 to 0.3 MPa. Therefore, assuming that the underwater mass of the ground (upper ground 3A) is about 1 g / cm 3 , the soil pressure up to a depth of 30 m can be withstood if the lateral earth pressure is 1 times the earth covering pressure. According to the depth which the underground seismic isolation wall 4 installs, it can do more effectively by adjusting and adjusting the density of material suitably.
Here, FIG. 2 is described in Non-Patent Document 2 (“Study on Measurement Method of Swelling Pressure of Compacted Bentonite Sample”, 40th Geotechnical Research Conference, July 2005, page 2574). Note that “effective bentonite dry density” in Non-Patent Document 2 is the same as “bentonite effective dry density”.

また、ベントナイトのせん断剛性も同様にベントナイト有効乾燥密度によって異なる特性を有している。これは、骨材体積が材料中に占める割合が5割以下である場合には、骨材粒子相互が接触して相互に応力を伝達する粒子構造とはならずに、骨材と骨材との間にベントナイトゲル(ベントナイトと水の混合物)が介在しているので、材料のせん断特性はベントナイトゲルの特性によって主として決まるからである。
したがって、ベントナイト有効乾燥密度を調整することにより、当接材料のせん断剛性を周囲の地盤より小さくすることができ、地震時の繰り返し変形により地盤変形を吸収し、躯体への悪影響を軽減して、外力を吸収する効果が期待できる。
Similarly, the shear stiffness of bentonite also has different characteristics depending on the bentonite effective dry density. This is because, when the proportion of the aggregate volume in the material is 50% or less, the aggregate particles do not form a particle structure in which the aggregate particles contact each other and transmit stress to each other. This is because a bentonite gel (a mixture of bentonite and water) is interposed between them, so that the shear characteristics of the material are mainly determined by the characteristics of the bentonite gel.
Therefore, by adjusting the bentonite effective dry density, the shear stiffness of the contact material can be made smaller than the surrounding ground, absorbing the ground deformation by repeated deformation at the time of earthquake, reducing the adverse effect on the frame, The effect of absorbing external force can be expected.

また、ベントナイトの吸水膨張特性を十分に活用することを特徴としているため、地下水位が高い地盤環境下においても施工が容易である。つまり、周囲の地盤が完全に乾燥していない湿潤状態であれば、ベントナイトの保水能力が維持されるので、壁幅Dと材料密度を長期間維持することができる。
さらに、地中免震壁4として、無機系の天然鉱物である粘性土系材料を用いるので、周囲への環境上の影響を懸念する必要がない。
Moreover, since it is characterized by fully utilizing the water absorption and expansion characteristics of bentonite, the construction is easy even in a ground environment where the groundwater level is high. That is, if the surrounding ground is not completely dry, the water retention capacity of bentonite is maintained, so that the wall width D and the material density can be maintained for a long time.
Further, since the clay-based material that is an inorganic natural mineral is used as the underground seismic isolation wall 4, there is no need to worry about the environmental impact on the surroundings.

図3に示すように、地中免震壁4の材料は、豊浦砂の結果と比較し、剛性はかなり小さいことがわかる。
図4に示す非線形特性は、図3で示したベントナイト配合3(ρd=0.7Mg/m)の材料における動的三軸圧縮試験装置で求めた応力−ひずみ関係を示しており、地震時(繰り返しせん断時)にはヒステリシスを描くので、エネルギー吸収による履歴減衰材料(ダンパー材料)として適している。この履歴減衰効果は、ベントナイトに砂を混入することで、大きくすることができる。
したがって、拘束圧依存性は、地盤材料ほど大きくなく、ベントナイト有効乾燥密度を適宜調整することができる。
As shown in FIG. 3, it can be seen that the material of the underground seismic isolation wall 4 is considerably less rigid than the results of Toyoura sand.
The non-linear characteristics shown in FIG. 4 indicate the stress-strain relationship obtained by the dynamic triaxial compression test apparatus for the material of the bentonite compound 3 (ρd = 0.7 Mg / m 3 ) shown in FIG. Since hysteresis is drawn (during repeated shearing), it is suitable as a hysteresis damping material (damper material) by energy absorption. This hysteresis damping effect can be increased by mixing sand into bentonite.
Therefore, the constraint pressure dependency is not as great as that of the ground material, and the bentonite effective dry density can be appropriately adjusted.

このように本地盤変位吸収免震構造1では、ベントナイトの吸水膨張特性を十分に活用することから、地下水位が高い環境下においても施工が容易である。なお、地下水位が低くても地盤が乾燥していなければ、ベントナイトは自らの吸水膨潤性を発揮して構築時に保水した水を保持し続けるので、乾燥によって剛性が変化することはなく、地下水位が低くても機能が失われることはない。   Thus, in this ground displacement absorption seismic isolation structure 1, since the water absorption expansion characteristic of bentonite is fully utilized, construction is easy even in an environment where the groundwater level is high. Even if the groundwater level is low, if the ground is not dry, bentonite will exhibit its water absorption swellability and keep the water retained at the time of construction. Even if it is low, the function is not lost.

また、ベントナイトは吸水膨張する特性を有しており、ひび割れや何らかの損傷が生じたとしても、地下水が浸透してくる条件下ではその損傷を自己修復することができる。つまり、周囲の地盤からの土圧によって地中免震壁4の壁幅が減少することがない利点がある。
さらに、地中免震壁4を構成する粘土系材料は天然の無機質鉱物材料であるから変質がなく、保水状態も変化し難いのでメンテンスが不要になるという効果を奏する。
In addition, bentonite has the property of absorbing and expanding, and even if cracking or some damage occurs, the damage can be self-repaired under the condition that groundwater penetrates. That is, there is an advantage that the wall width of the underground seismic isolation wall 4 is not reduced by earth pressure from the surrounding ground.
Furthermore, since the clay-based material constituting the underground seismic isolation wall 4 is a natural inorganic mineral material, there is no change in quality, and the water retention state is hardly changed, so that the maintenance is unnecessary.

また、地中免震壁4の壁幅Dが0.2〜2.5mの範囲であれば、せん断力低減率(地中免震壁4を設けた場合の地中構造物2に生じるせん断力を地中免震壁4が無い場合の地中構造物に生じるせん断力で除した値)が1より小さくなり、地中構造物2のせん断力を低減する効果がある。これは、鉛直円柱状のポリマー改良土を地中に飛び飛びに配置して施工した場合の従来のポリマー工法よりも対策範囲(地中免震壁4を配置する平面領域)が小さくなることから、大きな低減効果を得ることができ、コストダンウンを図ることも可能となる。   Moreover, if the wall width D of the underground seismic isolation wall 4 is in the range of 0.2 to 2.5 m, the shear force reduction rate (the shear generated in the underground structure 2 when the underground seismic isolation wall 4 is provided) The value obtained by dividing the force by the shearing force generated in the underground structure when there is no underground seismic isolation wall 4 is smaller than 1, and the shearing force of the underground structure 2 is reduced. This is because the countermeasure area (planar area where the underground seismic isolation wall 4 is arranged) is smaller than the conventional polymer construction method when the vertical cylinder-shaped polymer improved soil is placed in the ground and installed. A great reduction effect can be obtained, and the cost can be reduced.

そして、新規に地中構造物2を構築する際に、それに接するようにして地中免震壁4を構築しているが、このような場合に地中構造物2の周囲に必要な構築空間を小さくすることができる。
また、既設の地中構造物の近傍の地中に対して、後で地中免震壁4を構築する場合も想定されるが、地中免震壁4の壁幅Dが小さくても効果があることから、隣接した地中構造物が存在する狭隘な場所や狭い敷地の中で地中構造物の外側に、既設構造物の免震対策として設置することも可能である。
さらに、耐震基準を満足しない地中構造物2に対する耐震補強工事においても、本地盤変位吸収免震構造1を用いることにより、既存構造物では耐震補強し難いとされている地中構造物2の補強に有効に活用できる。
When the underground structure 2 is newly constructed, the underground seismic isolation wall 4 is constructed so as to be in contact therewith. In such a case, a construction space necessary around the underground structure 2 is constructed. Can be reduced.
Moreover, although it is assumed that the underground seismic isolation wall 4 is constructed later in the vicinity of the existing underground structure, it is effective even if the wall width D of the underground seismic isolation wall 4 is small. Therefore, it can also be installed as a seismic isolation measure for existing structures in a narrow place where there are adjacent underground structures or inside a narrow site.
Furthermore, even in the seismic reinforcement work for underground structures 2 that do not satisfy the earthquake resistance standards, the use of this ground displacement absorbing base isolation structure 1 makes it difficult for existing structures to be seismically strengthened. It can be used effectively for reinforcement.

上述のように本実施の形態による地盤変位吸収免震構造では、地中免震壁4を構成する粘土系材料が吸水膨潤性を有し、周囲の地盤から受ける常時の土圧に抵抗でき、地中免震壁4の壁幅Dを一定に保つことができることから、長期安定性を確保できる。
そのうえ、地震時の開削トンネルなどの地中構造物2への応力低減を図ることができる効果を奏する。
As described above, in the ground displacement absorption seismic isolation structure according to the present embodiment, the clay-based material constituting the underground seismic isolation wall 4 has water absorption swelling property, and can resist normal earth pressure received from the surrounding ground, Since the wall width D of the underground seismic isolation wall 4 can be kept constant, long-term stability can be ensured.
In addition, there is an effect that it is possible to reduce the stress on the underground structure 2 such as an open tunnel during an earthquake.

[実施例]
次に、上述した実施の形態による地盤変位吸収免震構造の効果を裏付けるために行った実施例について以下説明する。
[Example]
Next, examples carried out to support the effects of the ground displacement absorbing base isolation structure according to the above-described embodiment will be described below.

本実施例では、地中免震壁4の効果を実証するため、図5に示すようにボックスカルバートからなる地中構造物2を対象にして動的シミュレーションによる検討解析を行い、下記条件を変えてその効果を比較した。ここで、図5は、本検討解析に用いたモデルを示している。
地中免震壁4の壁幅Dを0〜5mとし、上層地盤3Aと地中免震壁4とのせん断剛性の違いを弾性波速度Vs比で0.1〜0.6とし、地中構造物2と地中免震壁4との離間を0〜2mとした。
In this example, in order to verify the effect of the underground seismic isolation wall 4, as shown in FIG. 5, the investigation and analysis by dynamic simulation is performed on the underground structure 2 made of box culvert, and the following conditions are changed. The effects were compared. Here, FIG. 5 shows a model used in this study analysis.
The wall width D of the underground seismic isolation wall 4 is 0 to 5 m, the shear rigidity difference between the upper ground 3A and the underground isolation wall 4 is 0.1 to 0.6 in terms of elastic wave velocity Vs, The distance between the structure 2 and the underground seismic isolation wall 4 was set to 0 to 2 m.

入力地震波として「東海・東南海地震同時発生予想地震」を用い、検討解析から得られた結果を図6乃至図8に示す。
図6は、吸水膨潤性を有する粘土系材料で構成された地中免震壁4の壁幅とせん断力低減率(地中免震壁を設けた場合の地中構造物に生じるせん断力を地中免震壁が無い場合の地中構造物に生じるせん断力で除した値)との関係を示し、免震効果の指標としている。
6 to 8 show the results obtained from the study analysis using the “Tokai / Tonankai Earthquake Predicted Earthquake” as the input seismic wave.
FIG. 6 shows the wall width and shear force reduction rate of the underground seismic isolation wall 4 made of a clay-based material having water absorption swelling property (the shear force generated in the underground structure when the underground isolation wall is provided). The value is divided by the shear force generated in the underground structure when there is no underground seismic isolation wall, and is used as an index of the seismic isolation effect.

図6に示すように、せん断力低減率は、その値が1.0より小さい場合に効果がある。
そのため、地中免震壁4の壁幅は、好ましくは0.2〜2.5mの範囲であれば地中構造物2のせん断力を低減する効果がある。また、0.2mの地中免震壁4においても、略20%程度のせん断力低減効果があり、鉛直円柱状のポリマー改良土を地中に飛び飛びに配置して施工した場合の従来のポリマー工法よりも小さい対策範囲でより大きい低減効果を得ることができる。
ここで、地中免震壁4の壁幅が大きくなり過ぎると、せん断力低減率が1より大きくなり、地中構造物2のせん断力を低減する効果がなくなる(逆効果になる)。これは、地中免震壁4と地中構造物2の躯体自体とが独立して揺れ始め、地中構造物2自体の揺れの慣性力を抑制できなくなるためと考えられる。
As shown in FIG. 6, the shear force reduction rate is effective when the value is smaller than 1.0.
Therefore, if the wall width of the underground seismic isolation wall 4 is preferably in the range of 0.2 to 2.5 m, there is an effect of reducing the shearing force of the underground structure 2. In addition, the 0.2 m underground seismic isolation wall 4 has an effect of reducing shearing force by about 20%, and a conventional polymer in the case where a vertical cylindrical polymer improved soil is disposed in the ground. Greater reduction effect can be obtained with a countermeasure range smaller than the construction method.
Here, when the wall width of the underground seismic isolation wall 4 becomes too large, the shear force reduction rate becomes larger than 1, and the effect of reducing the shear force of the underground structure 2 is lost (inverse effect). This is presumably because the underground seismic isolation wall 4 and the frame of the underground structure 2 begin to swing independently, and the inertial force of the vibration of the underground structure 2 itself cannot be suppressed.

続いて、図7は、周辺地盤と地中免震壁の粘土系材料のせん断波速度Vsの比が異なる場合について、せん断力低減率を動的シミュレーションによって試算した結果であり、地中免震壁の壁幅を0.5mと1.0mの2ケースとした。
本解析結果では、0.6以下のせん断波速度比において、地中構造物2の応力低減効果が得られている。すなわち、周囲の地盤よりも著しく柔らかい(小さいせん断剛性の)材料を使う必要はないことが確認でき、これにより材料の設計がし難いことがない。
Next, FIG. 7 shows the result of trial calculation of the shear force reduction rate by dynamic simulation when the ratio of the shear wave velocity Vs of the clay-based material of the surrounding ground and the underground seismic isolation wall is different. The wall width was set to two cases of 0.5 m and 1.0 m.
In this analysis result, the stress reduction effect of the underground structure 2 is obtained at a shear wave velocity ratio of 0.6 or less. That is, it can be confirmed that it is not necessary to use a material that is significantly softer (small shear rigidity) than the surrounding ground, and this makes it difficult to design the material.

図8は、免震壁の設置位置に関する解析結果を示しており、地中構造物2と接している条件、すなわち地中構造物2との離間距離が0の場合で略40%のせん断力低減効果があるが、1m離れたケースにおいても10%程度の低減効果が得られることが確認できた。   FIG. 8 shows the analysis result regarding the installation position of the seismic isolation wall. The shearing force is approximately 40% under the condition that the seismic isolation wall is in contact with the underground structure 2, that is, when the separation distance from the underground structure 2 is zero. Although there is a reduction effect, it has been confirmed that a reduction effect of about 10% can be obtained even in a case 1 m away.

このような解析結果から、開削トンネル、ボックスカルバートなどの地中構造物の地震時の応力低減に寄与することが実証され、従来のポリマー工法よりも小さい対策範囲で同等以上の応力低減効果を発揮することから、既設構造物への適用性はより大きいことがいえる。   From these analysis results, it has been demonstrated that it contributes to reducing the stress of underground structures such as open-cut tunnels and box culverts during earthquakes, and exhibits a stress reduction effect equivalent to or better than the conventional polymer method. Therefore, it can be said that the applicability to existing structures is greater.

以上、本発明による地盤変位吸収免震構造の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although embodiment of the ground displacement absorption seismic isolation structure by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.

1 地盤変位吸収免震構造
2 地中構造物
3A 上層地盤
3B 下層地盤
4 地中免震壁
D 地中免震壁の壁幅
1 Ground displacement absorption seismic isolation structure 2 Underground structure 3A Upper ground 3B Lower ground 4 Underground seismic isolation wall D Wall width of underground seismic isolation wall

Claims (7)

周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中免震壁を設置することを特徴とする地盤変位吸収免震構造。   A ground displacement absorbing base isolation structure characterized in that a continuous wall-shaped underground base isolation wall made of clay-based material having water absorption and swelling properties is installed between the surrounding ground and the structure. 前記地中免震壁の壁幅は、0.2〜2.5mであることを特徴とする請求項1に記載の地盤変位吸収免震構造。   The ground displacement absorbing base isolation structure according to claim 1, wherein a wall width of the underground base isolation wall is 0.2 to 2.5 m. 前記周辺地盤と前記地中免震壁の粘土系材料のせん断波速度比は、0.6以下であることを特徴とする請求項1に記載の地盤変位吸収免震構造。   The ground displacement absorbing base isolation structure according to claim 1, wherein a shear wave velocity ratio of the clay-based material of the surrounding ground and the underground base isolation wall is 0.6 or less. 前記粘土系材料は、ベントナイトと水の混合物であることを特徴とする請求項1乃至3のいずれか1項に記載の地盤変位吸収免震構造。   The ground displacement absorbing seismic isolation structure according to any one of claims 1 to 3, wherein the clay-based material is a mixture of bentonite and water. 前記粘性土系材料におけるベントナイトと水の混合物からなる材料で満たされている領域は、ベントナイト有効乾燥密度で300〜1200kg/mであることを特徴とする請求項4に記載の地盤変位吸収免震構造。 5. The ground displacement absorption resistance according to claim 4, wherein a region filled with a material composed of a mixture of bentonite and water in the clay-based material is bentonite effective dry density of 300 to 1200 kg / m 3. Seismic structure. 前記粘土系材料は、ベントナイトと骨材と水との混合物であることを特徴とする請求項1乃至3のいずれか1項に記載の地盤変位吸収免震構造。   The ground displacement absorption seismic isolation structure according to any one of claims 1 to 3, wherein the clay-based material is a mixture of bentonite, aggregate, and water. 前記粘性土系材料におけるベントナイトと骨材と水の混合物からなる材料において、ベントナイトと水で満たされている領域は、ベントナイト有効乾燥密度で300〜1200kg/mであることを特徴とする請求項6に記載の地盤変位吸収免震構造。 In the material composed of a mixture of bentonite, aggregate, and water in the clay-based material, a region filled with bentonite and water is 300 to 1200 kg / m 3 in terms of bentonite effective dry density. The ground displacement absorption seismic isolation structure according to 6.
JP2010173015A 2010-07-30 2010-07-30 Ground displacement absorption isolation structure Expired - Fee Related JP5747458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173015A JP5747458B2 (en) 2010-07-30 2010-07-30 Ground displacement absorption isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173015A JP5747458B2 (en) 2010-07-30 2010-07-30 Ground displacement absorption isolation structure

Publications (2)

Publication Number Publication Date
JP2012031662A true JP2012031662A (en) 2012-02-16
JP5747458B2 JP5747458B2 (en) 2015-07-15

Family

ID=45845382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173015A Expired - Fee Related JP5747458B2 (en) 2010-07-30 2010-07-30 Ground displacement absorption isolation structure

Country Status (1)

Country Link
JP (1) JP5747458B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141785A (en) * 2013-01-22 2014-08-07 Grape Co Ltd Foundation structure
JP2014214420A (en) * 2013-04-22 2014-11-17 清水建設株式会社 Method for designing base isolation wall
JP2015034456A (en) * 2013-07-12 2015-02-19 清水建設株式会社 Base isolation underground wall structure and method of designing base isolation underground wall material
CN109723052A (en) * 2018-12-03 2019-05-07 兰州交通大学 Height fills out open cut tunnel Calculating method of earth pressure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233121A (en) * 1986-10-31 1988-09-28 Nkk Corp Underground vibration-proof wall
JPH08177389A (en) * 1994-12-26 1996-07-09 Kumagai Gumi Co Ltd Underground line-like structure
JP2006045835A (en) * 2004-08-03 2006-02-16 Tokyo Electric Power Co Inc:The Base isolator forming method
JP2007332553A (en) * 2006-06-12 2007-12-27 Taisei Corp Vibration-proof wall and vibration-proof method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233121A (en) * 1986-10-31 1988-09-28 Nkk Corp Underground vibration-proof wall
JPH08177389A (en) * 1994-12-26 1996-07-09 Kumagai Gumi Co Ltd Underground line-like structure
JP2006045835A (en) * 2004-08-03 2006-02-16 Tokyo Electric Power Co Inc:The Base isolator forming method
JP2007332553A (en) * 2006-06-12 2007-12-27 Taisei Corp Vibration-proof wall and vibration-proof method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013003910; 工藤康二、田中幸久、横倉俊幸、北村至: '締固めたベントナイト試料の膨潤圧測定方法に関する検討' 第40回地盤工学研究発表会-平成17年度発表講演集(2分冊の2) , 20050615, P2573-2574, 社団法人 地盤工学会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141785A (en) * 2013-01-22 2014-08-07 Grape Co Ltd Foundation structure
JP2014214420A (en) * 2013-04-22 2014-11-17 清水建設株式会社 Method for designing base isolation wall
JP2015034456A (en) * 2013-07-12 2015-02-19 清水建設株式会社 Base isolation underground wall structure and method of designing base isolation underground wall material
CN109723052A (en) * 2018-12-03 2019-05-07 兰州交通大学 Height fills out open cut tunnel Calculating method of earth pressure

Also Published As

Publication number Publication date
JP5747458B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
Jamsawang et al. Parameters affecting the lateral movements of compound deep cement mixing walls by numerical simulations and parametric analyses
Bathurst et al. Analysis of geocell reinforced-soil covers over large span conduits
CA2874772C (en) Soil reinforcement system including angled soil reinforcement elements to resist seismic shear forces and methods of making same
Liu et al. Working mechanism of cutoff walls in reducing uplift of large underground structures induced by soil liquefaction
JP5747458B2 (en) Ground displacement absorption isolation structure
Alzabeebee Response of buried uPVC pipes subjected to earthquake shake
Visuvasam et al. Effect of soil–pile–structure interaction on seismic behaviour of RC building frames
Debbabi et al. Numerical modeling of encased stone columns supporting embankments on sabkha soil
JP2012031665A (en) Vibration isolation wall
Farzalizadeh et al. Shaking table tests on wall-type gravel and rubber drains as a liquefaction countermeasure in silty sand
Saez et al. Earthquake-induced pressures on discontinuous piling support on Santiago gravel
El-Attar Dynamic analysis of combined piled raft system (CPRS)
JP5532325B2 (en) Construction method of underground wall
Basha et al. Effect of sheet pile driving on geotechnical behavior of adjacent building in sand: Numerical study
Hatami et al. A numerical study on the use of geofoam to increase the external stability of reinforced soil walls
JP2015055147A (en) Underground base isolation wall structure and construction method for the same
JP2015105510A (en) Base isolated structure of underground construction and construction method of base isolated structure of underground construction
Bartlett et al. Protection of pipelines and buried structures using EPS geofoam
US20190218742A1 (en) Soil Reinforcement System Including Angled Soil Reinforcement Elements To Resist Seismic Shear Forces And Methods Of Making Same
Wang et al. Differential uplift and settlement between inner column and diaphragm wall in top-down excavation
Chen et al. Study of the seismic performance of hybrid A-frame micropile/MSE (mechanically stabilized earth) wall
JP2014211073A (en) Ground displacement-absorbing base-isolated structure and base isolation method
JP5532326B2 (en) Construction method of underground wall
Bartlett et al. II PROTECTION OF STEEL PIPELINES FROM PERMANENT GROUND DEFORMATION USING EPS GEOFOAM
CN109577381B (en) Seismic isolation method for underground structure and seismic isolated underground structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140609

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140702

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees