JP2014211073A - Ground displacement-absorbing base-isolated structure and base isolation method - Google Patents

Ground displacement-absorbing base-isolated structure and base isolation method Download PDF

Info

Publication number
JP2014211073A
JP2014211073A JP2013146979A JP2013146979A JP2014211073A JP 2014211073 A JP2014211073 A JP 2014211073A JP 2013146979 A JP2013146979 A JP 2013146979A JP 2013146979 A JP2013146979 A JP 2013146979A JP 2014211073 A JP2014211073 A JP 2014211073A
Authority
JP
Japan
Prior art keywords
water
underground
wall
underground wall
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013146979A
Other languages
Japanese (ja)
Inventor
石井 卓
Taku Ishii
卓 石井
陽一 田地
Yoichi Taji
陽一 田地
中島 均
Hitoshi Nakajima
均 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2013146979A priority Critical patent/JP2014211073A/en
Publication of JP2014211073A publication Critical patent/JP2014211073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/34Foundations for sinking or earthquake territories
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/08Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against transmission of vibrations or movements in the foundation soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground displacement-absorbing base-isolated structure excellent in long-term stability, and a base isolation method.SOLUTION: In a ground displacement-absorbing base-isolated structure 100, a continuous wall-like underground wall 16 made of a clay-based material which swells when absorbing water is provided between peripheral ground 12 and a structure 14. A water storage layer 18 for storing water W with low electrolyte concentration is provided at a ground surface-side upper end 16a of the underground wall 16. In this case, preferably, a water level WL of the water storage layer 18 is set higher than a ground water level GWL of the peripheral ground 12. Thus, the ground displacement-absorbing base-isolated structure excellent in long-term stability can be provided.

Description

本発明は、地震時の開削トンネルなどの地中構造物への応力低減を図るための地盤変位吸収免震構造および免震方法に関するものである。   The present invention relates to a ground displacement absorbing base isolation structure and a base isolation method for reducing stress on underground structures such as an open tunnel during an earthquake.

従来、開削トンネルなどの地中構造物への地震時の応力低減を目的とした地中免震壁として、地中構造物に接する形で延長方向に連続的に設置することが一般的であり、この設置位置であれば、地中構造物の建設時に同時に構築することができる。このような地震時の地中構造物への応力低減を目的とする地中免震壁として、ポリマー改良土を打設した地盤変位吸収工法が例えば特許文献1に提案されている。   Conventionally, as an underground seismic isolation wall for the purpose of reducing stress during earthquakes to underground structures such as open tunnels, it has been common to install continuously in the extending direction in contact with the underground structure If it is this installation position, it can be constructed simultaneously with the construction of the underground structure. For example, Patent Document 1 proposes a ground displacement absorbing method in which polymer improved soil is cast as an underground seismic isolation wall for the purpose of reducing stress on underground structures during an earthquake.

一方、開削トンネルなどの地中構造物に対する地中免震壁として、地中構造物の延長方向に連続的に設置しない構造のものが例えば非特許文献1に開示されている。この非特許文献1では、地中に鉛直円柱状のポリマー改良土を地中構造物に沿って飛び飛びに断続的に配置している。   On the other hand, Non-Patent Document 1, for example, discloses an underground seismic isolation wall for an underground structure such as an open-cut tunnel that is not continuously installed in the extending direction of the underground structure. In this nonpatent literature 1, the vertical cylinder-shaped polymer improvement soil is intermittently arrange | positioned in the ground along the underground structure.

しかしながら、上記の従来の地中免震壁では、以下のような問題があった。
すなわち、特許文献1で開示されるようなポリマー改良土を打設する工法では、常時の土圧などの影響によりポリマー免震材が大きく圧縮変形する。そのため、施工時に設定した所定の地中免震壁の壁厚は、初期の壁厚を長期的に保持できず、場合によっては免震壁が潰れてしまう懸念があった。このような免震壁厚の変化は、ポリマー材免震壁の変位吸収性能が低下して地中免震壁による地盤変位吸収効果が十分に発揮されず、地震時の地中構造物の応力低減効果が低下するという問題があった。
However, the above conventional underground seismic isolation wall has the following problems.
That is, in the construction method for placing the polymer improved soil as disclosed in Patent Document 1, the polymer seismic isolation material is greatly compressed and deformed due to the influence of normal earth pressure and the like. Therefore, the wall thickness of the predetermined underground seismic isolation wall set at the time of construction cannot maintain the initial wall thickness for a long time, and there is a concern that the seismic isolation wall may be crushed in some cases. Such a change in the thickness of the base isolation wall is caused by a decrease in the displacement absorption performance of the polymer base isolation wall, and the effect of absorbing the ground displacement by the underground base isolation wall is not fully exhibited. There was a problem that the reduction effect was reduced.

この対応として、地中免震壁を開削トンネルなどの地中構造物に沿って連続的に配置することを避け断続的な配置とした非特許文献1が検討される。しかし、連続して配置されない地中免震壁では、周辺地盤と構造物とが土で繋がっているため、本来の目的である変位を十分に吸収するという免震効果が著しく低下するという欠点があった。   As a countermeasure, Non-Patent Document 1 is considered in which the underground seismic isolation wall is intermittently arranged so as to avoid the continuous arrangement along underground structures such as open tunnels. However, in the seismic isolation walls that are not arranged continuously, the surrounding ground and the structure are connected by soil, so that the seismic isolation effect of sufficiently absorbing the original displacement is significantly reduced. there were.

また、ポリマー材は、地下水位が存在する地盤においては、ポリマー材が水に溶けてしまうため、施工が容易ではないという問題もあった。さらに、ポリマー免震材には、所定の加強剤を添加しなければならないが、環境上の配慮から高価な加強剤が必要とされ、コストがかかるという問題があった。   Moreover, since the polymer material is dissolved in water in the ground where the groundwater level exists, there is a problem that the construction is not easy. Furthermore, although a predetermined reinforcing agent must be added to the polymer seismic isolation material, there is a problem that an expensive reinforcing agent is required for environmental considerations and costs are increased.

このように、開削トンネルのような地中構造物に沿って地中免震壁を設ける場合には、地中免震壁に作用する土圧に対して十分に抵抗でき長期的安定性が確保できる材料である一方で、免震効果を発揮するためには、材料の剛性が小さいことが望ましいとされ、この両者がバランスよく設けられる地中免震壁が求められており、その点で改良の余地があった。   In this way, when an underground seismic isolation wall is provided along an underground structure such as an open-cut tunnel, it can sufficiently resist the earth pressure acting on the underground isolation wall and ensure long-term stability. On the other hand, in order to exert the seismic isolation effect, it is desirable that the material has low rigidity, and there is a need for an underground seismic isolation wall that provides a good balance between the two. There was room for.

このような問題点を解決するための構造として、本願発明者は既に特許文献2の地盤変位吸収免震構造を提供している。この構造は、地中免震壁の長期安定性を確保できるうえ、地震時の開削トンネルなどの地中構造物への応力低減を図ることができるものであり、下記の(1)〜(4)の工夫を施して実現されている。   As a structure for solving such a problem, the present inventor has already provided the ground displacement absorption isolation structure of Patent Document 2. This structure can ensure the long-term stability of the underground seismic isolation wall and can reduce the stress on underground structures such as open tunnels during an earthquake. (1) to (4) ).

(1)図8に示すように、周辺地盤1と地中構造物2との間に吸水膨潤性の粘土系材料で連続した壁状の地中免震壁3(地中壁)を設置する。
(2)地中壁は、ベントナイトと水の混合物あるいはベントナイトと骨材(砂礫等の土質材料あるいはガラスビーズ等の長期変質しにくい人工材料)と水の混合物からなる。
(3)地中壁を構成する粘性土系材料におけるベントナイトと水の混合物からなる材料で満たされている領域は、ベントナイト乾燥密度で300〜1200kg/mである。
(4)地中壁を構成する粘性土系材料におけるベントナイトと骨材と水の混合物からなる材料において、ベントナイトと水で満たされている領域(骨材領域を除いた領域を満たしているベントナイトと水の混合物)は、ベントナイト乾燥密度で300〜1200kg/mである。
(1) As shown in FIG. 8, a wall-shaped underground seismic isolation wall 3 (underground wall) continuous with a water-absorbing swelling clay-based material is installed between the surrounding ground 1 and the underground structure 2. .
(2) The underground wall is made of a mixture of bentonite and water, or a mixture of bentonite and aggregates (soil materials such as gravel or artificial materials that are difficult to change for a long time such as glass beads) and water.
(3) The area | region filled with the material which consists of a mixture of the bentonite and water in the clay earth material which comprises an underground wall is 300-1200 kg / m < 3 > in a bentonite dry density.
(4) In a material composed of a mixture of bentonite, aggregate, and water in the viscous earth-based material constituting the underground wall, an area filled with bentonite and water (the bentonite filling the area excluding the aggregate area and The water mixture) is 300-1200 kg / m 3 in terms of bentonite dry density.

特開2006−112182号公報JP 2006-112182 A 特開2012−031662号公報JP 2012-031662 A

室野剛隆、館山勝、桐生郷史、小林正介著、「ポリマー免震壁による既設開削トンネルの補強」、基礎工、2007.3、P69−71Tsuyoshi Murono, Masaru Tateyama, Fumi Kiryu, Shosuke Kobayashi, “Reinforcement of existing excavated tunnels with polymer seismic isolation walls”, Foundation work, 2007.3, P69-71

上記の特許文献2に記載の地盤変位吸収免震構造では、連続する地中壁でありながら、土圧に抵抗できる膨潤圧(吸水膨張圧)を発揮する吸水膨張性粘土(例えばベントナイト)を使うことによって、地中壁の構造形態を維持するところに特徴があった。   In the ground displacement absorption seismic isolation structure described in Patent Document 2 described above, water-absorbing expansive clay (for example, bentonite) that exhibits a swelling pressure (water-absorbing expansion pressure) that can resist soil pressure is used while being a continuous underground wall. Thus, there was a feature in maintaining the structural form of the underground wall.

具体的な例として、上記の特許文献2では下記のような例を示している。すなわち、ベントナイトと水で満たされている領域がベントナイト有効乾燥密度の値で300〜1200kg/mの範囲であるので、この密度範囲であれば、特許文献2に記載の図2(本願の図9)に示すように、吸水膨潤圧が0.03〜0.3MPaとなる。そのため、地盤の水中質量を約1g/cmと仮定して、側方土圧が土被り圧の1倍とすると、深さ30mまでの土圧に耐えることができる。地中免震壁の設置する深さに応じて、材料の密度を適宜調整して構築することでより効果的にできる。 As a specific example, the above Patent Document 2 shows the following example. That is, since the area filled with bentonite and water is in the range of 300 to 1200 kg / m 3 in terms of the bentonite effective dry density, the density range shown in FIG. As shown in 9), the water absorption swelling pressure is 0.03 to 0.3 MPa. Therefore, assuming that the underwater mass of the ground is about 1 g / cm 3 and the lateral earth pressure is 1 times the earth covering pressure, it can withstand earth pressure up to a depth of 30 m. It can be made more effective by constructing by adjusting the density of the material appropriately according to the installation depth of the underground seismic isolation wall.

ここで、地中壁の周辺地盤の間隙には地下水が存在している。わが国では地下水位が地表面付近まで存在していることが普通であり、かつ、地下水の水質は淡水系であることが一般的であるので、地下水の水質による地中壁構造体(吸水膨張性粘土)の構造安定性への影響を配慮する必要はほとんど生じない。
しかし、地下水条件によっては、以下の問題が懸念材料となる。
Here, groundwater exists in the gap between the ground around the underground wall. In Japan, the groundwater level usually exists up to the surface of the ground, and the quality of groundwater is generally freshwater. There is little need to consider the impact on the structural stability of clay.
However, depending on groundwater conditions, the following problems may be a concern.

(地下水条件1)
周辺の地盤が完全に乾燥していない湿潤状態であれば、ベントナイトの保水能力が維持されるので、地中壁の厚さと材料密度を長期間維持できる。しかし、著しく地下水位が地表面から低く、地中壁を構成する粘土が乾燥収縮する可能性がある場合には、地中壁が乾燥収縮し、厚さが減少するとともに、地中壁の剛性が大きくなるため、変位吸収能力が減じ、結果として免震性能が低下する。
(Groundwater condition 1)
If the surrounding ground is not completely dry, the water retention ability of bentonite is maintained, so that the thickness and material density of the underground wall can be maintained for a long time. However, if the groundwater level is significantly lower than the ground surface and the clay that makes up the underground wall may dry and shrink, the underground wall will dry and shrink, the thickness will decrease, and the rigidity of the underground wall will be reduced. Increases the displacement absorption capacity, resulting in a decrease in seismic isolation performance.

(地下水条件2)
地下水の水質の電解質濃度が高い場合、例えば海岸付近の埋め立て地のように海水に近い水質である場合には、図10に示すように、吸水膨張圧は低下する。その結果、地中壁に作用する土圧に抵抗できる吸水膨張圧を発揮できなくなり、地中壁は土圧を受けて変形し、厚さを減じるとともに、間隙水が排水されて地中壁を構成する粘土の密度が増加し、剛性が大きくなる。このような現象となった場合には、地中壁の変位吸収能力が減じるので、免震性能が低下する。
(Groundwater condition 2)
When the electrolyte concentration of the groundwater quality is high, for example, when the water quality is close to seawater, such as a landfill near the coast, the water absorption expansion pressure decreases as shown in FIG. As a result, the water absorption expansion pressure that can resist the earth pressure acting on the underground wall cannot be exerted, the underground wall is deformed by the earth pressure, the thickness is reduced, and the pore water is drained to remove the underground wall. The density of the constituent clay increases and the rigidity increases. When such a phenomenon occurs, the capacity for absorbing the displacement of the underground wall decreases, and the seismic isolation performance decreases.

上記の特許文献2では図2にベントナイト有効乾燥密度と膨潤圧の関係を図示していたが、この関係は間隙水が純水の場合の特性である。図9に、特許文献2に記載の図2を示す。一方、図10は、吸水膨張性粘土であるベントナイトの有効粘土密度(乾燥密度)と吸水膨張圧(膨潤圧)との関係を、間隙水が純水の場合とNaCl濃度1wt%の場合とで比較したものである。ベントナイトの膨潤特性は、ベントナイトの主要成分であるモンモリロナイトという粘土鉱物の平板状の結晶からなる層構造の間に、電気的な力で取り込まれている陽イオンの存在により、浸透圧作用で周囲の間隙から水分子を粘土鉱物結晶層の中に吸水する特性が原因で吸水膨張することにより発揮される。したがって、地中壁の周辺地盤の地下水の水質の電解質濃度が高い場合には、地中壁を構成する粘土の間隙水の水質も次第に電解質濃度が上昇し、やがては図10に矢印で示したように、純水環境での膨張圧から電解質濃度の高い環境での膨張圧に減じることになる。   In the above-mentioned Patent Document 2, FIG. 2 shows the relationship between the bentonite effective dry density and the swelling pressure. This relationship is a characteristic when the pore water is pure water. FIG. 9 shows FIG. 2 described in Patent Document 2. On the other hand, FIG. 10 shows the relationship between the effective clay density (dry density) and the water absorption expansion pressure (swelling pressure) of bentonite, which is a water-absorbing clay, when the pore water is pure water and when the NaCl concentration is 1 wt%. It is a comparison. The swelling property of bentonite is due to the osmotic action of the surroundings by the presence of cations that are taken in by electric force between the layered structure of clay mineral called montmorillonite, which is the main component of bentonite. It is exhibited by water absorption and expansion due to the characteristic of absorbing water molecules from the gaps into the clay mineral crystal layer. Therefore, when the electrolyte concentration of the groundwater in the ground around the underground wall is high, the electrolyte concentration of the pore water of the clay constituting the underground wall also gradually increases, and eventually indicated by arrows in FIG. Thus, the expansion pressure in a pure water environment is reduced to the expansion pressure in an environment with a high electrolyte concentration.

このため、従来の地盤変位吸収免震構造において、長期安定性を確保することが求められていた。   For this reason, in the conventional ground displacement absorption seismic isolation structure, ensuring long-term stability was calculated | required.

本発明は、上記に鑑みてなされたものであって、長期安定性に優れた地盤変位吸収免震構造および免震方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the ground displacement absorption seismic isolation structure and seismic isolation method excellent in long-term stability.

上記した課題を解決し、目的を達成するために、本発明に係る地盤変位吸収免震構造は、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けた地盤変位吸収免震構造において、前記地中壁の地表側上端部に電解質濃度の低い水を貯水する貯水層を設けたことを特徴とする。   In order to solve the above-described problems and achieve the object, the ground displacement absorption isolation structure according to the present invention is a continuous wall-like structure made of a clay-based material having water absorption and swelling between the surrounding ground and the structure. In the ground displacement absorbing base-isolated structure provided with the underground wall, a water storage layer for storing water having a low electrolyte concentration is provided at the upper surface side of the underground wall.

また、本発明に係る他の地盤変位吸収免震構造は、上述した発明において、前記貯水層の水位を前記周辺地盤の地下水位よりも高くしたことを特徴とする。   In addition, another ground displacement absorbing base isolation structure according to the present invention is characterized in that, in the above-described invention, the water level of the reservoir is made higher than the groundwater level of the surrounding ground.

また、本発明に係る他の地盤変位吸収免震構造は、上述した発明において、前記地中壁と前記周辺地盤との境界面、または、前記地中壁と前記周辺地盤との境界面に加え前記地中壁と前記構造物との境界面に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする。   In addition, in the above-described invention, another ground displacement absorption seismic isolation structure according to the present invention is in addition to the boundary surface between the underground wall and the surrounding ground, or the boundary surface between the underground wall and the surrounding ground. By providing a planar water-impervious member at the boundary surface between the underground wall and the structure, drying of the underground wall is suppressed, and pore water in the underground wall due to infiltration of groundwater in the surrounding ground To suppress the increase in electrolyte concentration of the clay, to maintain a constant swelling pressure of the clay-based material saturated with water, to suppress changes in the thickness and density of the underground wall, and to maintain the rigidity of the underground wall It is characterized by doing.

また、本発明に係る他の地盤変位吸収免震構造は、上述した発明において、前記地中壁内部の前記周辺地盤側、または、前記地中壁内部の前記周辺地盤側に加え前記地中壁内部の前記構造物側に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする。   In addition, in the above-described invention, the ground displacement absorbing base isolation structure according to the present invention is the ground wall in addition to the peripheral ground side in the underground wall or the peripheral ground side in the underground wall. By providing a planar water-impervious member on the inside of the structure, it is possible to suppress drying of the underground wall and to increase the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground. Suppressing and maintaining a constant swelling pressure of the clay-based material saturated with water, suppressing changes in the thickness and density of the underground wall, and maintaining the rigidity of the underground wall .

また、本発明に係る他の地盤変位吸収免震構造は、上述した発明において、前記貯水層から前記地中壁の内部下方に延びる多孔管を複数配置したことを特徴とする。   Further, another ground displacement absorption isolation structure according to the present invention is characterized in that, in the above-described invention, a plurality of perforated pipes extending from the reservoir to the inside of the underground wall are arranged.

また、本発明に係る免震方法は、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けることによる前記構造物の免震方法であって、前記地中壁の地表側上端部に電解質濃度の低い水を貯水する貯水層を設け、前記地中壁を構成する粘土系材料に前記貯水層を介して上方から常に電解質濃度の低い水を供給することによって、前記粘土系材料の乾燥を抑制して、水で飽和した前記粘土系材料の剛性を維持することを特徴とする。   Further, the seismic isolation method according to the present invention is a seismic isolation method for the structure by providing a continuous wall-shaped underground wall made of a clay-based material having water absorption swelling between the surrounding ground and the structure. In addition, a reservoir for storing low electrolyte concentration water is provided at the upper surface of the underground wall, and the electrolyte concentration is always low from above through the reservoir in the clay-based material constituting the underground wall. By supplying water, drying of the clay-based material is suppressed, and the rigidity of the clay-based material saturated with water is maintained.

また、本発明に係る他の免震方法は、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けることによる前記構造物の免震方法であって、前記地中壁の地表側上端部に前記周辺地盤の地下水よりも電解質濃度の低い水を貯水する貯水層を設け、前記地中壁を構成する粘土系材料に前記貯水層を介して上方から常に前記電解質濃度の低い水を供給することによって、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制するとともに、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする。   In another seismic isolation method according to the present invention, the structure is isolated by providing a continuous wall-shaped underground wall made of a clay-based material having water absorption swelling between the surrounding ground and the structure. In the method, a water reservoir for storing water having an electrolyte concentration lower than that of ground water in the surrounding ground is provided at an upper end on the ground surface side of the underground wall, and the reservoir is formed on the clay-based material constituting the underground wall. The clay-based material saturated with water while suppressing an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground by always supplying water having a low electrolyte concentration from above through The swelling pressure is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained.

また、本発明に係る他の免震方法は、上述した発明において、前記貯水層から前記地中壁の内部下方に延びる多孔管を複数配置し、前記多孔管を介して前記貯水層からの前記電解質濃度の低い水を前記地中壁を構成する粘土系材料に供給することを特徴とする。   Another seismic isolation method according to the present invention is the above-described invention, wherein a plurality of perforated pipes extending from the reservoir to the inside of the underground wall are arranged from the reservoir, and the reservoir from the reservoir through the perforated pipe. Water having a low electrolyte concentration is supplied to the clay-based material constituting the underground wall.

また、本発明に係る他の免震方法は、上述した発明において、前記地中壁と前記周辺地盤との境界面、または、前記地中壁と前記周辺地盤との境界面に加え前記地中壁と前記構造物との境界面に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする。   Another seismic isolation method according to the present invention is the above-described invention, in the invention described above, in addition to the boundary surface between the underground wall and the surrounding ground, or the boundary surface between the underground wall and the surrounding ground. By providing a planar water-impervious member at the boundary surface between the wall and the structure, it is possible to suppress the drying of the underground wall, and the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground The swelling pressure of the clay-based material saturated with water is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. Features.

また、本発明に係る他の免震方法は、上述した発明において、前記地中壁内部の前記周辺地盤側、または、前記地中壁内部の前記周辺地盤側に加え前記地中壁内部の前記構造物側に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする。   Another seismic isolation method according to the present invention is the above-described invention, in the above-described invention, in addition to the surrounding ground side inside the underground wall, or the surrounding ground side inside the underground wall in addition to the inside of the underground wall. By providing a planar water-impervious member on the structure side, the drying of the underground wall is suppressed, and an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground is suppressed, The swelling pressure of the clay-based material saturated with water is maintained constant, changes in thickness and density of the underground wall are suppressed, and rigidity of the underground wall is maintained.

本発明に係る地盤変位吸収免震構造によれば、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けた地盤変位吸収免震構造において、前記地中壁の地表側上端部に電解質濃度の低い水を貯水する貯水層を設けたので、地中壁により周辺地盤から受ける常時の土圧に抵抗でき、地震時の開削トンネルなどの地中構造物への応力低減を図ることができるという、免震構造としての基本的な作用効果を奏するのはもちろんのこと、地中壁の上端部に設けた貯水層から地中壁に常に水を供給することにより、地中壁を構成する吸水膨潤性の粘土系材料の保水能力が維持されるので、地中壁の厚さとその構成材料密度を長期間一定に維持することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができるという効果を奏する。   According to the ground displacement absorption isolation structure according to the present invention, a ground displacement absorption isolation structure having a continuous wall-shaped underground wall made of a clay-based material having water absorption and swelling between the surrounding ground and the structure. In the ground wall, a water reservoir for storing low electrolyte concentration water is provided at the top surface side of the ground surface, so that it can resist the normal earth pressure received from the surrounding ground by the underground wall, such as an open tunnel during an earthquake. In addition to having the basic effect as a seismic isolation structure that can reduce the stress on underground structures, it is always from the reservoir layer at the top of the underground wall to the underground wall. By supplying water, the water retention ability of the water-absorbing and swelling clay-based material constituting the underground wall is maintained, so that the thickness of the underground wall and its constituent material density can be maintained constant for a long period of time. For this reason, there exists an effect that the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

また、本発明に係る他の地盤変位吸収免震構造によれば、前記貯水層の水位を前記周辺地盤の地下水位よりも高くしたので、地中壁の上端部から電解質濃度の低い水を常に供給することによって、地中壁を構成する粘土系材料の間隙水の電解質濃度が上昇することを抑制できる。したがって、例えば粘土系材料をベントナイトと水の混合物あるいはベントナイトと骨材と水の混合物で構成した場合には、この材料は所定の膨潤圧を発揮するため、この材料からなる地中壁により周辺地盤から受ける常時の土圧に抵抗できるとともに、電解質濃度の低い水を常に供給することで地中壁の厚さの変化と構成材料の密度の変化が抑制される。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができるという効果を奏する。   In addition, according to another ground displacement absorption seismic isolation structure according to the present invention, since the water level of the reservoir is higher than the groundwater level of the surrounding ground, water having a low electrolyte concentration is always supplied from the upper end of the underground wall. By supplying, it can suppress that the electrolyte density | concentration of the pore water of the clay-type material which comprises an underground wall rises. Therefore, for example, when a clay-based material is composed of a mixture of bentonite and water or a mixture of bentonite, aggregate and water, this material exhibits a predetermined swelling pressure. It is possible to resist the normal earth pressure received from the water, and by constantly supplying water with a low electrolyte concentration, changes in the thickness of the underground wall and changes in the density of the constituent materials are suppressed. For this reason, there exists an effect that the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

また、本発明に係る他の地盤変位吸収免震構造によれば、前記貯水層から前記地中壁の内部下方に延びる多孔管を複数配置したので、前記貯水層に貯水される電解質濃度の低い水を多孔管を通じてより確実に地中壁全体に供給することができ、地中壁を構成する粘土系材料の間隙水の水質をより安定的に維持することができるという効果を奏する。   In addition, according to another ground displacement absorption seismic isolation structure according to the present invention, a plurality of perforated pipes extending from the reservoir to the inside of the underground wall are disposed, so that the concentration of electrolyte stored in the reservoir is low. Water can be more reliably supplied to the entire underground wall through the porous tube, and the quality of the pore water of the clay-based material constituting the underground wall can be more stably maintained.

また、本発明に係る他の地盤変位吸収免震構造によれば、前記地中壁と前記周辺地盤との境界面、または、前記地中壁と前記周辺地盤との境界面に加え前記地中壁と前記構造物との境界面に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持するので、遮水部材によって地中壁の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができるという効果を奏する。   Moreover, according to another ground displacement absorption isolation structure according to the present invention, in addition to the boundary surface between the underground wall and the surrounding ground, or the boundary surface between the underground wall and the surrounding ground, the underground By providing a planar water-impervious member at the boundary surface between the wall and the structure, it is possible to suppress the drying of the underground wall, and the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground The rise of the water is suppressed, the swelling pressure of the clay-based material saturated with water is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. The water shielding member can more effectively prevent the drying of the underground wall and the increase in the electrolyte concentration of pore water. For this reason, there exists an effect that the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

また、本発明に係る他の地盤変位吸収免震構造によれば、前記地中壁内部の前記周辺地盤側、または、前記地中壁内部の前記周辺地盤側に加え前記地中壁内部の前記構造物側に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持するので、遮水部材によって地中壁の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができるという効果を奏する。また、遮水部材は地中壁内部に設けられるので、遮水部材の施工がし易くなるという効果を奏する。   Further, according to another ground displacement absorption seismic isolation structure according to the present invention, in addition to the surrounding ground side inside the underground wall or the surrounding ground side inside the underground wall, the inside of the underground wall By providing a planar water-impervious member on the structure side, the drying of the underground wall is suppressed, and an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground is suppressed, Since the swelling pressure of the clay-based material saturated with water is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. It is possible to more effectively prevent wall drying and increase in electrolyte concentration of pore water. For this reason, there exists an effect that the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided. Moreover, since the water-impervious member is provided inside the underground wall, there is an effect that the water-impervious member can be easily constructed.

また、本発明に係る免震方法によれば、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けることによる前記構造物の免震方法であって、前記地中壁の地表側上端部に電解質濃度の低い水を貯水する貯水層を設け、前記地中壁を構成する粘土系材料に前記貯水層を介して上方から常に電解質濃度の低い水を供給することによって、前記粘土系材料の乾燥を抑制して、水で飽和した前記粘土系材料の剛性を維持する。このため、仮に、周辺地盤の地下水位が地表面から著しく低く、地中壁を構成する粘土系材料が乾燥収縮するおそれがある場合であっても、上方からの電解質濃度の低い水の供給によって地中壁の乾燥収縮が抑制されて厚さが一定に維持されるので、地中壁の剛性が小さい状態に維持される。したがって、長期安定して所要の免震性能を発揮することができるという効果を奏する。   Further, according to the seismic isolation method according to the present invention, the structure is isolated by providing a continuous wall-shaped underground wall made of a clay-based material having water absorption swelling between the surrounding ground and the structure. In this method, a water reservoir for storing water having a low electrolyte concentration is provided at the upper surface of the underground wall, and the electrolyte concentration is always applied to the clay-based material constituting the underground wall from above via the reservoir. By supplying low water, the drying of the clay-based material is suppressed, and the rigidity of the clay-based material saturated with water is maintained. For this reason, even if the groundwater level of the surrounding ground is remarkably low from the ground surface and the clay-based material constituting the underground wall is likely to dry and shrink, the supply of water with a low electrolyte concentration from above Since the drying shrinkage of the underground wall is suppressed and the thickness is kept constant, the rigidity of the underground wall is kept small. Therefore, there is an effect that the required seismic isolation performance can be exhibited stably for a long period of time.

また、本発明に係る他の免震方法によれば、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けることによる前記構造物の免震方法であって、前記地中壁の地表側上端部に前記周辺地盤の地下水よりも電解質濃度の低い水を貯水する貯水層を設け、前記地中壁を構成する粘土系材料に前記貯水層を介して上方から常に前記電解質濃度の低い水を供給することによって、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制するとともに、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持する。このため、仮に、周辺地盤の地下水の電解質濃度が海水のように比較的高い場合であっても、地中壁上方からの電解質濃度の低い水の供給によって地中壁の剛性が小さい状態に維持される。したがって、長期安定して所要の免震性能を発揮することができるという効果を奏する。   Further, according to another seismic isolation method according to the present invention, the structure can be obtained by providing a continuous wall-like underground wall made of a clay-based material having water absorption swelling between the surrounding ground and the structure. In the seismic isolation method, a water storage layer for storing water having an electrolyte concentration lower than ground water of the surrounding ground is provided at an upper end on the surface side of the underground wall, and the water storage is performed on the clay-based material constituting the underground wall. By constantly supplying water with a low electrolyte concentration from above through a layer, an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground is suppressed, and the clay saturated with water The swelling pressure of the system material is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. For this reason, even if the electrolyte concentration of the groundwater in the surrounding ground is relatively high, such as seawater, the underground wall stiffness is kept small by supplying water with a low electrolyte concentration from above the underground wall. Is done. Therefore, there is an effect that the required seismic isolation performance can be exhibited stably for a long period of time.

また、本発明に係る他の免震方法によれば、前記貯水層から前記地中壁の内部下方に延びる多孔管を複数配置し、前記多孔管を介して前記貯水層からの前記電解質濃度の低い水を前記地中壁を構成する粘土系材料に供給するので、電解質濃度の低い水をより確実に地中壁全体に供給することができ、地中壁を構成する粘土系材料の間隙水の水質をより安定的に維持することができるという効果を奏する。   Further, according to another seismic isolation method according to the present invention, a plurality of perforated pipes extending from the reservoir to the inside of the underground wall are arranged, and the electrolyte concentration from the reservoir is measured via the perforated pipe. Since low water is supplied to the clay-based material constituting the underground wall, water having a low electrolyte concentration can be supplied to the entire underground wall more reliably, and the pore water of the clay-based material constituting the underground wall can be supplied. The water quality can be maintained more stably.

また、本発明に係る他の免震方法によれば、前記地中壁と前記周辺地盤との境界面、または、前記地中壁と前記周辺地盤との境界面に加え前記地中壁と前記構造物との境界面に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持するので、遮水部材によって地中壁の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができるという効果を奏する。   Further, according to another seismic isolation method according to the present invention, in addition to the boundary surface between the underground wall and the surrounding ground, or the boundary surface between the underground wall and the surrounding ground, the underground wall and the By providing a planar water-impervious member on the boundary surface with the structure, it is possible to suppress drying of the underground wall, and to increase the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground. Inhibiting and maintaining a constant swelling pressure of the clay-based material saturated with water, suppressing changes in the thickness and density of the underground wall, and maintaining the rigidity of the underground wall, Thus, it is possible to more effectively prevent the drying of the underground wall and the increase in the electrolyte concentration of pore water. For this reason, there exists an effect that the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

また、本発明に係る他の免震方法によれば、前記地中壁内部の前記周辺地盤側、または、前記地中壁内部の前記周辺地盤側に加え前記地中壁内部の前記構造物側に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持するので、遮水部材によって地中壁の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができるという効果を奏する。また、遮水部材は地中壁内部に設けられるので、遮水部材の施工がし易くなるという効果を奏する。   Further, according to another seismic isolation method according to the present invention, in addition to the surrounding ground side inside the underground wall, or the structure side inside the underground wall in addition to the surrounding ground side inside the underground wall By providing a planar water-impervious member, the underground wall is prevented from drying, and the electrolyte concentration in the underground wall due to infiltration of groundwater in the surrounding ground is suppressed, and saturated with water. Since the swelling pressure of the clay-based material is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. In addition, an increase in the electrolyte concentration of pore water can be prevented more effectively. For this reason, there exists an effect that the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided. Moreover, since the water-impervious member is provided inside the underground wall, there is an effect that the water-impervious member can be easily constructed.

図1は、本発明に係る地盤変位吸収免震構造の実施例1を示す正面断面図である。FIG. 1 is a front sectional view showing a first embodiment of a ground displacement absorbing base isolation structure according to the present invention. 図2は、図1の貯水層の部分拡大図である。FIG. 2 is a partially enlarged view of the reservoir of FIG. 図3−1は、周辺地盤の地下水位が低い場合の地中壁の乾燥収縮のイメージを示す図である。FIG. 3-1 is a diagram illustrating an image of drying shrinkage of the underground wall when the groundwater level of the surrounding ground is low. 図3−2は、周辺地盤の地下水位が低い場合に、貯水層から地中壁に電解質濃度の低い水が浸透するイメージを示す図である。FIG. 3-2 is a diagram illustrating an image in which water having a low electrolyte concentration penetrates from the reservoir to the underground wall when the groundwater level of the surrounding ground is low. 図3−3は、周辺地盤の地下水位が低い場合に、貯水層から浸透する電解質濃度の低い水により、地中壁が常に水で飽和されているイメージを示す図である。FIG. 3-3 is a diagram illustrating an image in which the underground wall is always saturated with water due to water having a low electrolyte concentration penetrating from the reservoir when the groundwater level of the surrounding ground is low. 図4−1は、周辺地盤の地下水水質の電解質濃度が高い場合の図であり、地中壁の間隙水の電解質濃度上昇に伴う地中壁の形態変化のイメージを示す図である。FIG. 4-1 is a diagram in the case where the electrolyte concentration of the groundwater quality in the surrounding ground is high, and is a diagram illustrating an image of the shape change of the underground wall accompanying the increase in the electrolyte concentration of pore water in the underground wall. 図4−2は、貯水層から浸透する電解質濃度の低い水により、地中壁の間隙水が常に電解質濃度の低い水で維持されているイメージを示す図である。FIG. 4-2 is a diagram illustrating an image in which pore water in the underground wall is always maintained with water having a low electrolyte concentration by water having a low electrolyte concentration penetrating from the reservoir. 図5−1は、本発明に係る地盤変位吸収免震構造の実施例2を示す概略斜視図である。FIG. 5-1 is a schematic perspective view showing a second example of the ground displacement absorption seismic isolation structure according to the present invention. 図5−2は、図5−1の貯水層の部分拡大図である。FIG. 5-2 is a partially enlarged view of the reservoir of FIG. 5-1. 図5−3は、図5−2において、地中壁に電解質濃度の低い水が浸透するイメージを示す図である。FIG. 5-3 is a diagram illustrating an image in which water having a low electrolyte concentration permeates the underground wall in FIG. 5-2. 図6−1は、本発明に係る地盤変位吸収免震構造の実施例3を示す概略斜視図である。FIG. 6A is a schematic perspective view showing Example 3 of the ground displacement absorption seismic isolation structure according to the present invention. 図6−2は、図6−1の地中壁の上端部の部分拡大図である。FIG. 6B is a partially enlarged view of the upper end portion of the underground wall in FIG. 6A. 図6−3は、図6−2において、地中壁に電解質濃度の低い水が浸透するイメージを示す図である。FIG. 6-3 is a diagram illustrating an image in which water having a low electrolyte concentration permeates the underground wall in FIG. 6-2. 図7−1は、本発明に係る地盤変位吸収免震構造の実施例4を示す概略斜視図である。FIG. 7-1 is a schematic perspective view showing a fourth embodiment of the ground displacement absorption seismic isolation structure according to the present invention. 図7−2は、図7−1の貯水層の部分拡大図である。FIG. 7-2 is a partially enlarged view of the reservoir of FIG. 7-1. 図7−3は、本発明に係る地盤変位吸収免震構造の実施例4の変形例の貯水層の部分拡大図である。7-3 is the elements on larger scale of the water reservoir of the modification of Example 4 of the ground displacement absorption seismic isolation structure which concerns on this invention. 図8は、従来の地盤変位吸収免震構造を示す概略斜視図である。FIG. 8 is a schematic perspective view showing a conventional ground displacement absorbing base isolation structure. 図9は、特許文献2の図2に記載のベントナイト有効乾燥密度と膨潤圧の関係を示す図である。FIG. 9 is a diagram showing the relationship between the bentonite effective dry density and the swelling pressure described in FIG. 図10は、ベントナイト有効乾燥密度と膨潤圧の関係について、間隙水が純水の場合とNaCl濃度1wt%の場合とで比較した図である。FIG. 10 is a diagram comparing the relationship between the bentonite effective dry density and the swelling pressure when the pore water is pure water and when the NaCl concentration is 1 wt%.

以下に、本発明に係る地盤変位吸収免震構造および免震方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Hereinafter, embodiments of a ground displacement absorbing base isolation structure and a base isolation method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

まず、本発明に係る地盤変位吸収免震構造および免震方法の基本的な構成について説明する。
図1に示すように、本発明に係る地盤変位吸収免震構造100は、周辺地盤12に設けられる開削トンネルなどの地中構造物14に作用する地震時の応力を低減するためのものである。地中構造物14は、ボックスカルバートなどの鉄筋コンクリート製の構造物であり、上層地盤12Aに埋設された状態で所定方向(図1の紙面に垂直な方向)に延びて構築されている。地中構造物14が埋設される上層地盤12Aは、弾性波速度Vsが例えば100〜200m/sの軟弱地盤であり、弾性波速度Vsが例えば300〜500m/sの下層地盤12B上に存在している。
First, the basic configuration of the ground displacement absorbing base isolation structure and the base isolation method according to the present invention will be described.
As shown in FIG. 1, a ground displacement absorbing seismic isolation structure 100 according to the present invention is for reducing stress during an earthquake acting on an underground structure 14 such as an open tunnel provided on a surrounding ground 12. . The underground structure 14 is a reinforced concrete structure such as a box culvert, and is constructed to extend in a predetermined direction (a direction perpendicular to the paper surface of FIG. 1) while being embedded in the upper ground 12A. The upper layer ground 12A in which the underground structure 14 is embedded is a soft ground having an elastic wave velocity Vs of, for example, 100 to 200 m / s, and exists on the lower layer ground 12B having an elastic wave velocity Vs of, for example, 300 to 500 m / s. ing.

地中構造物14と周辺地盤12の上層地盤12Aとの間には、吸水膨潤性を有する粘土系材料からなる連続した壁状の地中免震壁16(地中壁)が設置されている。地中免震壁16は、所定の壁幅D(厚さ:図1参照)を有し、地中構造物14の左右両側に接した状態で配置され、地中構造物14の延長方向に連続する壁状体である。この地中免震壁16は、上層地盤12A内に配置されており、地表部分から地中構造物14の下端と略同じ深さまで設けられている。なお、地中免震壁16は、延設される地中構造物14の全長にわたって設けられることに限定されず、延長方向で部分的に設けられていてもよい。   Between the underground structure 14 and the upper ground 12 </ b> A of the surrounding ground 12, a continuous wall-shaped underground seismic isolation wall 16 (underground wall) made of a clay-based material having water absorption and swelling properties is installed. . The underground seismic isolation wall 16 has a predetermined wall width D (thickness: see FIG. 1), is disposed in contact with the left and right sides of the underground structure 14, and extends in the extending direction of the underground structure 14. It is a continuous wall-like body. The underground seismic isolation wall 16 is disposed in the upper ground 12 </ b> A, and is provided from the ground surface portion to substantially the same depth as the lower end of the underground structure 14. The underground seismic isolation wall 16 is not limited to being provided over the entire length of the underground structure 14 to be extended, and may be provided partially in the extending direction.

地中免震壁16を構成する粘土系材料として、ベントナイトと水の混合物(以下、「第1混合物」という)、あるいはベントナイトと骨材と水との混合物(以下、「第2混合物」という)が用いられる。このような粘土系材料は、地震時に繰り返し応力がかかると、履歴減衰によって地震エネルギーを吸収して塑性変形し、地震が終わると元に戻る特性を有している。   As a clay-based material constituting the underground seismic isolation wall 16, a mixture of bentonite and water (hereinafter referred to as "first mixture") or a mixture of bentonite, aggregate and water (hereinafter referred to as "second mixture"). Is used. Such a clay-based material has a characteristic that when a stress is repeatedly applied during an earthquake, it absorbs the earthquake energy by hysteresis damping and plastically deforms, and returns to its original state after the earthquake ends.

第1混合物からなる材料で満たされている領域は、ベントナイト有効乾燥密度で300〜1200kg/mである。また、第2混合物からなる材料において、ベントナイトと水で満たされている領域は、ベントナイト有効乾燥密度(ベントナイトと骨材を混合した材料の場合で、骨材間隙を満たしているベントナイト部分の密度を乾燥密度で示した値)で300〜1200kg/mである。なお、第2混合物の骨材とは、砂や砂礫などの土質材料、あるいはガラスビーズなどの長期変質しにくい人工材料を採用することができる。また、上述した第1混合物で骨材が入っていない材料の場合は、ベントナイト密度のみなのでベントナイト乾燥密度であるが、ここでは「ベントナイト有効乾燥密度」として以下統一して用いる。 The region filled with the material comprising the first mixture is 300 to 1200 kg / m 3 in terms of bentonite effective dry density. In the material composed of the second mixture, the region filled with bentonite and water is the bentonite effective dry density (in the case of a material in which bentonite and aggregate are mixed, the density of the bentonite portion that fills the aggregate gap). It is 300 to 1200 kg / m 3 in terms of dry density. The aggregate of the second mixture may be a soil material such as sand or gravel, or an artificial material that is unlikely to be altered for a long time, such as glass beads. Further, in the case of the above-mentioned first mixture material that does not contain aggregate, it is bentonite density because it is only bentonite density, but here it is used uniformly as “bentonite effective dry density”.

また、地中免震壁16の壁幅Dは、0.2〜2.5mであることが好ましく、より好ましくは0.25〜1.0mとするのがよい。なお、一般的な施工装置の使用が可能なため壁幅Dは0.5〜1.0mとしてもよい。   Further, the wall width D of the underground seismic isolation wall 16 is preferably 0.2 to 2.5 m, and more preferably 0.25 to 1.0 m. In addition, since use of a general construction apparatus is possible, the wall width D is good also as 0.5-1.0m.

上記構成の地盤変位吸収免震構造100および免震方法の基本的作用について説明する。
図1に示すように、地盤変位吸収免震構造100では、地中免震壁16として粘土系材料を用いれば連続した壁状にできることから、地中構造物16への応力低減効果を大きくすることができる。そして、粘土系材料は周囲の上層地盤12Aに比べて例えば0.6倍以下の剛性とすることで、地中構造物14のせん断力低減効果が得られ、地震時の地盤の変形を緩和することができ、免震効果を発揮することができる。
The basic action of the ground displacement absorbing base isolation structure 100 and the base isolation method having the above configuration will be described.
As shown in FIG. 1, in the ground displacement absorbing base isolation structure 100, if a clay-based material is used as the underground seismic isolation wall 16, it can be formed into a continuous wall shape. be able to. The clay-based material has, for example, 0.6 times or less rigidity compared to the surrounding upper-layer ground 12A, so that an effect of reducing the shearing force of the underground structure 14 can be obtained, and the deformation of the ground during an earthquake is alleviated. Can exhibit seismic isolation effect.

また、地中免震壁16の粘土系材料がベントナイトと水の第1混合物、あるいはベントナイトと骨材と水の第2混合物である場合には、ベントナイト有効乾燥密度を調整することにより、所定の膨潤圧を発揮することができるため、周囲の地盤から受ける常時の土圧に抵抗する反力を確保することができる。   Further, when the clay-based material of the underground seismic isolation wall 16 is a first mixture of bentonite and water, or a second mixture of bentonite, aggregate, and water, the bentonite effective dry density is adjusted to obtain a predetermined Since the swelling pressure can be exerted, it is possible to secure a reaction force that resists the normal earth pressure received from the surrounding ground.

そして、第1混合物の場合には、ベントナイトと水で満たされている領域がベントナイト有効乾燥密度の値で300〜1200kg/mの範囲であるので、この密度範囲であれば、図9に示すように吸水膨潤圧が0.03〜0.3MPaとなる。そのため、地盤(上層地盤12A)の水中質量を約1g/cmと仮定して、側方土圧が土被り圧の1倍とすると、深さ30mまでの土圧に耐えることができる。地中免震壁16の設置する深さに応じて、材料の密度を適宜調整して構築することでより効果的にできる。 And in the case of the 1st mixture, since the area | region filled with bentonite and water is the range of 300-1200 kg / m < 3 > by the value of a bentonite effective dry density, if it is this density range, it will be shown in FIG. Thus, the water absorption swelling pressure becomes 0.03 to 0.3 MPa. Therefore, assuming that the underwater mass of the ground (upper ground 12A) is about 1 g / cm 3 , the soil pressure up to a depth of 30 m can be withstood when the lateral earth pressure is 1 times the earth covering pressure. It can be made more effective by appropriately adjusting the material density according to the depth at which the underground seismic isolation wall 16 is installed.

また、ベントナイトのせん断剛性も同様にベントナイト有効乾燥密度によって異なる特性を有している。これは、骨材体積が材料中に占める割合が5割以下である場合には、骨材粒子相互が接触して相互に応力を伝達する粒子構造とはならずに、骨材と骨材との間にベントナイトゲル(ベントナイトと水の混合物)が介在しているので、材料のせん断特性はベントナイトゲルの特性によって主として決まるからである。したがって、ベントナイト有効乾燥密度を調整することにより、当接材料のせん断剛性を周囲の地盤より小さくすることができ、地震時の繰り返し変形により地盤変形を吸収し、躯体への悪影響を軽減して、外力を吸収する効果が期待できる。   Similarly, the shear stiffness of bentonite also has different characteristics depending on the bentonite effective dry density. This is because, when the proportion of the aggregate volume in the material is 50% or less, the aggregate particles do not form a particle structure in which the aggregate particles contact each other and transmit stress to each other. This is because a bentonite gel (a mixture of bentonite and water) is interposed between them, so that the shear characteristics of the material are mainly determined by the characteristics of the bentonite gel. Therefore, by adjusting the bentonite effective dry density, the shear stiffness of the contact material can be made smaller than the surrounding ground, absorbing the ground deformation by repeated deformation at the time of earthquake, reducing the adverse effect on the frame, The effect of absorbing external force can be expected.

また、ベントナイトの吸水膨張特性を十分に活用することを特徴としているため、地下水位が高い地盤環境下においても施工が容易である。つまり、周囲の地盤が完全に乾燥していない湿潤状態であれば、ベントナイトの保水能力が維持されるので、壁幅Dと材料密度を長期間維持することができる。さらに、地中免震壁16として、無機系の天然鉱物である粘土系材料を用いるので、周囲への環境上の影響を懸念する必要がない。   Moreover, since it is characterized by fully utilizing the water absorption and expansion characteristics of bentonite, the construction is easy even in a ground environment where the groundwater level is high. That is, if the surrounding ground is not completely dry, the water retention capacity of bentonite is maintained, so that the wall width D and the material density can be maintained for a long time. Furthermore, since the clay-based material, which is an inorganic natural mineral, is used as the underground seismic isolation wall 16, there is no need to worry about the environmental impact on the surroundings.

ここで、地中免震壁16の材料は、豊浦砂の結果と比較して剛性はかなり小さいことが知られている(例えば、特許文献2の図3を参照)。また、地中免震壁16の材料の非線形特性は、地震時(繰り返しせん断時)にはヒステリシスを描くので、エネルギー吸収による履歴減衰材料(ダンパー材料)として適していることが知られている(例えば、特許文献2の図4を参照)。この履歴減衰効果は、ベントナイトに砂を混入することで、大きくすることができる。したがって、拘束圧依存性は、地盤材料ほど大きくなく、ベントナイト有効乾燥密度を適宜調整することができる。   Here, it is known that the material of the underground seismic isolation wall 16 is considerably less rigid than the result of Toyoura sand (see, for example, FIG. 3 of Patent Document 2). Moreover, since the nonlinear characteristic of the material of the underground seismic isolation wall 16 draws a hysteresis during an earthquake (during repeated shearing), it is known to be suitable as a hysteresis damping material (damper material) by energy absorption ( For example, see FIG. 4 of Patent Document 2.) This hysteresis damping effect can be increased by mixing sand into bentonite. Therefore, the constraint pressure dependency is not as great as that of the ground material, and the bentonite effective dry density can be appropriately adjusted.

また、ベントナイトは吸水膨張する特性を有しており、ひび割れや何らかの損傷が生じたとしても、地下水が浸透してくる条件下ではその損傷を自己修復することができる。つまり、周囲の地盤からの土圧によって地中免震壁16の壁幅Dが減少することがない利点がある。さらに、地中免震壁16を構成する粘土系材料は天然の無機質鉱物材料であるから変質がなく、保水状態も変化し難いのでメンテンスが不要になるという効果を奏する。   In addition, bentonite has the property of absorbing and expanding, and even if cracking or some damage occurs, the damage can be self-repaired under the condition that groundwater penetrates. That is, there is an advantage that the wall width D of the underground seismic isolation wall 16 is not reduced by earth pressure from the surrounding ground. Further, since the clay-based material constituting the underground seismic isolation wall 16 is a natural inorganic mineral material, there is no alteration, and the water retention state is hardly changed, so that there is an effect that maintenance is unnecessary.

また、地中免震壁16の壁幅Dが0.2〜2.5mの範囲であれば、せん断力低減率(地中免震壁16を設けた場合の地中構造物14に生じるせん断力を地中免震壁16が無い場合の地中構造物に生じるせん断力で除した値)が1より小さくなり、地中構造物14のせん断力を低減する効果がある。これは、鉛直円柱状のポリマー改良土を地中に飛び飛びに配置して施工した場合の従来のポリマー工法よりも対策範囲(地中免震壁16を配置する平面領域)が小さくなることから、大きな低減効果を得ることができ、コストダウンを図ることも可能となる。   Moreover, if the wall width D of the underground seismic isolation wall 16 is in the range of 0.2 to 2.5 m, the shear force reduction rate (the shear generated in the underground structure 14 when the underground isolation wall 16 is provided). The value obtained by dividing the force by the shearing force generated in the underground structure when there is no underground seismic isolation wall 16 is smaller than 1, and the shearing force of the underground structure 14 is reduced. This is because the countermeasure area (planar area where the underground seismic isolation wall 16 is arranged) is smaller than the conventional polymer construction method when the vertical cylinder-shaped polymer improved soil is disposed in the ground. A great reduction effect can be obtained, and the cost can be reduced.

そして、新規に地中構造物14を構築する際に、それに接するようにして地中免震壁16を構築しているが、このような場合に地中構造物14の周囲に必要な構築空間を小さくすることができる。また、既設の地中構造物14の近傍の地中に対して、後に地中免震壁16を構築する場合も想定されるが、地中免震壁16の壁幅Dが小さくても効果があることから、隣接した地中構造物が存在する狭隘な場所や狭い敷地の中で地中構造物の外側に、既設構造物の免震対策として設置することも可能である。さらに、耐震基準を満足しない地中構造物14に対する耐震補強工事においても、この地盤変位吸収免震構造100を用いることにより、既存構造物では耐震補強し難いとされている地中構造物14の補強に有効に活用できる。   When the underground structure 14 is newly constructed, the underground seismic isolation wall 16 is constructed so as to be in contact therewith. In such a case, a construction space necessary around the underground structure 14 is constructed. Can be reduced. Moreover, although it is assumed that the underground seismic isolation wall 16 is constructed later for the underground in the vicinity of the existing underground structure 14, it is effective even if the wall width D of the underground seismic isolation wall 16 is small. Therefore, it can also be installed as a seismic isolation measure for existing structures in a narrow place where there are adjacent underground structures or inside a narrow site. Further, even in the seismic reinforcement work for the underground structure 14 that does not satisfy the earthquake resistance standard, the ground displacement absorbing seismic isolation structure 100 is used, so that the underground structure 14 that is difficult to be seismically strengthened by the existing structure is used. It can be used effectively for reinforcement.

次に、本発明に係る地盤変位吸収免震構造および免震方法の特徴的な構成について説明する。   Next, a characteristic configuration of the ground displacement absorbing base isolation structure and the base isolation method according to the present invention will be described.

(実施例1)
まず、本発明の実施例1について説明する。
図1に示すように、本発明の実施例1に係る地盤変位吸収免震構造100は、地中免震壁16の地表GL側の上端部16aの上に、電解質濃度の低い水Wを貯水する貯水層18をさらに備えている。
Example 1
First, Example 1 of the present invention will be described.
As shown in FIG. 1, the ground displacement absorption seismic isolation structure 100 according to the first embodiment of the present invention stores water W having a low electrolyte concentration on the top surface 16 a on the surface GL side of the underground seismic isolation wall 16. The water reservoir 18 is further provided.

貯水層18は、図2に示すように、2つの鉛直壁18aとその各下端どうしを繋ぐ底板18bとからなるU字溝状を呈しており、その天端部分は蓋板18cで覆われている。底板18bは透水性構造であり、貯水層18内に貯水された電解質濃度の低い水Wは底板18bを透過してその下方にある地中免震壁16の上端部16aに浸透可能となっている。貯水層18内の電解質濃度の低い水Wの水位WLは、周辺地盤12の地下水位GWL(不図示)よりも高くなるように設定してあり、周辺地盤12の地下水が貯水層18内部に流入しないようになっている。また、底板18bの幅Eは、地中免震壁16の壁幅Dよりも大きい寸法に設定してあり、底板18bからの電解質濃度の低い水Wの浸透流の及ぶ範囲が地中免震壁16の上端部16a上面全体を覆うようになっている。   As shown in FIG. 2, the reservoir 18 has a U-shaped groove formed by two vertical walls 18a and a bottom plate 18b connecting the lower ends thereof, and the top end portion is covered with a lid plate 18c. Yes. The bottom plate 18b has a water permeable structure, and water W having a low electrolyte concentration stored in the reservoir 18 can penetrate the bottom plate 18b and penetrate the upper end portion 16a of the underground seismic isolation wall 16 below the bottom plate 18b. Yes. The water level WL of the low-electrolyte water W in the reservoir 18 is set to be higher than the groundwater level GWL (not shown) of the surrounding ground 12, and the groundwater of the surrounding ground 12 flows into the reservoir 18. It is supposed not to. The width E of the bottom plate 18b is set to be larger than the wall width D of the underground seismic isolation wall 16, and the range covered by the permeate flow of water W having a low electrolyte concentration from the bottom plate 18b is the underground isolation. The entire upper surface of the upper end portion 16a of the wall 16 is covered.

上記構成の動作および作用について説明する。
まず、周辺地盤12の地下水位GWLが著しく低い場合の動作および作用について説明する。
The operation and action of the above configuration will be described.
First, the operation and action when the groundwater level GWL of the surrounding ground 12 is extremely low will be described.

図3−1〜図3−3は、周辺地盤12の地下水位GWLが著しく低い場合の図である。図3−1は、電解質濃度の低い水Wの浸透がない場合の地中免震壁16の乾燥収縮のイメージ、図3−2は、貯水層18から地中免震壁16に電解質濃度の低い水Wが浸透するイメージ、図3−3は、貯水層18から浸透する電解質濃度の低い水Wにより、地中免震壁16が常に水で飽和されているイメージを示している。   3-1 to 3-3 are diagrams in the case where the groundwater level GWL of the surrounding ground 12 is extremely low. Fig. 3-1 shows an image of drying shrinkage of the underground seismic isolation wall 16 when there is no penetration of water W having a low electrolyte concentration, and Fig. 3-2 shows the electrolyte concentration from the reservoir 18 to the underground isolation wall 16 An image of low water W penetrating, FIG. 3-3 shows an image in which the underground seismic isolation wall 16 is always saturated with water by the water W having a low electrolyte concentration penetrating from the reservoir 18.

図3−1に示すように、周辺地盤12の地下水位GWLが著しく低く、電解質濃度の低い水Wの浸透がない場合には、地下水位GWLよりも上方の地中免震壁16を構成する粘土系材料が乾燥収縮することにより、地中免震壁16の上方部分は乾燥収縮して壁幅Dが減少するとともに剛性が大きくなるため、地中免震壁16に作用する側方土圧に対する変位吸収能力が減じ、結果として免震性能は低下してしまう。   As shown in FIG. 3-1, when the groundwater level GWL of the surrounding ground 12 is remarkably low and there is no penetration of water W having a low electrolyte concentration, the underground seismic isolation wall 16 above the groundwater level GWL is configured. Since the clay-based material is dried and shrunk, the upper part of the underground seismic isolation wall 16 is dried and shrunk to reduce the wall width D and increase the rigidity. Therefore, the lateral earth pressure acting on the underground seismic isolation wall 16 is reduced. As a result, the seismic isolation performance declines.

これに対し、図3−2および図3−3に示すように、地中免震壁16の上端部16aに常に貯水層18からの下向きの浸透流による電解質濃度の低い水Wの供給がある場合には、地中免震壁16を構成する吸水膨潤性の粘土系材料は常に水で飽和して保水能力が維持されるので、地中免震壁16は乾燥収縮することなく、地中免震壁16の壁幅Dとその構成材料密度を長期間一定に維持し、地中免震壁16の剛性を小さい状態に保持することができる。この結果、地中免震壁16の変位吸収能力は維持されるので、免震性能の低下を招くおそれはない。したがって、本発明の実施例1によれば、長期安定性に優れた地盤変位吸収免震構造を提供することができる。   On the other hand, as shown in FIGS. 3-2 and 3-3, water W having a low electrolyte concentration is always supplied to the upper end portion 16a of the underground seismic isolation wall 16 by the downward osmotic flow from the reservoir 18. In this case, since the water-absorbing and swelling clay-based material constituting the underground seismic isolation wall 16 is always saturated with water and the water retention capability is maintained, the underground seismic isolation wall 16 does not shrink and dry. The wall width D of the base isolation wall 16 and its constituent material density can be maintained constant for a long period of time, and the rigidity of the underground base isolation wall 16 can be kept small. As a result, since the displacement absorption capacity of the underground seismic isolation wall 16 is maintained, there is no possibility that the seismic isolation performance is deteriorated. Therefore, according to Example 1 of this invention, the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

次に、周辺地盤12の地下水水質の電解質濃度が高い場合の動作および作用について説明する。
図4−1および図4−2は、周辺地盤12の地下水水質の電解質濃度が高い場合の図である。図4−1は、電解質濃度の低い水Wの浸透がない場合における地中免震壁16の間隙水の電解質濃度上昇に伴う形態変化のイメージ、図4−2は、貯水層18から浸透する電解質濃度の低い水Wにより、地中免震壁16の間隙水が常に電解質濃度の低い水で維持されているイメージを示している。
Next, the operation and action when the electrolyte concentration of the groundwater quality in the surrounding ground 12 is high will be described.
FIGS. 4-1 and FIGS. 4-2 are figures when the electrolyte concentration of the groundwater quality of the surrounding ground 12 is high. FIG. 4A is an image of a morphological change accompanying an increase in the electrolyte concentration of pore water in the underground seismic isolation wall 16 when there is no penetration of water W having a low electrolyte concentration, and FIG. 4B penetrates from the reservoir 18. It shows an image in which the pore water in the underground seismic isolation wall 16 is always maintained by water having a low electrolyte concentration by the water W having a low electrolyte concentration.

図4−1に示すように、周辺地盤12の地下水水質の電解質濃度が高い場合(例えば海岸付近の埋め立て地のように海水に近い水質である場合)には、地中免震壁16を構成する粘土系材料の間隙水の電解質濃度が上昇し、吸水膨張圧は低下する(図10を参照)。その結果、地中免震壁16に作用する側方土圧に抵抗できる吸水膨張圧を発揮できなくなり、地中免震壁16は土圧を受けて変形し、壁幅Dが減少するとともに間隙水が排水されて構成材料の密度は増加し、剛性が大きくなる。この場合には、地中免震壁16の変位吸収能力が減じるので、結果として免震性能は低下してしまう。さらに、地中壁周辺の地盤は側方に変形し、地表面沈下が発生する懸念が生じる。   As shown in FIG. 4-1, when the electrolyte concentration of the groundwater quality of the surrounding ground 12 is high (for example, when the water quality is close to seawater like a landfill near the coast), the underground seismic isolation wall 16 is configured. The electrolyte concentration of pore water in the clay-based material increases, and the water absorption expansion pressure decreases (see FIG. 10). As a result, the water absorption expansion pressure that can resist the lateral earth pressure acting on the underground seismic isolation wall 16 cannot be exhibited, the underground seismic isolation wall 16 is deformed by the earth pressure, the wall width D is reduced, and the gap is reduced. As the water is drained, the density of the constituent materials increases and the rigidity increases. In this case, since the displacement absorption capacity of the underground seismic isolation wall 16 is reduced, the seismic isolation performance is lowered as a result. Furthermore, the ground around the underground wall is deformed to the side, and there is a concern that ground surface settlement may occur.

これに対し、図4−2に示すように、地中免震壁16の上端部16aに常に貯水層18からの下向きの浸透流による電解質濃度の低い水W(周辺地盤12の地下水よりも電解質濃度の低い水)の供給がある場合には、地中免震壁16を構成する粘土系材料の間隙水は常に電解質濃度の低い水で飽和され、周辺地盤12の地下水の浸透による地中免震壁16の間隙水の電解質濃度の上昇が抑制される。電解質濃度の低い水で飽和した粘土系材料の膨潤圧は一定に維持されるので、地中免震壁16の壁幅Dとその構成材料の密度の変化を抑制して、地中免震壁16の剛性を小さい状態に保持することができる。この結果、地中免震壁16の変位吸収能力は維持されるので、免震性能の低下を招くおそれはない。また、地中壁周辺の地盤変形や地表面沈下は生じなくなる。このため、周辺地盤12の地下水の電解質濃度が海水のように比較的高い場合であっても、長期安定して所要の免震性能を発揮することができる。   On the other hand, as shown in FIG. 4B, the water W having a lower electrolyte concentration due to the downward seepage flow from the reservoir 18 is always present at the upper end 16a of the underground seismic isolation wall 16 (the electrolyte is lower than the groundwater of the surrounding ground 12). When there is a supply of low-concentration water), the pore water of the clay-based material constituting the underground seismic isolation wall 16 is always saturated with water having a low electrolyte concentration, and the underground isolation due to the infiltration of groundwater in the surrounding ground 12 An increase in the electrolyte concentration of pore water in the seismic wall 16 is suppressed. Since the swelling pressure of the clay-based material saturated with water having a low electrolyte concentration is kept constant, the change in the wall width D of the underground seismic isolation wall 16 and the density of its constituent materials is suppressed, and the underground isolation wall The rigidity of 16 can be kept small. As a result, since the displacement absorption capacity of the underground seismic isolation wall 16 is maintained, there is no possibility that the seismic isolation performance is deteriorated. In addition, ground deformation and ground subsidence around the underground wall do not occur. For this reason, even if it is a case where the electrolyte concentration of the groundwater of the surrounding ground 12 is comparatively high like seawater, long-term stable and seismic isolation performance can be exhibited.

(実施例2)
次に、本発明の実施例2について説明する。
図5−1および図5−2に示すように、本発明の実施例2に係る地盤変位吸収免震構造200は、上記の実施例1の地盤変位吸収免震構造100と同様の構造であり、地中免震壁16の地表GL側の上端部16aの上に、電解質濃度の低い水Wを貯水する貯水層20を設けるとともに、この貯水層20の下側に多孔管22を配置したものである。
(Example 2)
Next, a second embodiment of the present invention will be described.
As shown in FIGS. 5A and 5B, the ground displacement absorbing base isolation structure 200 according to the second embodiment of the present invention is the same structure as the ground displacement absorbing base isolation structure 100 according to the first embodiment. A water reservoir 20 for storing water W having a low electrolyte concentration is provided on the upper end portion 16a on the ground surface GL side of the underground seismic isolation wall 16, and a porous tube 22 is disposed below the water reservoir 20 It is.

貯水層20は、上記の実施例1の貯水層18と類似の構造をしており、図5−2に示すように、2つの鉛直壁20aとその各下端どうしを繋ぐ底板20bとからなるU字溝状を呈し、その天端部分は蓋板20cで覆われている。底板20bの幅方向中央部には多孔管22と連通する開口24が設けてある。   The water reservoir 20 has a structure similar to that of the water reservoir 18 of the first embodiment, and as shown in FIG. 5B, a U plate composed of two vertical walls 20a and a bottom plate 20b connecting the lower ends thereof. It has a groove shape, and its top end portion is covered with a cover plate 20c. An opening 24 communicating with the porous tube 22 is provided at the center in the width direction of the bottom plate 20b.

多孔管22は、管胴部分に多数の孔が開けられた管であり、貯水層20の底板20bから鉛直方向下方に延びる態様で地中免震壁16の内部に設けられ、貯水層20の延在方向に沿って所定の間隔で複数配置される。ここで、貯水層20内の電解質濃度の低い水Wの水位WLは、周辺地盤12の地下水位GWL(不図示)よりも高くなるように設定してあり、周辺地盤12の地下水が貯水層20内部に流入しないようになっている。   The perforated tube 22 is a tube having a large number of holes in the tube body, and is provided inside the underground seismic isolation wall 16 in a manner extending vertically downward from the bottom plate 20b of the reservoir 20, and the reservoir 20 A plurality are arranged at predetermined intervals along the extending direction. Here, the water level WL of the water W having a low electrolyte concentration in the reservoir 20 is set to be higher than the groundwater level GWL (not shown) of the surrounding ground 12, and the groundwater of the surrounding ground 12 is stored in the reservoir 20. It does not flow into the interior.

この構成によれば、貯水層20内に貯水された電解質濃度の低い水Wは底板20bの開口24から多孔管22に入ってその周囲の地中免震壁16に浸透可能であることから、電解質濃度の低い水Wは多孔管22を通じてより確実に地中免震壁16の内部全体に供給され得る。このため、地中免震壁16を構成する粘土系材料の間隙水の水質をより確実かつ安定的に維持することができる。したがって、本発明の実施例2によれば、より長期安定性に優れた地盤変位吸収免震構造を提供することができる。   According to this configuration, water W having a low electrolyte concentration stored in the reservoir 20 can enter the perforated tube 22 through the opening 24 of the bottom plate 20b and penetrate the underground seismic isolation wall 16 around the water W. Water W having a low electrolyte concentration can be more reliably supplied to the entire interior of the underground seismic isolation wall 16 through the porous tube 22. For this reason, the quality of the pore water of the clay-based material constituting the underground seismic isolation wall 16 can be more reliably and stably maintained. Therefore, according to the second embodiment of the present invention, it is possible to provide a ground displacement absorption seismic isolation structure with better long-term stability.

次に、周辺地盤12の地下水水質の電解質濃度が高い場合の動作および作用について説明する。
図5−3は、貯水層20の下側の多孔管22から浸透する電解質濃度の低い水Wにより、地中免震壁16の間隙水が常に電解質濃度の低い水で維持されているイメージを示している。
Next, the operation and action when the electrolyte concentration of the groundwater quality in the surrounding ground 12 is high will be described.
FIG. 5-3 is an image in which the pore water in the underground seismic isolation wall 16 is always maintained by the low electrolyte concentration water by the low electrolyte concentration water W penetrating from the porous tube 22 below the reservoir 20. Show.

図5−3に示すように、地中免震壁16の内部で多孔管22からの浸透流による電解質濃度の低い水W(周辺地盤12の地下水よりも電解質濃度の低い水)の供給がある場合には、地中免震壁16を構成する粘土系材料の間隙水は常に電解質濃度の低い水で飽和され、周辺地盤12の地下水の浸透による地中免震壁16の間隙水の電解質濃度の上昇が抑制される。電解質濃度の低い水で飽和した粘土系材料の膨潤圧は一定に維持されるので、地中免震壁16の壁幅Dとその構成材料の密度の変化を抑制して、地中免震壁16の剛性を小さい状態に保持することができる。この結果、地中免震壁16の変位吸収能力は維持されるので、免震性能の低下を招くおそれはない。また、地中壁周辺の地盤変形や地表面沈下は生じなくなる。地中免震壁16を構成する粘土系材料の間隙水の水質をより確実かつ安定的に維持することができるので、周辺地盤12の地下水の電解質濃度が海水のように比較的高い場合であっても、長期安定して所要の免震性能を発揮することができる。   As shown in FIG. 5-3, there is a supply of water W having a low electrolyte concentration (water having a lower electrolyte concentration than the ground water in the surrounding ground 12) due to the seepage flow from the porous tube 22 inside the underground seismic isolation wall 16. In this case, the pore water of the clay-based material constituting the underground seismic isolation wall 16 is always saturated with water having a low electrolyte concentration, and the electrolyte concentration of the pore water in the underground seismic isolation wall 16 due to the infiltration of groundwater in the surrounding ground 12. Rise is suppressed. Since the swelling pressure of the clay-based material saturated with water having a low electrolyte concentration is kept constant, the change in the wall width D of the underground seismic isolation wall 16 and the density of its constituent materials is suppressed, and the underground isolation wall The rigidity of 16 can be kept small. As a result, since the displacement absorption capacity of the underground seismic isolation wall 16 is maintained, there is no possibility that the seismic isolation performance is deteriorated. In addition, ground deformation and ground subsidence around the underground wall do not occur. Since the pore water quality of the clay-based material constituting the underground seismic isolation wall 16 can be more reliably and stably maintained, the electrolyte concentration of the groundwater in the surrounding ground 12 is relatively high like seawater. However, the required seismic isolation performance can be demonstrated stably over the long term.

(実施例3)
次に、本発明の実施例3について説明する。
図6−1および図6−2に示すように、本発明の実施例3に係る地盤変位吸収免震構造300は、上記の実施例2の地盤変位吸収免震構造200と類似の構造であり、地中免震壁16の上端部16aに、通水または貯水する電解質濃度の低い水Wを地中免震壁16に供給するための供給管26を設けるとともに、この供給管26の下側に多孔管28を配置したものである。
Example 3
Next, Embodiment 3 of the present invention will be described.
As shown in FIGS. 6A and 6B, the ground displacement absorbing base isolation structure 300 according to the third embodiment of the present invention is similar to the ground displacement absorbing base isolation structure 200 according to the second embodiment. The upper end portion 16a of the underground seismic isolation wall 16 is provided with a supply pipe 26 for supplying the underground seismic isolation wall 16 with water W having a low electrolyte concentration for passing or storing water. The perforated tube 28 is arranged in the above.

供給管26は、基本的には上記の実施例2の貯水層20と同様の機能を有しており、地中免震壁16の上端部16aに埋設され、地中免震壁16に沿って水平方向に延在する円形断面の管路である。供給管26の下側部分には多孔管28と連通する開口30が設けてある。なお、地中免震壁16の上端部16aは蓋板32で被覆されている。   The supply pipe 26 basically has the same function as the water reservoir 20 of the above-described second embodiment, is embedded in the upper end portion 16 a of the underground seismic isolation wall 16, and extends along the underground seismic isolation wall 16. The pipe has a circular cross section extending in the horizontal direction. An opening 30 communicating with the porous tube 28 is provided in the lower portion of the supply tube 26. The upper end portion 16 a of the underground seismic isolation wall 16 is covered with a cover plate 32.

多孔管28は、管胴部分に多数の孔が開けられた管であり、供給管26の開口30から鉛直方向下方に延びる態様で地中免震壁16の内部に設けられ、供給管26の延在方向に沿って所定の間隔で複数配置される。ここで、供給管26の水は周辺地盤12の地下水位GWLよりも高い水圧に維持されるように設定するので、周辺地盤12の地下水は地中免震壁16に流入しない。   The perforated tube 28 is a tube having a large number of holes in the tube body, and is provided inside the underground seismic isolation wall 16 in a manner extending vertically downward from the opening 30 of the supply tube 26. A plurality are arranged at predetermined intervals along the extending direction. Here, since the water of the supply pipe 26 is set to be maintained at a higher water pressure than the groundwater level GWL of the surrounding ground 12, the groundwater of the surrounding ground 12 does not flow into the underground seismic isolation wall 16.

この構成によれば、供給管26内に通水または貯水された電解質濃度の低い水Wは開口30から多孔管28に入ってその周囲の地中免震壁16に浸透可能であることから、電解質濃度の低い水Wは多孔管28を通じてより確実に地中免震壁16の内部全体に供給され得る。このため、地中免震壁16を構成する粘土系材料の間隙水の水質をより確実かつ安定的に維持することができる。したがって、本発明の実施例3によれば、より長期安定性に優れた地盤変位吸収免震構造を提供することができる。   According to this configuration, water W having a low electrolyte concentration passed through or stored in the supply pipe 26 can enter the perforated pipe 28 through the opening 30 and permeate the underground seismic isolation wall 16 therearound. Water W having a low electrolyte concentration can be more reliably supplied to the entire interior of the underground seismic isolation wall 16 through the porous tube 28. For this reason, the quality of the pore water of the clay-based material constituting the underground seismic isolation wall 16 can be more reliably and stably maintained. Therefore, according to the third embodiment of the present invention, it is possible to provide a ground displacement absorption seismic isolation structure with better long-term stability.

次に、周辺地盤12の地下水水質の電解質濃度が高い場合の動作および作用について説明する。
図6−3は、供給管26の下側の多孔管28から浸透する電解質濃度の低い水Wにより、地中免震壁16の間隙水が常に電解質濃度の低い水で維持されているイメージを示している。
Next, the operation and action when the electrolyte concentration of the groundwater quality in the surrounding ground 12 is high will be described.
FIG. 6-3 is an image in which the pore water of the underground seismic isolation wall 16 is always maintained by water having a low electrolyte concentration by the water W having a low electrolyte concentration penetrating from the porous pipe 28 below the supply pipe 26. Show.

図6−3に示すように、地中免震壁16の内部で多孔管28からの浸透流による電解質濃度の低い水W(周辺地盤12の地下水よりも電解質濃度の低い水)の供給がある場合には、地中免震壁16を構成する粘土系材料の間隙水は常に電解質濃度の低い水で飽和され、周辺地盤12の地下水の浸透による地中免震壁16の間隙水の電解質濃度の上昇が抑制される。電解質濃度の低い水で飽和した粘土系材料の膨潤圧は一定に維持されるので、地中免震壁16の壁幅Dとその構成材料の密度の変化を抑制して、地中免震壁16の剛性を小さい状態に保持することができる。この結果、地中免震壁16の変位吸収能力は維持されるので、免震性能の低下を招くおそれはない。また、地中壁周辺の地盤変形や地表面沈下は生じなくなる。地中免震壁16を構成する粘土系材料の間隙水の水質をより確実かつ安定的に維持することができるので、周辺地盤12の地下水の電解質濃度が海水のように比較的高い場合であっても、長期安定して所要の免震性能を発揮することができる。   As shown in FIG. 6-3, there is a supply of water W having a low electrolyte concentration (water having a lower electrolyte concentration than the ground water in the surrounding ground 12) due to the permeate flow from the porous tube 28 inside the underground seismic isolation wall 16. In this case, the pore water of the clay-based material constituting the underground seismic isolation wall 16 is always saturated with water having a low electrolyte concentration, and the electrolyte concentration of the pore water in the underground seismic isolation wall 16 due to the infiltration of groundwater in the surrounding ground 12. Rise is suppressed. Since the swelling pressure of the clay-based material saturated with water having a low electrolyte concentration is kept constant, the change in the wall width D of the underground seismic isolation wall 16 and the density of its constituent materials is suppressed, and the underground isolation wall The rigidity of 16 can be kept small. As a result, since the displacement absorption capacity of the underground seismic isolation wall 16 is maintained, there is no possibility that the seismic isolation performance is deteriorated. In addition, ground deformation and ground subsidence around the underground wall do not occur. Since the pore water quality of the clay-based material constituting the underground seismic isolation wall 16 can be more reliably and stably maintained, the electrolyte concentration of the groundwater in the surrounding ground 12 is relatively high like seawater. However, the required seismic isolation performance can be demonstrated stably over the long term.

(実施例4)
次に、本発明の実施例4について説明する。
図7−1および図7−2に示すように、本発明の実施例4に係る地盤変位吸収免震構造400は、上記の実施例1の地盤変位吸収免震構造100の構造において、地中免震壁16内部の周辺地盤12側と、構造物14側とに対して面状の遮水シート34(遮水部材)を設けたものである。
Example 4
Next, a fourth embodiment of the present invention will be described.
As shown in FIGS. 7-1 and 7-2, the ground displacement absorbing base isolation structure 400 according to the fourth embodiment of the present invention is the same as the ground displacement absorbing base isolation structure 100 of the first embodiment. A planar water-impervious sheet 34 (water-impervious member) is provided on the surrounding ground 12 side inside the seismic isolation wall 16 and the structure 14 side.

遮水シート34は、地中免震壁16の側面全体を覆うように設けることが好ましく、ゴム系または高分子系材料などの遮水性材料を用いて構成することが望ましい。このように、面状の遮水シート34で地中免震壁16を両側から挟み込む構造とすることで、貯水層18からの電解質濃度の低い水Wを地中免震壁16に対して効率的に供給することができ、地中免震壁16の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。水で飽和した地中免震壁16の粘土系材料の膨潤圧を一定に維持し、地中免震壁16の厚さおよび密度の変化を抑制して、地中免震壁16の剛性を小さく維持することができる。したがって、長期安定性に優れた地盤変位吸収免震構造を提供することが可能となる。なお、遮水シート34の施工方法としては、例えば、特許第4405936号公報や特許第4771157号公報に記載の方法を適用すればよい。このような方法を用いることにより、遮水シート34の施工を比較的容易に行なうことができる。   The water-impervious sheet 34 is preferably provided so as to cover the entire side surface of the underground seismic isolation wall 16, and is preferably configured using a water-impervious material such as a rubber-based or polymer-based material. As described above, the structure in which the underground seismic isolation wall 16 is sandwiched from both sides by the planar water-impervious sheet 34 allows the water W having a low electrolyte concentration from the reservoir 18 to be efficiently compared to the underground seismic isolation wall 16. Therefore, drying of the underground seismic isolation wall 16 and increase in the electrolyte concentration of pore water can be more effectively prevented. The swelling pressure of the clay-based material of the underground seismic isolation wall 16 saturated with water is kept constant, and changes in the thickness and density of the underground isolation wall 16 are suppressed, and the rigidity of the underground isolation wall 16 is increased. Can be kept small. Therefore, it is possible to provide a ground displacement absorption seismic isolation structure with excellent long-term stability. In addition, as a construction method of the water shielding sheet 34, for example, a method described in Japanese Patent No. 4405936 or Japanese Patent No. 4771157 may be applied. By using such a method, construction of the water shielding sheet 34 can be performed relatively easily.

なお、貯水層18の鉛直壁18aおよび底板18bと周辺地盤12との境界面に対して、遮水シート34と同一の材質からなる面状の遮水シート36を設けてもよい。こうすることで、貯水層18から周辺地盤12への直接的な水Wの漏洩を抑制し、貯水層18からより集中的に地中免震壁16に電解質濃度の低い水Wを供給することが可能となる。   Note that a planar water-impervious sheet 36 made of the same material as the water-impervious sheet 34 may be provided on the boundary surfaces of the vertical walls 18 a and the bottom plate 18 b of the reservoir 18 and the surrounding ground 12. By doing so, direct leakage of water W from the reservoir 18 to the surrounding ground 12 is suppressed, and water W having a low electrolyte concentration is supplied from the reservoir 18 to the underground seismic isolation wall 16 more intensively. Is possible.

また、上記の実施例2のように、貯水層20から鉛直下方に延びる多孔管22を複数配置した構造(図5−2を参照)に対して、本実施例4の遮水シート34、36を適用してもよい。同様に、上記の実施例3のように、供給管26から鉛直下方に延びる多孔管28を複数配置した構造(図6−2を参照)に対して、本実施例4の遮水シート34を適用してもよい。   Further, as in the second embodiment, the water shielding sheets 34 and 36 of the fourth embodiment are applied to a structure in which a plurality of porous tubes 22 extending vertically downward from the water reservoir 20 are disposed (see FIG. 5-2). May be applied. Similarly, the water-impervious sheet 34 according to the fourth embodiment is applied to a structure (see FIG. 6B) in which a plurality of perforated tubes 28 extending vertically downward from the supply pipe 26 are disposed as in the third embodiment. You may apply.

(実施例4の変形例)
次に、本発明の実施例4の変形例について説明する。
図7−3に示すように、本発明の実施例4の変形例に係る地盤変位吸収免震構造401は、上記の実施例4の地盤変位吸収免震構造400の構造において、面状の遮水シート34a(遮水部材)を地中免震壁16と周辺地盤12との境界面、地中免震壁16と構造物14との境界面に設けたものである。
(Modification of Example 4)
Next, a modification of the fourth embodiment of the present invention will be described.
As shown in FIG. 7-3, the ground displacement absorbing base isolation structure 401 according to the modification of the fourth embodiment of the present invention is a planar shielding structure in the structure of the ground displacement absorbing base isolation structure 400 of the fourth embodiment. A water sheet 34 a (water-impervious member) is provided on the boundary surface between the underground seismic isolation wall 16 and the surrounding ground 12 and on the boundary surface between the underground seismic isolation wall 16 and the structure 14.

遮水シート34aは、上記の実施例4で説明した遮水シート34と同様に、地中免震壁16の側面全体を覆うように設けることが好ましく、ゴム系または高分子系材料などの遮水性材料を用いて構成することが望ましい。このように、面状の遮水シート34で地中免震壁16を両側から挟み込む構造とすることで、上記の実施例4と同様に、貯水層18からの電解質濃度の低い水Wを地中免震壁16に対して効率的に供給することができ、地中免震壁16の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。水で飽和した地中免震壁16の粘土系材料の膨潤圧を一定に維持し、地中免震壁16の厚さおよび密度の変化を抑制して、地中免震壁16の剛性を小さく維持することができる。したがって、長期安定性に優れた地盤変位吸収免震構造を提供することが可能となる。   The water shielding sheet 34a is preferably provided so as to cover the entire side surface of the underground seismic isolation wall 16 in the same manner as the water shielding sheet 34 described in Example 4 above, and is made of rubber or polymer material. It is desirable to use an aqueous material. As described above, by adopting a structure in which the underground seismic isolation wall 16 is sandwiched from both sides by the planar water-impervious sheet 34, the water W having a low electrolyte concentration from the water reservoir 18 is grounded as in the fourth embodiment. It can supply efficiently with respect to the middle seismic isolation wall 16, and can prevent the drying of the underground seismic isolation wall 16 and the electrolyte concentration rise of pore water more effectively. The swelling pressure of the clay-based material of the underground seismic isolation wall 16 saturated with water is kept constant, and changes in the thickness and density of the underground isolation wall 16 are suppressed, and the rigidity of the underground isolation wall 16 is increased. Can be kept small. Therefore, it is possible to provide a ground displacement absorption seismic isolation structure with excellent long-term stability.

なお、上記の実施例4と同様に、貯水層18の鉛直壁18aおよび底板18bと周辺地盤12との境界面に対して、遮水シート34aと同一の材質からなる面状の遮水シート36aを設けてもよい。また、上記の実施例4と同様に、貯水層20から鉛直下方に延びる多孔管22を複数配置した構造(図5−2を参照)に対して遮水シート34、36を適用したり、供給管26から鉛直下方に延びる多孔管28を複数配置した構造(図6−2を参照)に対して遮水シート34を適用してもよい。   As in the fourth embodiment, the planar water-impervious sheet 36a made of the same material as the water-impervious sheet 34a with respect to the boundary surface between the vertical wall 18a and the bottom plate 18b of the reservoir 18 and the surrounding ground 12 is used. May be provided. Further, similarly to Example 4 above, the water shielding sheets 34 and 36 are applied to or supplied to a structure in which a plurality of porous tubes 22 extending vertically downward from the reservoir 20 (see FIG. 5-2) are provided. The water shielding sheet 34 may be applied to a structure (see FIG. 6B) in which a plurality of perforated tubes 28 extending vertically downward from the tube 26 are disposed.

以上説明したように、本発明に係る地盤変位吸収免震構造によれば、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けた地盤変位吸収免震構造において、前記地中壁の地表側上端部に電解質濃度の低い水を貯水する貯水層を設けたので、地中壁により周辺地盤から受ける常時の土圧に抵抗でき、地震時の開削トンネルなどの地中構造物への応力低減を図ることができるという、免震構造としての基本的な作用効果を奏するのはもちろんのこと、地中壁の上端部に設けた貯水層から地中壁に常に水を供給することにより、地中壁を構成する吸水膨潤性の粘土系材料の保水能力が維持されるので、地中壁の厚さとその構成材料密度を長期間一定に維持することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができる。   As described above, according to the ground displacement absorption seismic isolation structure according to the present invention, a continuous wall-shaped underground wall made of a clay-based material having water absorption swelling property is provided between the surrounding ground and the structure. In the ground displacement absorption seismic isolation structure, a water reservoir for storing water with low electrolyte concentration is provided at the top surface of the underground wall, so that it can resist the normal earth pressure received from the surrounding ground by the underground wall, Reservoir provided at the upper end of the underground wall as well as the basic effect of the seismic isolation structure that can reduce stress on underground structures such as open tunnels By constantly supplying water to the underground wall, the water retention capacity of the water-absorbing swellable clay-based material that constitutes the underground wall is maintained. Can be maintained. For this reason, the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

また、本発明に係る他の地盤変位吸収免震構造によれば、前記貯水層の水位を前記周辺地盤の地下水位よりも高くしたので、地中壁の上端部から電解質濃度の低い水を常に供給することによって、地中壁を構成する粘土系材料の間隙水の電解質濃度が上昇することを抑制できる。したがって、例えば粘土系材料をベントナイトと水の混合物あるいはベントナイトと骨材と水の混合物で構成した場合には、この材料は所定の膨潤圧を発揮するため、この材料からなる地中壁により周辺地盤から受ける常時の土圧に抵抗できるとともに、電解質濃度の低い水を常に供給することで地中壁の厚さの変化と構成材料の密度の変化が抑制される。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができる。   In addition, according to another ground displacement absorption seismic isolation structure according to the present invention, since the water level of the reservoir is higher than the groundwater level of the surrounding ground, water having a low electrolyte concentration is always supplied from the upper end of the underground wall. By supplying, it can suppress that the electrolyte density | concentration of the pore water of the clay-type material which comprises an underground wall rises. Therefore, for example, when a clay-based material is composed of a mixture of bentonite and water or a mixture of bentonite, aggregate and water, this material exhibits a predetermined swelling pressure. It is possible to resist the normal earth pressure received from the water, and by constantly supplying water with a low electrolyte concentration, changes in the thickness of the underground wall and changes in the density of the constituent materials are suppressed. For this reason, the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

また、本発明に係る他の地盤変位吸収免震構造によれば、前記貯水層から前記地中壁の内部下方に延びる多孔管を複数配置したので、前記貯水層に貯水される電解質濃度の低い水を多孔管を通じてより確実に地中壁全体に供給することができ、地中壁を構成する粘土系材料の間隙水の水質をより安定的に維持することができる。   In addition, according to another ground displacement absorption seismic isolation structure according to the present invention, a plurality of perforated pipes extending from the reservoir to the inside of the underground wall are disposed, so that the concentration of electrolyte stored in the reservoir is low. Water can be more reliably supplied to the entire underground wall through the perforated pipe, and the quality of the pore water of the clay-based material constituting the underground wall can be more stably maintained.

また、本発明に係る他の地盤変位吸収免震構造によれば、前記地中壁と前記周辺地盤との境界面、または、前記地中壁と前記周辺地盤との境界面に加え前記地中壁と前記構造物との境界面に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持するので、遮水部材によって地中壁の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができる。   Moreover, according to another ground displacement absorption isolation structure according to the present invention, in addition to the boundary surface between the underground wall and the surrounding ground, or the boundary surface between the underground wall and the surrounding ground, the underground By providing a planar water-impervious member at the boundary surface between the wall and the structure, it is possible to suppress the drying of the underground wall, and the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground The rise of the water is suppressed, the swelling pressure of the clay-based material saturated with water is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. The water shielding member can more effectively prevent the drying of the underground wall and the increase in the electrolyte concentration of pore water. For this reason, the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

また、本発明に係る他の地盤変位吸収免震構造によれば、前記地中壁内部の前記周辺地盤側、または、前記地中壁内部の前記周辺地盤側に加え前記地中壁内部の前記構造物側に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持するので、遮水部材によって地中壁の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができる。また、遮水部材は地中壁内部に設けられるので、遮水部材の施工がし易くなる。   Further, according to another ground displacement absorption seismic isolation structure according to the present invention, in addition to the surrounding ground side inside the underground wall or the surrounding ground side inside the underground wall, the inside of the underground wall By providing a planar water-impervious member on the structure side, the drying of the underground wall is suppressed, and an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground is suppressed, Since the swelling pressure of the clay-based material saturated with water is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. It is possible to more effectively prevent wall drying and increase in electrolyte concentration of pore water. For this reason, the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided. Moreover, since the water shielding member is provided inside the underground wall, the water shielding member can be easily constructed.

また、本発明に係る免震方法によれば、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けることによる前記構造物の免震方法であって、前記地中壁の地表側上端部に電解質濃度の低い水を貯水する貯水層を設け、前記地中壁を構成する粘土系材料に前記貯水層を介して上方から常に電解質濃度の低い水を供給することによって、前記粘土系材料の乾燥を抑制して、水で飽和した前記粘土系材料の剛性を維持する。このため、仮に、周辺地盤の地下水位が地表面から著しく低く、地中壁を構成する粘土系材料が乾燥収縮するおそれがある場合であっても、上方からの電解質濃度の低い水の供給によって地中壁の乾燥収縮が抑制されて厚さが一定に維持されるので、地中壁の剛性が小さい状態に維持される。したがって、長期安定して所要の免震性能を発揮することができる。   Further, according to the seismic isolation method according to the present invention, the structure is isolated by providing a continuous wall-shaped underground wall made of a clay-based material having water absorption swelling between the surrounding ground and the structure. In this method, a water reservoir for storing water having a low electrolyte concentration is provided at the upper surface of the underground wall, and the electrolyte concentration is always applied to the clay-based material constituting the underground wall from above via the reservoir. By supplying low water, the drying of the clay-based material is suppressed, and the rigidity of the clay-based material saturated with water is maintained. For this reason, even if the groundwater level of the surrounding ground is remarkably low from the ground surface and the clay-based material constituting the underground wall is likely to dry and shrink, the supply of water with a low electrolyte concentration from above Since the drying shrinkage of the underground wall is suppressed and the thickness is kept constant, the rigidity of the underground wall is kept small. Therefore, the required seismic isolation performance can be exhibited stably for a long time.

また、本発明に係る他の免震方法によれば、周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けることによる前記構造物の免震方法であって、前記地中壁の地表側上端部に前記周辺地盤の地下水よりも電解質濃度の低い水を貯水する貯水層を設け、前記地中壁を構成する粘土系材料に前記貯水層を介して上方から常に前記電解質濃度の低い水を供給することによって、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制するとともに、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持する。このため、仮に、周辺地盤の地下水の電解質濃度が海水のように比較的高い場合であっても、地中壁上方からの電解質濃度の低い水の供給によって地中壁の剛性が小さい状態に維持される。したがって、長期安定して所要の免震性能を発揮することができる。   Further, according to another seismic isolation method according to the present invention, the structure can be obtained by providing a continuous wall-like underground wall made of a clay-based material having water absorption swelling between the surrounding ground and the structure. In the seismic isolation method, a water storage layer for storing water having an electrolyte concentration lower than ground water of the surrounding ground is provided at an upper end on the surface side of the underground wall, and the water storage is performed on the clay-based material constituting the underground wall. By constantly supplying water with a low electrolyte concentration from above through a layer, an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground is suppressed, and the clay saturated with water The swelling pressure of the system material is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. For this reason, even if the electrolyte concentration of the groundwater in the surrounding ground is relatively high, such as seawater, the underground wall stiffness is kept small by supplying water with a low electrolyte concentration from above the underground wall. Is done. Therefore, the required seismic isolation performance can be exhibited stably for a long period of time.

また、本発明に係る他の免震方法によれば、前記貯水層から前記地中壁の内部下方に延びる多孔管を複数配置し、前記多孔管を介して前記貯水層からの前記電解質濃度の低い水を前記地中壁を構成する粘土系材料に供給するので、電解質濃度の低い水をより確実に地中壁全体に供給することができ、地中壁を構成する粘土系材料の間隙水の水質をより安定的に維持することができる。   Further, according to another seismic isolation method according to the present invention, a plurality of perforated pipes extending from the reservoir to the inside of the underground wall are arranged, and the electrolyte concentration from the reservoir is measured via the perforated pipe. Since low water is supplied to the clay-based material constituting the underground wall, water having a low electrolyte concentration can be supplied to the entire underground wall more reliably, and the pore water of the clay-based material constituting the underground wall can be supplied. The water quality can be maintained more stably.

また、本発明に係る他の免震方法によれば、前記地中壁と前記周辺地盤との境界面、または、前記地中壁と前記周辺地盤との境界面に加え前記地中壁と前記構造物との境界面に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持するので、遮水部材によって地中壁の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができる。   Further, according to another seismic isolation method according to the present invention, in addition to the boundary surface between the underground wall and the surrounding ground, or the boundary surface between the underground wall and the surrounding ground, the underground wall and the By providing a planar water-impervious member on the boundary surface with the structure, it is possible to suppress drying of the underground wall, and to increase the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground. Inhibiting and maintaining a constant swelling pressure of the clay-based material saturated with water, suppressing changes in the thickness and density of the underground wall, and maintaining the rigidity of the underground wall, Thus, it is possible to more effectively prevent the drying of the underground wall and the increase in the electrolyte concentration of pore water. For this reason, the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided.

また、本発明に係る他の免震方法によれば、前記地中壁内部の前記周辺地盤側、または、前記地中壁内部の前記周辺地盤側に加え前記地中壁内部の前記構造物側に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持するので、遮水部材によって地中壁の乾燥および間隙水の電解質濃度上昇をより効果的に防止することができる。このため、長期安定性に優れた地盤変位吸収免震構造を提供することができる。また、遮水部材は地中壁内部に設けられるので、遮水部材の施工がし易くなる。   Further, according to another seismic isolation method according to the present invention, in addition to the surrounding ground side inside the underground wall, or the structure side inside the underground wall in addition to the surrounding ground side inside the underground wall By providing a planar water-impervious member, the underground wall is prevented from drying, and the electrolyte concentration in the underground wall due to infiltration of groundwater in the surrounding ground is suppressed, and saturated with water. Since the swelling pressure of the clay-based material is kept constant, the change in thickness and density of the underground wall is suppressed, and the rigidity of the underground wall is maintained. In addition, an increase in the electrolyte concentration of pore water can be prevented more effectively. For this reason, the ground displacement absorption seismic isolation structure excellent in long-term stability can be provided. Moreover, since the water shielding member is provided inside the underground wall, the water shielding member can be easily constructed.

以上のように、本発明に係る地盤変位吸収免震構造および免震方法は、地震時の開削トンネルなどの地中構造物への応力低減を図るのに有用であり、特に、地盤変位吸収免震構造において長期安定性を確保するのに適している。   As described above, the ground displacement absorption seismic isolation structure and the seismic isolation method according to the present invention are useful for reducing stress on underground structures such as open tunnels during an earthquake. Suitable for long-term stability in seismic structures.

100 地盤変位吸収免震構造(実施例1)
200 地盤変位吸収免震構造(実施例2)
300 地盤変位吸収免震構造(実施例3)
400 地盤変位吸収免震構造(実施例4)
401 地盤変位吸収免震構造(実施例4の変形例)
12 周辺地盤
14 地中構造物
16 地中免震壁(地中壁)
16a 上端部
18,20 貯水層
18a,20a 鉛直壁
18b,20b 底板
18c,20c,32 蓋板
22,28 多孔管
24,30 開口
26 供給管
34,34a 遮水シート(遮水部材)
36,36a 遮水シート
W 電解質濃度の低い水
GL 地表
WL 水位
GWL 地下水位
100 Ground displacement absorption seismic isolation structure (Example 1)
200 Ground displacement absorption seismic isolation structure (Example 2)
300 Ground displacement absorption isolation structure (Example 3)
400 Seismic displacement absorption isolation structure (Example 4)
401 Ground displacement absorbing base isolation structure (modified example of Example 4)
12 Ground around 14 Underground structure 16 Seismic isolation wall (underground wall)
16a Upper end 18, 20 Reservoir 18a, 20a Vertical wall 18b, 20b Bottom plate 18c, 20c, 32 Cover plate 22, 28 Perforated tube 24, 30 Opening 26 Supply tube 34, 34a Water shielding sheet (water shielding member)
36, 36a Water-impervious sheet W Water with low electrolyte concentration GL Surface WL Water level GWL Groundwater level

Claims (10)

周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けた地盤変位吸収免震構造において、
前記地中壁の地表側上端部に電解質濃度の低い水を貯水する貯水層を設けたことを特徴とする地盤変位吸収免震構造。
In the ground displacement absorption seismic isolation structure with a continuous wall-shaped underground wall made of clay-based material having water absorption and swelling between the surrounding ground and the structure,
A ground displacement absorbing seismic isolation structure characterized in that a water reservoir for storing water having a low electrolyte concentration is provided at the upper surface of the underground wall on the surface side.
前記貯水層の水位を前記周辺地盤の地下水位よりも高くしたことを特徴とする請求項1に記載の地盤変位吸収免震構造。   The ground displacement absorbing seismic isolation structure according to claim 1, wherein the water level of the reservoir is higher than the groundwater level of the surrounding ground. 前記貯水層から前記地中壁の内部下方に延びる多孔管を複数配置したことを特徴とする請求項1または2に記載の地盤変位吸収免震構造。   The ground displacement absorbing seismic isolation structure according to claim 1 or 2, wherein a plurality of perforated pipes extending from the reservoir to the inside of the underground wall are disposed. 前記地中壁と前記周辺地盤との境界面、または、前記地中壁と前記周辺地盤との境界面に加え前記地中壁と前記構造物との境界面に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする請求項1〜3のいずれか一つに記載の地盤変位吸収免震構造。   In addition to the boundary surface between the underground wall and the surrounding ground, or the boundary surface between the underground wall and the surrounding ground, a planar water-impervious member is provided on the boundary surface between the underground wall and the structure. This suppresses drying of the underground wall, suppresses an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground, and reduces the swelling pressure of the clay-based material saturated with water. The ground displacement according to any one of claims 1 to 3, wherein the rigidity of the underground wall is maintained by maintaining constant and suppressing changes in thickness and density of the underground wall. Absorption seismic isolation structure. 前記地中壁内部の前記周辺地盤側、または、前記地中壁内部の前記周辺地盤側に加え前記地中壁内部の前記構造物側に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする請求項1〜3のいずれか一つに記載の地盤変位吸収免震構造。   By providing a planar water-impervious member on the peripheral ground side inside the underground wall, or on the structure side inside the underground wall in addition to the peripheral ground side inside the underground wall, the underground Suppressing the drying of the wall, suppressing an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground, maintaining a constant swelling pressure of the clay-based material saturated with water, The ground displacement absorption seismic isolation structure according to any one of claims 1 to 3, wherein changes in thickness and density of the underground wall are suppressed to maintain the rigidity of the underground wall. 周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けることによる前記構造物の免震方法であって、
前記地中壁の地表側上端部に電解質濃度の低い水を貯水する貯水層を設け、前記地中壁を構成する粘土系材料に前記貯水層を介して上方から常に電解質濃度の低い水を供給することによって、前記粘土系材料の乾燥を抑制して、水で飽和した前記粘土系材料の剛性を維持することを特徴とする免震方法。
A seismic isolation method for the structure by providing a continuous wall-shaped underground wall made of a clay-based material having water absorption and swelling between the surrounding ground and the structure,
A water reservoir for storing low electrolyte concentration water is provided at the upper surface of the underground wall, and water having a low electrolyte concentration is always supplied from above to the clay-based material constituting the underground wall. A seismic isolation method characterized by suppressing drying of the clay-based material and maintaining the rigidity of the clay-based material saturated with water.
周辺地盤と構造物との間に吸水膨潤性を有する粘土系材料からなる連続した壁状の地中壁を設けることによる前記構造物の免震方法であって、
前記地中壁の地表側上端部に前記周辺地盤の地下水よりも電解質濃度の低い水を貯水する貯水層を設け、前記地中壁を構成する粘土系材料に前記貯水層を介して上方から常に前記電解質濃度の低い水を供給することによって、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制するとともに、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする免震方法。
A seismic isolation method for the structure by providing a continuous wall-shaped underground wall made of a clay-based material having water absorption and swelling between the surrounding ground and the structure,
A water reservoir for storing water having a lower electrolyte concentration than the ground water of the surrounding ground is provided at the upper surface of the ground wall on the surface side, and the clay-based material constituting the underground wall is always placed from above through the water reservoir. By supplying water having a low electrolyte concentration, an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground is suppressed, and the swelling pressure of the clay-based material saturated with water is kept constant. And maintaining the rigidity of the underground wall by suppressing changes in thickness and density of the underground wall.
前記貯水層から前記地中壁の内部下方に延びる多孔管を複数配置し、前記多孔管を介して前記貯水層からの前記電解質濃度の低い水を前記地中壁を構成する粘土系材料に供給することを特徴とする請求項6または7に記載の免震方法。   A plurality of perforated pipes extending from the reservoir to the inside of the underground wall are arranged, and the low electrolyte concentration water from the reservoir is supplied to the clay-based material constituting the underground wall through the perforated pipe. The seismic isolation method according to claim 6 or 7, characterized in that: 前記地中壁と前記周辺地盤との境界面、または、前記地中壁と前記周辺地盤との境界面に加え前記地中壁と前記構造物との境界面に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする請求項6〜8のいずれか一つに記載の免震方法。   In addition to the boundary surface between the underground wall and the surrounding ground, or the boundary surface between the underground wall and the surrounding ground, a planar water-impervious member is provided on the boundary surface between the underground wall and the structure. This suppresses drying of the underground wall, suppresses an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground, and reduces the swelling pressure of the clay-based material saturated with water. The seismic isolation according to any one of claims 6 to 8, wherein the seismic isolation is maintained constant, and changes in thickness and density of the underground wall are suppressed to maintain rigidity of the underground wall. Method. 前記地中壁内部の前記周辺地盤側、または、前記地中壁内部の前記周辺地盤側に加え前記地中壁内部の前記構造物側に面状の遮水部材を設けることによって、前記地中壁の乾燥を抑制するとともに、前記周辺地盤の地下水の浸透による前記地中壁の間隙水の電解質濃度の上昇を抑制し、水で飽和した前記粘土系材料の膨潤圧を一定に維持し、前記地中壁の厚さおよび密度の変化を抑制して、前記地中壁の剛性を維持することを特徴とする請求項6〜8のいずれか一つに記載の免震方法。   By providing a planar water-impervious member on the peripheral ground side inside the underground wall, or on the structure side inside the underground wall in addition to the peripheral ground side inside the underground wall, the underground Suppressing the drying of the wall, suppressing an increase in the electrolyte concentration of pore water in the underground wall due to infiltration of groundwater in the surrounding ground, maintaining a constant swelling pressure of the clay-based material saturated with water, The seismic isolation method according to any one of claims 6 to 8, wherein changes in thickness and density of the underground wall are suppressed to maintain rigidity of the underground wall.
JP2013146979A 2013-04-02 2013-07-12 Ground displacement-absorbing base-isolated structure and base isolation method Pending JP2014211073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146979A JP2014211073A (en) 2013-04-02 2013-07-12 Ground displacement-absorbing base-isolated structure and base isolation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013076782 2013-04-02
JP2013076782 2013-04-02
JP2013146979A JP2014211073A (en) 2013-04-02 2013-07-12 Ground displacement-absorbing base-isolated structure and base isolation method

Publications (1)

Publication Number Publication Date
JP2014211073A true JP2014211073A (en) 2014-11-13

Family

ID=51931011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146979A Pending JP2014211073A (en) 2013-04-02 2013-07-12 Ground displacement-absorbing base-isolated structure and base isolation method

Country Status (1)

Country Link
JP (1) JP2014211073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115387399A (en) * 2022-08-30 2022-11-25 南通宏安工程设备租赁有限公司 Shockproof ditch filling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115387399A (en) * 2022-08-30 2022-11-25 南通宏安工程设备租赁有限公司 Shockproof ditch filling device

Similar Documents

Publication Publication Date Title
Han Recent research and development of ground column technologies
Wang et al. Effect of underground void on foundation stability
JP5382900B2 (en) How to prevent underground structures from floating due to liquefaction
US20190194069A1 (en) Use of composite particles for protecting a lifeline structure against seismic wave damage
JP5747458B2 (en) Ground displacement absorption isolation structure
Debbabi et al. Numerical modeling of encased stone columns supporting embankments on sabkha soil
JP2000144692A (en) Steel-made frame dam
JP2015055147A (en) Underground base isolation wall structure and construction method for the same
JP2012031665A (en) Vibration isolation wall
Alobaidi et al. Qualitative criteria for anti-pumping geocomposites
CN211080275U (en) Foundation pile structure for constructional engineering
JP4611123B2 (en) Waste disposal site
JP2014211073A (en) Ground displacement-absorbing base-isolated structure and base isolation method
JP5532325B2 (en) Construction method of underground wall
JP2015105510A (en) Base isolated structure of underground construction and construction method of base isolated structure of underground construction
JP4565397B2 (en) Seismic reinforcement method for structures
JP6225429B2 (en) Liquefaction prevention method
JP2014156733A (en) Construction method of permeable foundation
JP2000064327A (en) Base isolation structure of structure
JP5532326B2 (en) Construction method of underground wall
JP2009062792A (en) Ground vibration propagation restraining structure and its construction method
ITTO20070015A1 (en) ANTI-VIBRATION SYSTEM IN THE SOIL
CN213143027U (en) Composite foundation structure and building thereof
JP2014077282A (en) Caisson method
JP2004124548A (en) Pile foundation, underground wall structure, and construction method