JPH0725870B2 - Method for stabilizing electrolytic solution for electrolytic polymerization - Google Patents

Method for stabilizing electrolytic solution for electrolytic polymerization

Info

Publication number
JPH0725870B2
JPH0725870B2 JP23206587A JP23206587A JPH0725870B2 JP H0725870 B2 JPH0725870 B2 JP H0725870B2 JP 23206587 A JP23206587 A JP 23206587A JP 23206587 A JP23206587 A JP 23206587A JP H0725870 B2 JPH0725870 B2 JP H0725870B2
Authority
JP
Japan
Prior art keywords
electrolytic
electrolytic solution
stabilizing
polymerization
pyrrole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23206587A
Other languages
Japanese (ja)
Other versions
JPS6475518A (en
Inventor
通之 河野
実 福田
功 伊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP23206587A priority Critical patent/JPH0725870B2/en
Publication of JPS6475518A publication Critical patent/JPS6475518A/en
Publication of JPH0725870B2 publication Critical patent/JPH0725870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解酸化による導電性高分子製造の際の電解液
の安定化方法に関する。
TECHNICAL FIELD The present invention relates to a method for stabilizing an electrolytic solution when producing a conductive polymer by electrolytic oxidation.

(従来の技術) 芳香族化合物のある種のものは、電解質を添加した溶剤
中に溶解させ陽極酸化することにより導電性の重合体を
生成することが知られている。この様な芳香族化合物の
例としてピロール、チオフェン、アニリン、またはフラ
ンが特によく知られており、条件によっては高導電性
(〜500S/cm)の機械的性質に優れたフィルムが得られ
ている。これらのフィルムはバッテリーの電極材料、セ
ンサー、表示材料等への広い応用用途が期待されてい
る。
(Prior Art) It is known that some aromatic compounds are dissolved in a solvent containing an electrolyte and anodized to produce a conductive polymer. Pyrrole, thiophene, aniline, or furan is particularly well known as an example of such an aromatic compound, and a film having high conductivity (up to 500 S / cm) and excellent mechanical properties is obtained depending on conditions. . These films are expected to have a wide range of applications such as battery electrode materials, sensors and display materials.

これらの芳香族化合物の電気化学的重合方法(以下電解
重合という)としては、例えば、ベンゾニトリル、アセ
トニトリル等の有機溶媒を用いパラトルエンスルホン酸
ナトリウム、LiClO4、LiBF4などの支持電解質を用いて
白金、ニッケル等の陽極上で電解酸化することにより行
なわれる。又、有機溶媒を用いず水を溶媒として前記有
機溶媒系で得られる導電性高分子よりも電気伝導度の優
れた導電性高分子膜を得る方法が提案された(特開昭61
−209225)。
As an electrochemical polymerization method of these aromatic compounds (hereinafter referred to as electrolytic polymerization), for example, an organic solvent such as benzonitrile or acetonitrile is used, and a supporting electrolyte such as sodium paratoluenesulfonate, LiClO 4 , or LiBF 4 is used. It is performed by electrolytic oxidation on an anode such as platinum or nickel. In addition, a method has been proposed in which a conductive polymer film having a higher electric conductivity than the conductive polymer obtained in the above organic solvent system is obtained by using water as a solvent without using an organic solvent (JP-A-61).
−209225).

(発明が解決しようとする問題点) 前記した方法によれば、例えば、電解重合を連続的に行
なうことにより導電性高分子の量産が可能であり、電解
液溶媒として水が使用できることは工業的見地からも優
れた技術である。
(Problems to be Solved by the Invention) According to the method described above, for example, it is possible to mass-produce a conductive polymer by continuously performing electrolytic polymerization, and it is industrially possible to use water as an electrolytic solution solvent. It is also an excellent technology from a viewpoint.

ところが、本発明者らの実験によれば、電解重合中に電
解液が徐々に着色する現象が見られ、この現象を究明し
た結果、導電性高分子単量体が、電解酸化重合に消費さ
れる以外に電解質による酸化、副反応による酸化、溶存
酸素による酸化、あるいは光により単量体が電解液中で
重合するために電解液が着色することがわかった。この
現象は電解液溶媒が水、有機溶媒に拘わらず起こり、導
電性高分子量産化の際に電解液管理が繁雑になり、また
導電性高分子単量体が有効に利用されないという問題点
を生じる。
However, according to the experiments by the present inventors, a phenomenon in which the electrolytic solution is gradually colored during the electropolymerization was observed, and as a result of investigating this phenomenon, the conductive polymer monomer was consumed in the electrooxidative polymerization. In addition to the above, it was found that the electrolyte is colored because of the oxidation by the electrolyte, the oxidation by the side reaction, the oxidation by the dissolved oxygen, or the monomer being polymerized in the electrolyte by light. This phenomenon occurs regardless of whether the electrolyte solvent is water or an organic solvent, which complicates the management of the electrolyte during mass production of the conductive polymer, and the conductive polymer monomer is not effectively used. Occurs.

(問題点を解決するための手段) 本発明者らは上記した問題点を解決するため鋭意検討し
た結果、導電性高分子単量体及び支持電解質を含む電解
液に安定化剤を添加することにより、電解重合速度及び
得られる導電性高分子の電気的性質に何等影響を与える
ことなしに、電解液中の高分子単量体の電解重合以外の
原因による消費が抑制できることを見い出した。
(Means for Solving Problems) As a result of intensive studies for solving the above problems, the present inventors have found that a stabilizer is added to an electrolytic solution containing a conductive polymer monomer and a supporting electrolyte. It was found that the consumption of the polymer monomer in the electrolytic solution due to causes other than the electrolytic polymerization can be suppressed without affecting the electrolytic polymerization rate and the electrical properties of the obtained conductive polymer.

本発明の安定化剤としては、紫外線吸収剤、酸化防止剤
が挙げられ、これらを単独にあるいは2種類以上組み合
わせて用いる。
Examples of the stabilizer of the present invention include ultraviolet absorbers and antioxidants, which may be used alone or in combination of two or more.

紫外線吸収剤としてはサリチル酸系化合物のフェニルサ
リシレート、ベンゾフェノン系のベンゾフェノン、o−
ヒドロキシベンゾフェノン、2,4−ジヒドロキシベンゾ
フェノン、ベンゾトリアゾール系のベンゾトリアゾー
ル、あるいはシアノアクリレート系のシアノアクリレー
ト、2−エチルヘキシル−2−シアノ−3,3′−ジフェ
ニルアクリレートなどが使用される。
As the ultraviolet absorber, salicylic acid-based compound phenyl salicylate, benzophenone-based benzophenone, o-
Hydroxybenzophenone, 2,4-dihydroxybenzophenone, benzotriazole-based benzotriazole, cyanoacrylate-based cyanoacrylate, 2-ethylhexyl-2-cyano-3,3'-diphenylacrylate and the like are used.

酸化防止剤としてはキノン系のヒドロキノン、ベンゾキ
ノン、フェノール系の2,6−t−ブチル−パラクレゾー
ル、ブチル化ヒドロキシアニゾールなどのモノフェノー
ル、2,2′−メチレンビス(4−メチル)−6−t−ブ
チルフェノールなどのビスフェノール、トコフェロール
などの高分子量フェノール、イオウ化合物系のジラウリ
ルチオジプロピオネート、ジミリスチルチオジプロピオ
ネート、リン系のジフェニルイソデシルホスファイト、
フェニルジイソデシルホスファイトなどが挙げられる。
Antioxidants include quinone-based hydroquinone, benzoquinone, phenol-based 2,6-t-butyl-para-cresol, butylated hydroxyanisole and other monophenols, 2,2'-methylenebis (4-methyl) -6- Bisphenol such as t-butylphenol, high molecular weight phenol such as tocopherol, sulfur compound-based dilaurylthiodipropionate, dimyristylthiodipropionate, phosphorus-based diphenylisodecylphosphite,
Examples include phenyldiisodecyl phosphite.

本発明の安定化剤の添加量は、高分子単量体に対し重量
比で0.001〜2%であり、好ましくは0.01〜0.5%である 本発明の電解液に含まれる導電性高分子単量体としてピ
ロール、チオフェン、フランまたはアニリンが挙げら
れ、特にピロールの場合、安定化効果が大きい。
The stabilizer is added in an amount of 0.001 to 2% by weight, preferably 0.01 to 0.5%, based on the weight of the polymer monomer. Examples of the body include pyrrole, thiophene, furan, and aniline. Particularly, pyrrole has a large stabilizing effect.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically described with reference to examples.

(実施例1) ピロール単量体(0.5mol/l)と、支持電解質としてパラ
トルエンスルホン酸テトラエチルアンモニウム(0.2mol
/l)を含むアセトニトリル溶液を12リットル調製し電解
液とした。この電解液に安定化剤としてベンゾフェノン
をピロール単量体に対し0.02重量%加えた。この電解液
を15リットルのステンレスビーカーに入れ、ITOガラス
(インジウム・酸化スズ複合体蒸着ガラス:巾18cm、長
さ25cm)を陽極としてステンレスビーカーを陰極として
200mA/cm2の電流密度において3,800クーロンの電気量で
電解重合を行なった。
Example 1 Pyrrole monomer (0.5 mol / l) and tetraethylammonium paratoluenesulfonate (0.2 mol) as a supporting electrolyte.
12 liters of acetonitrile solution containing / l) was prepared as an electrolytic solution. Benzophenone was added to this electrolytic solution as a stabilizer in an amount of 0.02% by weight based on the pyrrole monomer. This electrolyte was placed in a 15-liter stainless beaker, and ITO glass (indium-tin oxide composite vapor-deposited glass: width 18 cm, length 25 cm) was used as an anode and a stainless beaker was used as a cathode.
Electropolymerization was carried out at a current density of 200 mA / cm 2 and an electric charge of 3,800 coulombs.

ITOガラスをその度ごとに取り替えて、上記電解重合を1
0回繰り返した後、電解液の残存ピロール単量体量を液
体クロマトグラフにより分析した。又、10回目の電解重
合で得られたポリピロールの導電率も測定した。結果を
第1表に示す。
The ITO glass is replaced each time, and the above electrolytic polymerization is
After repeating 0 times, the amount of residual pyrrole monomer in the electrolytic solution was analyzed by liquid chromatography. The conductivity of the polypyrrole obtained by the 10th electrolytic polymerization was also measured. The results are shown in Table 1.

尚、ピロールの酸化重合がピロール1分子当たり、2.3
電子酸化と仮定した場合の残存ピロール濃度の計算値は
0.483mol/lであった。
Oxidative polymerization of pyrrole is 2.3 per 1 molecule of pyrrole.
Calculated residual pyrrole concentration assuming electron oxidation is
It was 0.483 mol / l.

(実施例2) 安定化剤として、トコフェロールをピロールに対し0.05
重量%加えた以外は実施例1と全く同様にして電解重合
を行ない残存ピロール単量体量及び得られたポリピロー
ルの導電率を測定した。結果を第1表に示す。
(Example 2) As a stabilizer, tocopherol was added to pyrrole in an amount of 0.05.
Electrolytic polymerization was carried out in the same manner as in Example 1 except that the amount was added by weight, and the amount of residual pyrrole monomer and the conductivity of the obtained polypyrrole were measured. The results are shown in Table 1.

(実施例3) 安定化剤としてジラウリルチオプロピネートをピロール
に対し0.5重量%加えた以外は実施例1と全く同様にし
て電解重合を行ない、残存ピロール単量体量及び得られ
たポリピロールの導電率を測定した。結果を第1表に示
す。
Example 3 Electropolymerization was carried out in the same manner as in Example 1 except that dilaurylthiopropinate was added as a stabilizer in an amount of 0.5% by weight based on pyrrole. The conductivity was measured. The results are shown in Table 1.

(実施例4) 安定化剤として2−エチルヘキシル−2−シアノ−3,
3′−ジフェニルアクリレートをピロールに対し0.4重量
%加えた以外は実施例1と全く同様にして電解重合を行
ない、残存ピロール単量体量及び得られたポリピロール
の導電率を測定した。結果を第1表に示す。
Example 4 2-Ethylhexyl-2-cyano-3, as a stabilizer
Electrolytic polymerization was carried out in the same manner as in Example 1 except that 0.4% by weight of 3'-diphenyl acrylate was added to pyrrole, and the amount of residual pyrrole monomer and the conductivity of the obtained polypyrrole were measured. The results are shown in Table 1.

(実施例5) 安定化剤としてベンゾフェノン、及びヒドロキノンをピ
ロールに対しそれぞれ0.005重量%ずつ加えた以外は実
施例1と全く同様にして電解重合を行ない、残存ピロー
ル単量体量及び得られたポリピロールの導電率を測定し
た。結果を第1表に示す。
(Example 5) Electrolytic polymerization was carried out in the same manner as in Example 1 except that benzophenone and hydroquinone were added as stabilizers in an amount of 0.005% by weight based on pyrrole, and the amount of residual pyrrole monomer and the obtained polypyrrole were obtained. The electrical conductivity of was measured. The results are shown in Table 1.

(実施例6) ピロール単量体(0.5mol/l)、支持電解質としてパラト
ルエンスルホン酸ナトリウム(1.0mol/l)を含む水溶液
を電解液とし、これに安定化剤としてヒドロキノンをピ
ロールに対し0.25重量%加えた。ついで実施例1と全く
同様にして電解重合を行ない残存ピロール単量体量及び
得られたポリピロールの導電率を測定した。結果を第1
表に示す。
(Example 6) An aqueous solution containing a pyrrole monomer (0.5 mol / l) and sodium paratoluenesulfonate (1.0 mol / l) as a supporting electrolyte was used as an electrolytic solution, and hydroquinone as a stabilizer was added to the pyrrole at 0.25 with respect to pyrrole. Wt% was added. Then, electrolytic polymerization was carried out in the same manner as in Example 1 to measure the amount of residual pyrrole monomer and the conductivity of the obtained polypyrrole. First result
Shown in the table.

(比較例1) 安定化剤を全く使用しない以外は実施例1と同様にして
電解重合を行ない残存ピロール単量体量及び得られたポ
リピロールの導電率を測定した。結果を第1表に示す。
Comparative Example 1 Electrolytic polymerization was carried out in the same manner as in Example 1 except that no stabilizer was used, and the amount of residual pyrrole monomer and the conductivity of the obtained polypyrrole were measured. The results are shown in Table 1.

(比較例2) 安定化剤を全く使用しない以外は実施例6と同様にして
電解重合を行ない残存ピロール単量体量及び得られたポ
リピロールの導電率を測定した。結果を第1表に示す。
Comparative Example 2 Electrolytic polymerization was carried out in the same manner as in Example 6 except that no stabilizer was used, and the amount of residual pyrrole monomer and the conductivity of the obtained polypyrrole were measured. The results are shown in Table 1.

(発明の効果) 実施例及び比較例の結果より明らかな様に、実施例1〜
6での電解重合終了時の残存ピロール濃度に比べ比較例
1、2の残存ピロール濃度は低く、又、電解重合終了時
の液も強く着色していたことから、安定化剤を添加して
いない場合には目的とする電解重合反応以外にも導電性
高分子単量体を消費する反応が起っている。これに対
し、本発明の安定化剤を添加することにより前記の反応
を抑制でき、導電性高分子単量体のロスを防ぐことがで
きた。
(Effect of the invention) As is clear from the results of Examples and Comparative Examples,
No stabilizer was added because the residual pyrrole concentration in Comparative Examples 1 and 2 was lower than the residual pyrrole concentration at the end of electrolytic polymerization in Example 6 and the liquid at the end of electrolytic polymerization was strongly colored. In some cases, in addition to the intended electrolytic polymerization reaction, a reaction that consumes the conductive polymer monomer occurs. On the other hand, by adding the stabilizer of the present invention, the above reaction could be suppressed and the loss of the conductive polymer monomer could be prevented.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導電性高分子単量体と支持電解質とを含む
電解液中で、陽極酸化により導電性高分子を得るに当た
り、該電解液に安定化剤を添加することを特徴とする電
解重合用電解液の安定化方法。
1. An electrolysis characterized in that a stabilizer is added to an electrolytic solution in order to obtain a conductive polymer in an electrolytic solution containing a conductive polymer monomer and a supporting electrolyte. A method for stabilizing a polymerization electrolyte.
【請求項2】安定化剤が紫外線吸収剤および/または酸
化防止剤である特許請求の範囲第1項記載の電解重合用
電解液の安定化方法。
2. The method for stabilizing an electrolytic solution for electrolytic polymerization according to claim 1, wherein the stabilizer is an ultraviolet absorber and / or an antioxidant.
【請求項3】紫外線吸収剤がサリチル酸系化合物または
ベンゾトリアゾール系化合物である特許請求の範囲第2
項記載の電解重合用電解液の安定化方法。
3. The ultraviolet absorber according to claim 2, which is a salicylic acid compound or a benzotriazole compound.
A method for stabilizing an electrolytic solution for electrolytic polymerization according to the item.
【請求項4】酸化防止剤がキノン系化合物、イオウ系化
合物またはリン系化合物である特許請求の範囲第2項記
載の電解重合用電解液の安定化方法。
4. The method for stabilizing an electrolytic solution for electrolytic polymerization according to claim 2, wherein the antioxidant is a quinone compound, a sulfur compound or a phosphorus compound.
JP23206587A 1987-09-18 1987-09-18 Method for stabilizing electrolytic solution for electrolytic polymerization Expired - Lifetime JPH0725870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23206587A JPH0725870B2 (en) 1987-09-18 1987-09-18 Method for stabilizing electrolytic solution for electrolytic polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23206587A JPH0725870B2 (en) 1987-09-18 1987-09-18 Method for stabilizing electrolytic solution for electrolytic polymerization

Publications (2)

Publication Number Publication Date
JPS6475518A JPS6475518A (en) 1989-03-22
JPH0725870B2 true JPH0725870B2 (en) 1995-03-22

Family

ID=16933432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23206587A Expired - Lifetime JPH0725870B2 (en) 1987-09-18 1987-09-18 Method for stabilizing electrolytic solution for electrolytic polymerization

Country Status (1)

Country Link
JP (1) JPH0725870B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070408B2 (en) * 1993-12-28 2000-07-31 日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP5915826B2 (en) * 2011-04-19 2016-05-11 イーメックス株式会社 Conductive polymers containing phenolic compounds
JP5948624B2 (en) * 2011-04-19 2016-07-06 イーメックス株式会社 Conductive polymer composite and method for producing the same

Also Published As

Publication number Publication date
JPS6475518A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
Wudl et al. Poly (isothianaphthene)
US7071289B2 (en) Polymers comprising thieno [3,4-b]thiophene and methods of making and using the same
US7572879B2 (en) Fluorinated alkyl substituted-thieno[3,4-b]thiophene monomers and polymers therefrom
US7432340B2 (en) Fluorinated alkyl substituted-thieno[3,4-]thiophene monomers and polymers therefrom
Shim et al. Flexible, fiber-shaped, quasi-solid-state Zn-polyaniline batteries with methanesulfonic acid-doped aqueous gel electrolyte
EP2079792B1 (en) Layer configuration with improved stability to sunlight exposure
US7737247B2 (en) Polymers of thieno[3,4-b]furan, method of making, and use thereof
US20040074779A1 (en) Polymeric compositions comprising thieno[3,4-b]thiophene, method of making, and use thereof
KR20090007242A (en) Selenium containing electrically conductive polymers and method of making electrically conductive polymers
KR20000052995A (en) An electrochemical storage cell containing at least one electrode formulated from a fluorophenyl thiophene polymer
JP2010174243A (en) Selenium-containing electrically-conductive polymer and method for producing electrically-conductive polymer
KR20100116168A (en) Layer configuration with improved stability to sunlight exposure
JPWO2009001707A1 (en) Oxidizing agent and dopant for conductive polymer synthesis, alcohol solution thereof, conductive polymer and solid electrolytic capacitor
JPH0725870B2 (en) Method for stabilizing electrolytic solution for electrolytic polymerization
JP2014214245A (en) Novel thiophene compound and method for producing the same
US8613611B2 (en) Electrically conductive polyrotaxane
Audebert et al. Electrochemical study of poly (PHAS) in acetonitrile and water+ acetonitrile electrolytes
JPH0574467A (en) Macromolecular solid electrolyte
JPH0794538B2 (en) Novel polymer and method for producing the same
Song et al. Enhanced electroactivity at physiological pH for polyaniline in three-dimensional titanium oxide nanotube matrix
JP2701798B2 (en) Heat-resistant conductive polymer, method for producing the same, and solid electrolytic capacitor using the conductive polymer
JPH082961B2 (en) Method for producing film for plastic battery
RU2770151C2 (en) Polymer polyquinone-polythiophene compositions for electrochemical current sources
US5331072A (en) Polyazopyrroles and electric cells based thereon
JPH0720504A (en) Electrode and electrochemical display device using same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 13