JPH07257924A - Piezoelectric material - Google Patents

Piezoelectric material

Info

Publication number
JPH07257924A
JPH07257924A JP6050561A JP5056194A JPH07257924A JP H07257924 A JPH07257924 A JP H07257924A JP 6050561 A JP6050561 A JP 6050561A JP 5056194 A JP5056194 A JP 5056194A JP H07257924 A JPH07257924 A JP H07257924A
Authority
JP
Japan
Prior art keywords
displacement
piezoelectric material
composition
deterioration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6050561A
Other languages
Japanese (ja)
Inventor
Takao Tani
孝夫 谷
Kazumasa Takatori
一雅 鷹取
Saburo Hori
三郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP6050561A priority Critical patent/JPH07257924A/en
Publication of JPH07257924A publication Critical patent/JPH07257924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a piezoelectric material having sufficient displacement performance and at least >=200 deg.C Curie temp. and with the deterioration of displacement reduced even when driven in a high electric field exceeding an anti-electric field. CONSTITUTION:The piezoelectric material is a composition expressed by (Pb1-xMx)1-(z-u)/2((ZryTi1-y)1-(z+u)AyBu)O3. In the formula, M is at least one kind among Sr, Ca and Ba, 0<x<=0.25 and 0<y<=0.7, A is a metallic element forming pentavalent ion, B is a metallic element forming a trivalent ion, A and B are formed by substituting a part of the (ZryTi1-y), 0.2<=100X(z-u)<=2.0 where the substitution amt. of A is 100Xzmol% and that of Bis 100Xumol%, and an excess metallic element not contained in the crystal lattice is not present. The deterioration of displacement of a piezoelectric element formed of the composition is reduced even when the element is driven for a long time in a high electric field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アクチュエータ、特に
分域反転を利用する高負荷アクチュエータなどに利用可
能な圧電材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric material which can be used for an actuator, particularly for a high load actuator utilizing domain inversion.

【0002】[0002]

【従来の技術】従来よりチタン酸ジルコン酸鉛(PZ
T)を主成分とする圧電材料が知られている。このPZ
Tセラミックスは他の圧電材料と比較すると圧電定数が
大きく、変位性能に優れている。そのためPZT系圧電
材料は、その特性を利用して、微小変位素子や超音波振
動発生素子などに幅広く応用されてきた。
2. Description of the Related Art Lead zirconate titanate (PZ
A piezoelectric material whose main component is T) is known. This PZ
Compared to other piezoelectric materials, T ceramics has a large piezoelectric constant and is excellent in displacement performance. Therefore, the PZT-based piezoelectric material has been widely applied to a minute displacement element, an ultrasonic vibration generating element, etc. by utilizing its characteristics.

【0003】このPZTの特性の向上を目的とする改善
は、Aサイト(Pb)をSr、Caなどで置換したり、
Bサイト(Zr、Ti)にNb、Taなどを添加する方
法が知られ、それらを組み合わせた組成の開示がある
(たとえば、特開昭62−298192号公報、特開平
4−260062号公報、特開平5−148016号公
報)。
The improvement aimed at improving the characteristics of PZT is to replace the A site (Pb) with Sr, Ca, etc.
A method of adding Nb, Ta or the like to B site (Zr, Ti) is known, and there is a disclosure of a composition combining them (for example, JP-A-62-298192, JP-A-4-260062, and Kaihei 5-148016).

【0004】近年、これらPZT圧電素子はより大きな
変位量を求めて、高負荷条件下で駆動し分域の90°反
転を利用する高負荷アクチュエータへの展開が検討され
ている。しかしながら、上記の用途では圧電素子に厳し
い駆動条件が付与されるため、長時間の駆動により圧電
材料に変位劣化が発生して大きな問題となっている。こ
の変位劣化の原因は、空間電荷などによって分域壁がピ
ン止めされ、分域反転が抑制されるためと考えられる。
したがって、圧電材料に空間電荷の発生要因となる酸素
欠陥を減少させるドナー元素を添加することが、劣化抑
制に有効であると考えられる。ところが、上記のドナー
元素を化学量論組成に対して添加(外添加)した場合、
過剰となったBサイトイオンの一部が酸化物として粒界
に析出する。そして、この粒界に析出した酸化物が、分
域壁のピン止めの原因となり圧電材料の変位劣化を十分
に抑制できなかった。また上記のドナーの単独置換で
は、原因は明らかでないが劣化抑制効果はあまり大きく
なかった。
In recent years, these PZT piezoelectric elements have been studied for development into high-load actuators which are driven under high-load conditions and which utilize 90 ° domain reversal in order to obtain a larger amount of displacement. However, in the above application, the piezoelectric element is subjected to strict driving conditions, and therefore displacement of the piezoelectric material deteriorates due to long-term driving, which is a serious problem. It is considered that the cause of this displacement deterioration is that the domain wall is pinned by space charge and the domain inversion is suppressed.
Therefore, it is considered effective to suppress deterioration by adding a donor element that reduces oxygen defects, which is a cause of space charge generation, to the piezoelectric material. However, when the above donor element is added (externally added) to the stoichiometric composition,
A part of the excess B site ions is precipitated as an oxide at the grain boundaries. The oxide deposited on the grain boundaries causes pinning of the domain wall, and cannot sufficiently suppress displacement deterioration of the piezoelectric material. Further, in the above-mentioned single substitution of the donor, the effect of suppressing the deterioration was not so great although the cause was not clear.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑みてなされたもので、十分な変位性能を有し、かつ
抗電界を超えるような高電界下で長時間駆動しても変位
劣化の少ない圧電材料を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has sufficient displacement performance and is capable of performing displacement even when driven for a long time under a high electric field exceeding a coercive electric field. The purpose is to obtain a piezoelectric material with little deterioration.

【0006】[0006]

【課題を解決するための手段】本発明の圧電材料は、
(Pb1-x x 1-(Z-U)/2 {(Zry Ti1-y 1-(z
+u) z u }O3 で表される組成物であって、MはS
r、Ca、Baのうちの少なくとも1種よりなり、0<
x≦0.25、0<y≦0.7であり、Aは5価イオン
となる金属元素、Bは3価イオンとなる金属元素であ
り、AおよびBは(Zry Ti1-y )中の一部に置換し
たものであり、上記Aの置換量を100×zモル%と
し、上記Bの置換量を100×uモル%とすると、10
0×zおよび100×uは0.2≦100×(z−u)
≦2.0の範囲にある組成物よりなり、結晶格子中に含
まれない過剰な金属元素が存在しないことを特徴とす
る。
The piezoelectric material of the present invention comprises:
(Pb 1-x M x ) 1- (ZU) / 2 {(Zr y Ti 1-y ) 1- (z
+ u) A z B u } O 3 wherein M is S
It consists of at least one of r, Ca and Ba, and 0 <
x ≦ 0.25, 0 <y ≦ 0.7, A is a metal element that becomes a pentavalent ion, B is a metal element that becomes a trivalent ion, and A and B are (Zr y Ti 1-y ) When the amount of substitution of A is 100 × z mol% and the amount of substitution of B is 100 × u mol%, 10
0 × z and 100 × u are 0.2 ≦ 100 × (z−u)
The composition is in the range of ≦ 2.0, and is characterized in that there is no excess metal element not included in the crystal lattice.

【0007】本発明の圧電材料は、Pb1-x x (Zr
y Ti1-y )O3 を基本組成とする。上記の式中のM
は、Sr、Ca、Baから選ばれる少なくとも1種より
なり、xは0<x≦0.25、の範囲の量でPbをMで
置換している。置換量の指数xが0.25を超えて大き
くなると、すなわち、式中のPbの量が減少するとTc
(キュリー温度)が低下し場合によっては(たとえばS
rでは)100℃以下となり実用に耐えなくなるので好
ましくない。
The piezoelectric material of the present invention is made of Pb 1-x M x (Zr
The basic composition is y Ti 1-y ) O 3 . M in the above formula
Is at least one selected from Sr, Ca and Ba, and x replaces Pb with M in an amount in the range of 0 <x ≦ 0.25. When the substitution amount index x becomes larger than 0.25, that is, when the amount of Pb in the formula decreases, Tc
(Curie temperature) decreases, and in some cases (for example, S
In r), the temperature becomes 100 ° C. or less and it becomes unpractical, which is not preferable.

【0008】また、上記式中の置換量の指数yは、Bサ
イトのZrとTiとの割合を示す値で、0<y≦0.7
の範囲である。yが0.7を超えて大きくなると強誘電
相が形成できない場合があり好ましくない。PZTはM
PB(morphotropic phase boundary )付近で変位特性
が最大となるので、yはその近傍となる組成の0.52
≦y≦0.60とするのが望ましい。
The index y of the substitution amount in the above formula is a value showing the ratio of Zr to Ti at the B site, and 0 <y ≦ 0.7.
Is the range. If y exceeds 0.7 and becomes large, a ferroelectric phase may not be formed, which is not preferable. PZT is M
Since the displacement characteristic becomes maximum near PB (morphotropic phase boundary), y is 0.52 of the composition near that.
It is desirable that ≦ y ≦ 0.60.

【0009】本発明の特徴は、上記の式のBサイト(Z
y Ti1-y )の一部が5価イオンとなる金属元素Aお
よび3価イオンとなる金属元素Bにより置換されている
ことにある。そしてその置換量を特定の範囲としたこと
にある。すなわち、5価イオンとなる金属元素Aの置換
量を100×uモル%と表す。3価イオンとなる金属元
素の置換量Bを100×uモル%と表す。そして両者の
添加量は、0.2≦100×(z−u)≦2.0の範囲
とする。ドナーイオンは酸素欠陥を低減、アクセプタイ
オンは酸素欠陥を増加させる働きをもつ。そのため両イ
オンのモル%差が0.2≦100×(z−u)の範囲で
は酸素欠陥低減の効果が小さく、変位劣化を十分には抑
制できない。逆に両イオンのモル%差が2.0を超える
とドナーが過剰になりすぎ、チャージのアンバランスが
大きくなりすぎて劣化抑制効果が逆に低下するので好ま
しくない。
A feature of the present invention is that the B site (Z
A part of r y Ti 1-y ) is substituted with a metal element A that becomes a pentavalent ion and a metal element B that becomes a trivalent ion. Then, the substitution amount is within a specific range. That is, the substitution amount of the metal element A that becomes pentavalent ions is expressed as 100 × u mol%. The substitution amount B of the metal element that becomes trivalent ions is expressed as 100 × u mol%. The addition amount of both is set in the range of 0.2 ≦ 100 × (z−u) ≦ 2.0. Donor ions have a function of reducing oxygen vacancies, and acceptor ions have a function of increasing oxygen vacancies. Therefore, when the difference in mol% between the two ions is in the range of 0.2 ≦ 100 × (z−u), the effect of reducing oxygen defects is small, and displacement deterioration cannot be sufficiently suppressed. On the other hand, when the difference in mol% between the two ions exceeds 2.0, the donor becomes excessive, and the charge imbalance becomes too large, so that the deterioration suppressing effect is deteriorated, which is not preferable.

【0010】上記の100×zの量は、モル%としてた
とえば0.2〜2.5の範囲とするのが好ましい。10
0×zの量が0.2モル%以下ではドナー置換量が少な
すぎて劣化抑制効果が発現しないので好ましくない。ま
た、100×zの量が2.5モル%を超えると変位特性
の温度変化が大きくなり、たとえば自動車用アクチュエ
ータを想定(使用温度範囲;−50〜150℃)した場
合、必要な温度範囲で安定して駆動しなくなるので好ま
しくない。
The above 100 × z amount is preferably in the range of 0.2 to 2.5 in terms of mol%. 10
When the amount of 0 × z is 0.2 mol% or less, the amount of donor substitution is too small and the deterioration suppressing effect is not exhibited, which is not preferable. Further, when the amount of 100 × z exceeds 2.5 mol%, the temperature change of the displacement characteristic becomes large. For example, assuming an automobile actuator (operating temperature range: −50 to 150 ° C.), the temperature range is within the required range. It is not preferable because it will not drive stably.

【0011】上記の100×uの量は、たとえば2.3
モル%以下(0を含まない)の範囲とするのが好まし
い。100×uの量は、0.2≦100×(z−u)≦
2.0と上記の100×z≦2.5を同時に満たすため
には、0<100×u≦2.3とすることが必要であ
る。上記のAとしては、Nb、Ta、V、Sbなどの金
属元素が利用できる。また、サイト本来の価数(4価)
よりも大きい(ドナー)という点では6価のW、Uも利
用可能である。
The above amount of 100 × u is, for example, 2.3.
It is preferably in the range of not more than mol% (not including 0). The amount of 100 × u is 0.2 ≦ 100 × (z−u) ≦
In order to satisfy 2.0 and 100 × z ≦ 2.5 at the same time, it is necessary to satisfy 0 <100 × u ≦ 2.3. As the above A, a metal element such as Nb, Ta, V or Sb can be used. Also, the original valence of the site (4)
In terms of larger size (donor), hexavalent W and U are also available.

【0012】上記のBとしては、Fe,Crなどの金属
元素が利用できる。また、サイト本来の価数(4価)よ
りも小さい(アクセプター)という点では2価のNi、
Zn、Mnも利用することができる。上記の5価イオン
および3価イオンの原料としては、酸化物以外に炭酸塩
を使用することができる。また本発明の圧電材料を製造
する際には、焼成中での組成変動を抑制するため、圧電
材料と同一組成のパッド材を使用するのが好ましい。す
なわち、パッド材と焼成する試料の組成が異なると焼成
中に両者間の物質移動が起こりやすくなり、仕込み組成
通りの焼成体が得られにくい。逆に組成が同じであれば
物質移動が起こりにくいため、仕込み組成通りの焼成体
を得ることができる。
As the B, a metal element such as Fe or Cr can be used. In addition, in terms of being smaller than the original valence of the site (4 valence) (acceptor), divalent Ni,
Zn and Mn can also be used. As the raw material of the above-mentioned pentavalent ion and trivalent ion, carbonate can be used in addition to oxide. Further, when manufacturing the piezoelectric material of the present invention, it is preferable to use a pad material having the same composition as that of the piezoelectric material in order to suppress compositional variation during firing. That is, if the composition of the pad material and that of the sample to be fired are different, mass transfer between them easily occurs during firing, and it is difficult to obtain a fired body according to the charged composition. On the other hand, if the composition is the same, mass transfer does not easily occur, so that it is possible to obtain a fired product according to the charged composition.

【0013】この圧電材料製造時の焼成温度は、100
0〜1300℃望ましくは1150〜1250℃であ
る。焼成温度が、1000℃以下では緻密な焼成体が得
られず、1300℃以上となると組成物中の鉛成分の蒸
発が大きくなるので好ましくない。
The firing temperature at the time of manufacturing this piezoelectric material is 100.
0 to 1300 ° C, preferably 1150 to 1250 ° C. If the firing temperature is 1000 ° C. or lower, a dense fired body cannot be obtained, and if it is 1300 ° C. or higher, the lead component in the composition evaporates significantly, which is not preferable.

【0014】[0014]

【作用】本発明の圧電材料は、(Pb1-x x
1-(Z-U)/2 {(Zry Ti1-y 1-(z +u) z u }O
3 の組成を有する。式中の(Zry Ti1-y )は一部が
5価イオンとなる金属元素Aおよび3価イオンとなる金
属元素Bにより置換されている。そして、上記5価イオ
ンおよび3価イオンの各金属元素の置換量は特定の範囲
とし、結晶格子中には過剰となって存在しない状態の組
成としている。
The piezoelectric material of the present invention is (Pb 1-x M x )
1- (ZU) / 2 {(Zr y Ti 1-y ) 1- (z + u) A z B u } O
It has a composition of 3 . In the formula, (Zr y Ti 1-y ) is partially substituted by a metal element A which becomes a pentavalent ion and a metal element B which becomes a trivalent ion. Then, the substitution amount of each metal element of the pentavalent ion and the trivalent ion is set in a specific range, and the composition is in a state in which it does not exist in excess in the crystal lattice.

【0015】この組成の圧電材料は、Aのドナーイオン
が酸素欠陥を低減し、Bのアクセプタイオンが酸素欠陥
を増加させる働きをもつが、両者をバランスよく置換す
ることでドナーイオン単独添加の場合と同じ変位性能を
もち、かつ単独添加系よりも粒径が小さくなる。そして
原因は明らかでないが変位劣化を抑制できる。たとえ
ば、5価イオンのNbと3価イオンのFeの両者を置換
した系では、Nb単独添加系よりも粒径が小さくなり、
かつNb単独添加系と同等以上の変位性能を有する。そ
してさらに、両者を置換した系は、単独添加系の圧電素
子よりも変位劣化しにくい。
In the piezoelectric material of this composition, the donor ion of A has a function of reducing oxygen vacancies and the acceptor ion of B has a function of increasing oxygen vacancies. It has the same displacement performance as the above and has a smaller particle size than the single addition system. Although the cause is not clear, displacement deterioration can be suppressed. For example, in a system in which both pentavalent ion Nb and trivalent ion Fe are substituted, the particle size becomes smaller than that in the system in which only Nb is added,
Moreover, it has a displacement performance equal to or higher than that of the Nb single addition system. Furthermore, the system in which both are replaced is less likely to undergo displacement deterioration than the piezoelectric element of the single addition system.

【0016】化学量論組成のPZTに対してドナーまた
アクセプタを外添加すると、それが微量であっても過剰
のBサイトイオンが粒界に析出して分域壁の動き抑制す
るため、大電界下での変位性能が低下し、かつ変位劣化
しやすくなる。また結晶粒径が大きいと原因はあきらか
でないが変位劣化しやすくなる。それに対して、両者置
換は粒界への析出がないため分域壁の動きを抑制するこ
とがなく、かつ単独添加と比較すると小粒径となるため
変位劣化の問題が解消できる。
When a donor or an acceptor is externally added to PZT having a stoichiometric composition, excess B site ions are precipitated at the grain boundaries to suppress the movement of the domain wall even if the amount is very small. The lower displacement performance is deteriorated and the displacement is easily deteriorated. Also, if the crystal grain size is large, the cause is not obvious, but displacement deterioration is likely to occur. On the other hand, the substitution of both does not suppress the movement of the domain wall because there is no precipitation at the grain boundaries, and the particle size becomes smaller than that of the single addition, so that the problem of displacement deterioration can be solved.

【0017】本発明の圧電材料は、上記の組成とするこ
とで変位性能に優れかつ変位劣化の少ない高負荷アクチ
エータ材料として最適のものとなる。
With the above composition, the piezoelectric material of the present invention is optimal as a high-load actuator material having excellent displacement performance and little displacement deterioration.

【0018】[0018]

【実施例】以下、実施例により本発明を説明する。(粉
末の合成) まず、原料粉末のPbO、SrO、TiO2 、Zr
2 、Nb2 5 、Fe23 を表1に示す所定量ずつ
秤量し、乾式法で十分混合した(なお、実施例ではM、
A、Bの元素として、それぞれSr、Nb、Feを用い
た)。次に700〜900℃で1〜10時間の仮焼をお
こない、その後ボールミル(ZrO2 ボール)を用いて
24時間湿式粉砕した。そして得られた粉末をスプレー
ドライ造粒し、表1に示す各試料粉末を得た。 (試料の作製)上記の方法で得た各試料粉末に粘結剤な
どと混合して、一軸加圧で予備成形した後CIP成形
し、ペレット形状の圧粉体を得た。この圧粉体を600
℃で30分加熱して脱脂したのち、1150〜1250
℃で2時間焼成した。なお、各試料は、各試料と同一組
成で作製されたパッド材中に完全に埋め込んだ状態で焼
成した。次に得られた各焼成体の両面を研磨し、その研
磨面に銀ペースト焼付けで電極を設けた。そして100
℃の絶縁油中で分極処理(1〜5kV/mmの電界を1
0分印加)し、測定試料とした。実施例No.1〜1
1、比較例No.20〜27。表1には、作製したPZ
Tの組成を示すx、y、z、uおよびz−u値および試
料のTc(キュリー温度)を示した。 (耐久試験)まず耐久試験に先立ち、圧縮応力20MP
aで−400〜1600V/mmの電界を試料に印加
し、その際の歪み量および分極量の変化を測定した。そ
して、耐久試験前の単位分極量変化あたりの歪み量、す
なわち、大振幅電界下での見掛けのg定数を得た。次
に、抗電界を超える特殊な交流電界下(1〜2kV/m
m)で107 回駆動するという耐久試験をおこない、そ
の後前記と同じ条件で歪み量および分極量変化を測定し
た。そして、耐久試験前後のg定数を比較し、g定数保
持率を計算した。結果を表1に示す。
EXAMPLES The present invention will be described below with reference to examples. (Synthesis of Powder) First, raw material powders of PbO, SrO, TiO 2 , and Zr
O 2 , Nb 2 O 5 , and Fe 2 O 3 were weighed in predetermined amounts shown in Table 1 and thoroughly mixed by a dry method (note that in the examples, M,
Sr, Nb, and Fe were used as the elements of A and B, respectively). Then, calcination was performed at 700 to 900 ° C. for 1 to 10 hours, and then wet pulverization was performed for 24 hours using a ball mill (ZrO 2 balls). The obtained powder was spray-dried and granulated to obtain each sample powder shown in Table 1. (Preparation of Sample) Each sample powder obtained by the above method was mixed with a binder and the like, preformed by uniaxial pressure and then CIP molded to obtain a pellet-shaped green compact. This green compact 600
After degreasing by heating at ℃ for 30 minutes, 1150 to 1250
Calcination was carried out for 2 hours. Note that each sample was baked in a state where it was completely embedded in a pad material manufactured with the same composition as each sample. Next, both surfaces of each of the obtained fired bodies were polished, and electrodes were provided on the polished surfaces by silver paste baking. And 100
Polarization treatment (1-5kV / mm electric field 1
It was applied for 0 minutes) and used as a measurement sample. Example No. 1-1
1, Comparative Example No. 20-27. Table 1 shows the prepared PZ
The x, y, z, u and zu values showing the composition of T and the Tc (Curie temperature) of the sample are shown. (Durability test) First, prior to durability test, compressive stress 20MP
An electric field of −400 to 1600 V / mm was applied to the sample at a, and changes in strain amount and polarization amount at that time were measured. Then, the amount of strain per unit polarization change before the durability test, that is, the apparent g constant under a large amplitude electric field was obtained. Next, under a special AC electric field exceeding the coercive electric field (1-2 kV / m
An endurance test of driving 10 7 times in m) was performed, and thereafter, changes in strain and polarization were measured under the same conditions as above. Then, the g constant before and after the durability test was compared, and the g constant retention rate was calculated. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1に示すように、本実施例No.1〜1
1では100×(z−u)値が本発明の範囲にあるので
g定数保持率が90%以上と大きく変位劣化が少ないこ
とを示している。一方比較例No.20〜27の100
×(z−u)値が本発明の範囲外であると、g定数保持
率が90%以下となり変位劣化が大きくなっている。す
なわち、比較例No.24、27はB成分を含まない例
である。比較例No.22はB成分が多すぎる例、比較
例No.20、22はA、B両成分の量が同じである
例、比較例No.25、26は添加物を外添加した例で
ある。
As shown in Table 1, this embodiment No. 1-1
In No. 1, since the 100 × (z−u) value is within the range of the present invention, the g-constant retention rate is 90% or more, indicating that displacement deterioration is small. On the other hand, Comparative Example No. 20 to 27 of 100
When the x (z−u) value is out of the range of the present invention, the g constant retention rate is 90% or less, and the displacement deterioration is large. That is, Comparative Example No. 24 and 27 are examples that do not include the B component. Comparative Example No. 22 is an example in which the B component is too much, and Comparative Example No. Nos. 20 and 22 are examples in which the amounts of both A and B components are the same, and Comparative Example No. Nos. 25 and 26 are examples in which additives were externally added.

【0021】アクチュエータの駆動方式としてはヒステ
リシスのない電荷制御が注目されている。その際は一定
電荷量に対する歪み量が重要となる。したがって、g定
数が変位劣化の目安となりg定数が低下しないことが劣
化しないことを意味する。本実施例ではg定数保持率が
90%以上で上記の駆動方式の使用に耐えることができ
る。
As a driving method of the actuator, charge control without hysteresis is drawing attention. In that case, the amount of distortion with respect to a fixed amount of charge is important. Therefore, the g constant serves as a guideline for deterioration of the displacement, and the fact that the g constant does not decrease means that the deterioration does not occur. In this embodiment, the holding rate of the g constant is 90% or more, and it is possible to withstand the use of the above driving method.

【0022】[0022]

【発明の効果】本発明の圧電材料は、上記の組成範囲と
することにより変位量が大きく変位劣化を少なくするこ
とができる。その結果、広い温度範囲(〜150℃)で
使用し、かつ大きな変位量が必要なアクチュエータ、た
とえば自動車用アクチュエータに使用することができ
る。
EFFECTS OF THE INVENTION The piezoelectric material of the present invention has a large amount of displacement and can suppress deterioration of displacement by setting the above composition range. As a result, it can be used in a wide temperature range (up to 150 ° C.) and an actuator that requires a large amount of displacement, such as an automobile actuator.

【手続補正書】[Procedure amendment]

【提出日】平成6年4月19日[Submission date] April 19, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【課題を解決するための手段】本発明の圧電材料は、
(Pb1-x x 1-(z-u)/2 {(Zry Ti1-y 1-(z
+u) z u }O3 で表される組成物であって、MはS
r、Ca、Baのうちの少なくとも1種よりなり、0<
x≦0.25、0<y≦0.7であり、Aは5価イオン
となる金属元素、Bは3価イオンとなる金属元素であ
り、AおよびBは(Zry Ti1-y )中の一部に置換し
たものであり、上記Aの置換量を100×zモル%と
し、上記Bの置換量を100×uモル%とすると、10
0×zおよび100×uは0.2≦100×(z−u)
≦2.0の範囲にある組成物よりなり、結晶格子中に含
まれない過剰な金属元素が存在しないことを特徴とす
る。
The piezoelectric material of the present invention comprises:
(Pb 1-x M x ) 1- (zu ) / 2 {(Zr y Ti 1-y ) 1- (z
+ u) A z B u } O 3 wherein M is S
It consists of at least one of r, Ca and Ba, and 0 <
x ≦ 0.25, 0 <y ≦ 0.7, A is a metal element that becomes a pentavalent ion, B is a metal element that becomes a trivalent ion, and A and B are (Zr y Ti 1-y ) When the amount of substitution of A is 100 × z mol% and the amount of substitution of B is 100 × u mol%, 10
0 × z and 100 × u are 0.2 ≦ 100 × (z−u)
The composition is in the range of ≦ 2.0, and is characterized in that there is no excess metal element not included in the crystal lattice.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

【作用】本発明の圧電材料は、(Pb1-x x
1-(z-u)/2 {(Zry Ti1-y 1-(z +u) z u }O
3 の組成を有する。式中の(Zry Ti1-y )は一部が
5価イオンとなる金属元素Aおよび3価イオンとなる金
属元素Bにより置換されている。そして、上記5価イオ
ンおよび3価イオンの各金属元素の置換量は特定の範囲
とし、結晶格子中には過剰となって存在しない状態の組
成としている。
The piezoelectric material of the present invention is (Pb 1-x M x )
1- (zu ) / 2 {(Zr y Ti 1-y ) 1- (z + u) A z B u } O
It has a composition of 3 . In the formula, (Zr y Ti 1-y ) is partially substituted by a metal element A which becomes a pentavalent ion and a metal element B which becomes a trivalent ion. Then, the substitution amount of each metal element of the pentavalent ion and the trivalent ion is set in a specific range, and the composition is in a state in which it does not exist in excess in the crystal lattice.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (Pb1-x x 1-(Z-U)/2 {(Zry
Ti1-y 1-(z+u)z u }O3 で表される組成物で
あって、 MはSr、Ca、Baのうちの少なくとも1種よりな
り、0<x≦0.25、0<y≦0.7であり、Aは5
価イオンとなる金属元素、Bは3価イオンとなる金属元
素であり、AおよびBは(Zry Ti1-y )中の一部に
置換したものであり、上記Aの置換量を100×zモル
%とし、上記Bの置換量を100×uモル%とすると、
100×zおよび100×uは0.2≦100×(z−
u)≦2.0の範囲にある組成物よりなり、結晶格子中
に含まれない過剰な金属元素が存在しないことを特徴と
する圧電材料。
1. (Pb 1-x M x ) 1- (ZU) / 2 {(Zr y
Ti 1-y ) 1- (z + u) A z B u } O 3 wherein M is at least one of Sr, Ca and Ba, and 0 <x ≦ 0 0.25, 0 <y ≦ 0.7, and A is 5
A metal element to be a valent ion, B is a metal element to be a trivalent ion, A and B are those partially substituted in (Zr y Ti 1-y ), and the substitution amount of A is 100 × z mol% and the substitution amount of B is 100 × u mol%,
For 100 × z and 100 × u, 0.2 ≦ 100 × (z−
u) A piezoelectric material comprising a composition in the range of ≦ 2.0, wherein there is no excess metal element not included in the crystal lattice.
JP6050561A 1994-03-22 1994-03-22 Piezoelectric material Pending JPH07257924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6050561A JPH07257924A (en) 1994-03-22 1994-03-22 Piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6050561A JPH07257924A (en) 1994-03-22 1994-03-22 Piezoelectric material

Publications (1)

Publication Number Publication Date
JPH07257924A true JPH07257924A (en) 1995-10-09

Family

ID=12862425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6050561A Pending JPH07257924A (en) 1994-03-22 1994-03-22 Piezoelectric material

Country Status (1)

Country Link
JP (1) JPH07257924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229086A1 (en) * 2001-09-29 2003-04-17 Ceramtec Ag Piezoelectric ceramic materials based on lead zirconate titanate (PZT) with the crystal structure of the perovskite
WO2005071769A1 (en) * 2004-01-23 2005-08-04 Murata Manufacturing Co., Ltd. Piezoelectric element and laminated piezoelectric element
US7667377B2 (en) 2005-12-08 2010-02-23 Murata Manufacturing Co., Ltd. Laminated piezoelectric element and process for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10229086A1 (en) * 2001-09-29 2003-04-17 Ceramtec Ag Piezoelectric ceramic materials based on lead zirconate titanate (PZT) with the crystal structure of the perovskite
WO2003029162A3 (en) * 2001-09-29 2003-10-30 Ceramtec Ag Piezoelectric ceramic materials based on lead zirconate titanate (pzt) having the crystal structure of perovskite
JP2005503990A (en) * 2001-09-29 2005-02-10 セラムテック アクチエンゲゼルシャフト イノヴェイティヴ セラミック エンジニアリング Piezoelectric ceramic material based on lead zirconate titanate (PZT) with perovskite crystal structure
US7387745B2 (en) 2001-09-29 2008-06-17 Ceramtec Ag Piezoelectric ceramic materials based on lead zirconate titanate (PZT) having the crystal structure perovskite
JP2011057550A (en) * 2001-09-29 2011-03-24 Ceramtec Ag Innovative Ceramic Engineering Piezoelectric ceramic material based on lead zirconate titanate (pzt) having the crystal structure of perovskite
WO2005071769A1 (en) * 2004-01-23 2005-08-04 Murata Manufacturing Co., Ltd. Piezoelectric element and laminated piezoelectric element
US7667377B2 (en) 2005-12-08 2010-02-23 Murata Manufacturing Co., Ltd. Laminated piezoelectric element and process for producing the same

Similar Documents

Publication Publication Date Title
JP4929522B2 (en) Piezoelectric ceramic composition
JP3244027B2 (en) Piezoelectric ceramic composition
US5762816A (en) Piezoelectric ceramic composition
JPH11246269A (en) Piezoelectric porcelain composition
JP2005047748A (en) Piezoelectric ceramic
JP2001342065A (en) Piezoelectric ceramic composition
JP3827915B2 (en) Piezoelectric material and manufacturing method thereof
JPH07257924A (en) Piezoelectric material
JP2004168603A (en) Piezoelectric ceramic composition
JPH1160334A (en) Piezoelectric porcelain composition for actuator
JPH11278932A (en) Piezoelectric porcelain
JPH09315860A (en) Piezoelectric porcelain composition
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JPH10324569A (en) Piezoelectric ceramic composition
JP4361990B2 (en) Piezoelectric ceramic composition
JP3481832B2 (en) Piezoelectric ceramic
JP2005047747A (en) Piezoelectric ceramic
JPH107460A (en) Piezoelectric porcelain composition
JP3830345B2 (en) Piezoelectric ceramic
JPH09221359A (en) Piezoelectric ceramic composition
JP3404212B2 (en) Piezoelectric ceramic composition
JPH10338572A (en) Piezoelectric porcelain composition
JP4013531B2 (en) Piezoelectric ceramic composition
JPH04260662A (en) Piezoelectric ceramic composition
JP3228648B2 (en) Piezoelectric ceramic composition