JPH07257156A - Vehicle air-conditioning device - Google Patents

Vehicle air-conditioning device

Info

Publication number
JPH07257156A
JPH07257156A JP35499993A JP35499993A JPH07257156A JP H07257156 A JPH07257156 A JP H07257156A JP 35499993 A JP35499993 A JP 35499993A JP 35499993 A JP35499993 A JP 35499993A JP H07257156 A JPH07257156 A JP H07257156A
Authority
JP
Japan
Prior art keywords
hydraulic
oil
radiator
hydraulic oil
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35499993A
Other languages
Japanese (ja)
Inventor
Yorikazu Aoki
順和 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP35499993A priority Critical patent/JPH07257156A/en
Publication of JPH07257156A publication Critical patent/JPH07257156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To enhance the immediately heating ability and to realize the stable heating temperature by providing oil tanks for feeding hydraulic oil into a first hydraulic pump for a hydraulic motor and a second hydraulic pump for a heat radiator, respectively. CONSTITUTION:A hydraulic motor drive circuit Cl is composed of a first oil tank 30a, a first hydraulic pump 31a and a hydraulic motor 32, and a heat radiating circuit C2 is composed of a second oil tank 30b which is provided separately from the first oil tank 30a, a second hydraulic pump 31b, a second relief valve 33b, a heat radiator 34 and a normally open solenoid valve 35a. Accordingly, the quantity of the second oil 20 can become less so that the hearting temperature of the radiator 34 can be raised in a short time so as to immediately heat a passenger compartment. Further, hydraulic oil circulating through the radiator 34 is not affected by hydraulic oil circulating through the hydraulic motor 32, and accordingly, it is possible to ensure stable heating.

Description

【発明の詳細な説明】 (産業上の利用分野)本発明は油圧回路と冷凍回路とを
備えた車両、例えばラフテレーンクレーン等の作業用車
両に適した車両用空気調和装置に関するものである。 (従来の技術)一般に、キャビンが360°回転するラ
フテレーンクレーンの場合は、普通の自動車と異なりキ
ャビンの下方で循環するエンジン冷却水をキャビン内に
導入することができず、このエンジン冷却水を暖房用熱
源として利用することができない。そこで、このような
車両の冷暖房を行う空気調和装置として、第2図に示す
ものを出願人は提案した(実願平1−123836
号)。この車両用空気調和装置は、油圧回路Aと冷凍回
路Bとを備え、この油圧回路Aは油圧モータ駆動回路A
1と放熱回路A2とから構成されている。この油圧モー
タ駆動回路A1は 油タンク10第1油圧ポンプ11a
及び油圧モータ12を有し、油タンク10内の作動油を
第1油圧ポンプ11aにて汲み上げ、この汲み上げられ
た作動油により油圧モータ12が駆動される。放熱回路
A2は、油タンク10、第2油圧ポンプ11b,リリー
フバルブ13、放熱器14、常開の電磁弁15を有して
いる。電磁弁15が開となっているときは、第2油圧ポ
ンプ11bにて汲み上げられた作動油が電磁弁15を介
して油タンク10に直に戻り、また、電磁弁15が閉と
なっているときは リリーフバルブ13を介して放熱器
14に作動油が流れるようになっている。尚、各油圧ポ
ンプ11a,11bは車両のエンジンで駆動し、また
油タンク10内の作動油は図示しない各種の油圧アクチ
ュエータにも作動油を流すようになっている。また、こ
のリリーフバルブ13は入口側と出口側との間で作動油
に一定の圧力差を生ぜしめるため、作動油が発熱するよ
うになっている。冷凍回路Bは、圧縮機20に凝縮器2
1、受液器22、膨張弁23、蒸発器24を順次連結し
たもので、凝縮器21及び蒸発器24はそれぞれ送風フ
アン21a,24aにより強制的に空気熱交換するよう
になっている。また、圧縮機20はクラッチ機構25を
介して油圧モータ12に連結している。更に、この送風
フアン24aはキャビン内に空調空気を導く空調風路2
6内に設置されている。この車両用空気調和装置におい
て、冬期に暖房運転を行うときはクラッチ機構25によ
り、油圧モータ12と圧縮機20の連結を解除し、か
つ、電磁弁15を閉とし、更に送風フアン24aを駆動
する。このとき、油圧モータ駆動回路A1においては、
第2図の破線矢印に示すように作動油が流れ、油圧モー
タ12が駆動するが、圧縮機20は停止状態となってい
る。他方、第2油圧ポンプ11bにより汲み上げられた
作動油が第2図の破線矢印に示すように、リリーフバル
ブ13→放熱器14→油タンク10と順次循環する。こ
こで作動油がリリーフバルブ13を通るとき、リリーフ
バルブ13の入口側と出口側との間で圧力差を生じ作動
油が発熱する。この作動油の熱は放熱器14で放出さ
れ、送風フアン24aにて送風される空調風路26内の
空気を加熱する。これにより、キャビン内の暖房が行わ
れることとなる。 (発明が解決しようとする課題)このような従来の車両
用空気調和装置においては、油圧モータ駆動回路A1の
第1油圧ポンプ11aに作動油を流す油タンク10と、
放熱回路A2の第2油圧ポンプ11bに作動油を流す油
タンク10とがそれぞれ同一のものとなっているから、
この油タンク10は大容量のものが使用される。しかし
ながら、暖房時においてこのような大容量の油タンク1
0内の作動油を放熱回路A2に流すときは、作動油の温
度が暖房温度まで上昇するまでに非常に時間がかかり、
短時間でキャビン内を暖房することができないという問
題点を有していた。また、各種油圧アクチュエータの使
用時と未使用時では作動油の全体圧力損失量が異なり、
これに伴ない発熱量が変わるため、放熱器14における
放熱量が変動し、所望の暖房温度を得ることが困難にな
るという欠点を有していた。本発明の目的は前記従来の
問題点に鑑み、即暖性が向上し、かつ、安定した暖房温
度を得ることができる車両用空気調和装置を提供するこ
とにある。 (課題を解決するための手段)本発明は前記課題を解決
するため、油圧モータに作動油を循環する第1油圧ポン
プと作動油の熱を放出する放熱器に作動油を循環する第
2油圧ポンプとを有する油圧回路を備え、該放熱器を車
室内に空調空気を導く空調風路内に設置した車両用空気
調和装置において、前記第1油圧ポンプに作動油を流す
油タンクと前記第2油圧ポンプに作動油を流す油タンク
とをそれぞれ別個に設けたことを特徴とする。 (作用)本発明によれば、第1油圧ポンプの油タンクと
第2油圧ポンプの油タンクとをそれぞれ別個に設けてい
るから、第2油圧ポンプの油タンク、即ち放熱器に作動
油を流す油タンクの容量が小さなものでよいし、また、
放熱器に循環する作動油が油圧モータに循環する作動油
により影響を受けることがないから、第2油圧ポンプの
油タンク内の油の温度をほぼ一定に保つことができ、所
望の暖房温度を得ることができる。 (実施例)第1図及び第3図は本発明に係る車両用空気
調和装置の第1実施例を示すもので、第1図は油圧回路
と冷凍回路を示す回路図である。この油圧回路Cは、油
圧モータ駆動回路C1と放熱回路C2とから構成されて
いる。この油圧モータ駆動回路はC1,第1油タンク3
0a、第1油圧ポンプ31a及び油圧モータ32を有
し、第1油タンク30a内の作動油を第1油圧ポンプ3
1aにて汲み上げ、この汲み上げられた作動油により油
圧モータ32が駆動される。また、この第1油圧ポンプ
31aは車両のエンジンで直接に駆動するようになって
いる。尚、33aは油圧モータ32への油圧を調節する
第1リリーフバルブである。放熱回路C2は、第1油タ
ンク30aとは別個に設置された第2油タンク30b、
第2油圧ポンプ31b,第2リリーフバルブ33b,放
熱器34、常開の電磁弁35aを有している。電磁弁3
5aが開となっているときは、第2油圧ポンプ31bに
て汲み上げられた作動油が電磁弁35aを介して放熱器
34及び第2油タンク30bに直に戻り、また、電磁弁
35aが閉となっているときは、第2リリーフバルブ3
3bを介して放熱器34に作動油が流れるようになって
いる。また、第2油圧ポンプ31bは第1クラッチ機構
36を介して油圧モータ32に連結している。ここで、
第2リリーフバルブ33bは入口側と出口側との間で作
動油に一定の圧力差を生ぜしめるため、作動油が発熱す
る。この発熱量は下記の式により求められる。即ち、 H=1.41×Q×ΔP H:発熱量(kcal/h),Q:作動油流量(l/m
in),ΔP:圧力差(kgf/cm),1.41:
定数 従って、放熱器34の放熱量は、第2リリーフバルブ3
3bの設定圧力に比例することとなる。冷凍回路Dは、
第2図に示す従来例と同様に、圧縮機40に凝縮器4
1、受液器42、膨張弁43、蒸発器44を順次連結し
たもので、凝縮器41及び蒸発器44はそれぞれ送風フ
アン41a,44aにより強制的に空気熱交換するよう
になっている。また、圧縮機40は第2クラッチ機構4
5を介して油圧モータ32に連結している。第3図は本
実施例に係る車両用空気調和装置をラフテレーンクレー
ンに装着した状態を示す概略構成図である。即ち、キャ
ビン50内には空調ユニット51を設置しており この
空調ユニット51内の空調風路52内には送風フアン4
4a、蒸発器44及び放熱器34を設置している。ま
た、この空調風路52はダンパ53により暖房用の風路
と冷房用の風路とに切換えができ、暖房及び除湿暖房時
は実線矢印に示すように、キャビン50内の空気を空調
ユニット51の吸入口54より吸入し蒸発器44及び放
熱器34を通じてキャビン50内に吹出し、他方、冷房
時は破線矢印に示すように蒸発器44のみを通じてキャ
ビン50内に吹出すようになっている。本実施例におい
て 冬期に暖房運転を行なうときは、第1クラッチ機構
36により第2油圧ポンプ31bと油圧モータ32を連
結し、また、第2クラッチ機構45により油圧モータ3
2と圧縮機40の連結を解除し、更に、電磁弁35aを
閉とし、送風フアン44aを駆動する。このとき、油圧
モータ駆動回路C1においては、第1図の破線矢印に示
すように作動油が流れ、油圧モータ32が駆動するが、
圧縮機40は停止状態となっている。他方、油圧ポンプ
31bにより汲み上げられた作動油が第1図の破線矢印
に示すように、第2リリーフバルブ33b→放熱器34
→第2油タンク30bと順次循環する。ここで作動油が
第2リリーフバルブ33bを通るとき、第2リリーフバ
ルブ33bの入口側と出口側との間で圧力差を生じ作動
油が発熱する。この作動油の熱は放熱器34で放出さ
れ、送風フアン44aにて送風される空調風路52内の
空気を加熱する。これにより、キャビン50内の暖房が
行なわれることとなる。尚、電磁弁35aを開とすると
きは、作動油が第2リリーフバルブ33bを通ることな
く、直接に放熱器34に流れ、このときは管路中におけ
る圧力損失により発生する熱がこの放熱器34から放出
される。夏期に冷房運転を行なうときは、第1クラッチ
機構36により第2油圧ポンプ31bと油圧モータ32
との連結を解除し また、第2クラッチ機構45により
油圧モータ32と圧縮機40とを連結し、更に各送風フ
アン41a 44aを駆動する。これにより、第1油圧
ポンプ31aにより汲み上げられた作動油が、第1図の
破線矢印に示すように、油圧モータ32に循環し油圧モ
ータ32を駆動する。この油圧モータ32の回転力によ
り圧縮機40が駆動し、圧縮機40から吐出される冷媒
が実線矢印に示すように、凝縮器41→受液器42→膨
張弁43→蒸発器44→圧縮機40と順次循環する。こ
れにより、空調回路52内の空気が蒸発器44にて冷却
され、キャビン50内の冷房が行なわれる、梅雨期等に
除湿暖房運転を行なうときは、各クラッチ機構36,4
5により油圧モータ32と第2油圧ポンプ31b及び圧
縮機40とを連結し、かつ、電磁弁35aを閉とし、更
に、各送風フアン41a,44aを駆動する。これによ
り、第2油圧ポンプ31bにて汲み上げられた作動油
は、暖房運転時と同様に破線矢印に示すように循環し、
放熱器34により空調風路52内の空気が加熱される。
また、圧縮機40から吐出した冷媒は、冷房運転時と同
様に実線矢印に示すように循環し、蒸発器44にて空調
風路52内の空気が除湿冷却される。この蒸発器44に
よる除湿冷却と放熱器34による加熱によりキャビン5
0内の除湿暖房が行なわれることとなる。このような暖
房運転及び除湿暖房運転において、油圧モータ32に作
動油を流す第1油タンク30aと放熱器34に作動油を
流す第2油タンク30bとを別個に設けているから、こ
の第2油タンク30b内の作動油の量は放熱のために十
分な量であれば足り、作動油の量が従来の車両用空気調
和装置と比較し少なくてすむ。従って、放熱回路C2に
循環する作動油の温度が短時間で上昇する。また、この
放熱回路C2に循環する作動油が油圧モータ駆動回路C
1に循環する作動油によって熱の影響を受けることがな
いので、放熱器34にて安定した放熱量を得ることがで
きる。第4図は本発明に係る車両用空気調和装置の第2
実施例を示すもので、前述の第2リリーフバルブ33b
の代りに作動油の圧力差を調整出きる可変リリーフバル
ブ33cを使用した例を示している。この実施例によれ
ば、可変リリーフバルブ33cの圧力差を変更すること
により、放熱器34における放熱量を変えることができ
る。尚、その他の構成、作用は前記第1実施例と同様で
ある。第5図は本発明に係る車両用空気調和装置の第3
実施例を示すもので、第2リリーフバルブ33bと第2
油圧ポンプ31bとの間の回路中に作動油の流量を調整
できる可変絞りバルブ37を挿入したものである。この
実施例によれば、この可変絞りバルブ37により第2リ
リーフバルブ33bに流通する作動油の流量が調整さ
れ、第2リリーフバルブ33bにおける発熱量が調整さ
れる。その他の構成、作用は前記第1実施例と同様であ
る。第6図は本発明に係る車両用空気調和装置の第4実
施例を示すもので、第2実施例に係る可変リリーフバル
ブ33cと第2油圧ポンプ31bとの間の回路中に可変
絞りバルブ37を挿入したものである。この実施例によ
れば、可変絞りバルブ37により作動油の流量が調整さ
れ、可変リリーフバルブ33cにより作動油の圧力が調
整され、この両者の調整作用により可変リリーフバルブ
33cにおける発熱量を広範囲に調整できる。その他の
構成、作用は前記第2実施例と同様である。第7図は本
発明に係る車両用空気調和装置の第5実施例を示すもの
で、第2油圧ポンプ31bと放熱器34との間に並列に
2個のリリーフバルブ33d,33eを挿入したもので
ある。この各リリーフバルブ33d,33eはその設定
圧力をそれぞれ相違させており、リリーフバルブ33d
の設定圧力がリリーフバルブ35eの設定圧力より高く
している。また、リリーフバルブ33eの入口側には電
磁弁35bを設け、電磁弁35bを開くときは設定圧力
の低いリリーフバルブ33eに作動油が流通し、電磁弁
35bを閉じるときは設定圧力の高いリリーフバルブ3
3dに作動油が流通するようになっている。この実施例
によれば、電磁弁35bの開閉により作動油の圧力差を
調整でき、放熱器34における放熱量を変えることがで
きる。その他の構成、作用は前記第1実施例と同様であ
る。第8図は本発明に係る車両用空気調和装置の第6実
施例を示すもので、前記第1実施例のリリーフバルブ3
3bに代えて作動油に所定の圧力差を生ぜしめる発熱オ
リフィス38を設けるとともに、発熱オリフィス38の
吸入側に流量制御手段、即ち作動油の流量差の異なる電
磁弁35c,35dを並列に設けたものである。この実
施例によれば、各電磁弁35c,35dを開閉すること
により、発熱オリフィス38への作動油の流量が変化
し、発熱オリフィス38における発熱量を変えることが
できる。その他の構成、作用は前記第1実施例と同様で
ある。第9図は本発明に係る車両用空気調和装置の第7
実施例を示すもので、前記第6実施例の各電磁弁35
c,35dと第2油圧ポンプ31bとの間に可変絞りバ
ルブ37を挿入したものである。この実施例によれば、
可変絞りバルブ37及び各電磁弁35c,35dの流量
調整により発熱オリフィス38における発熱量を変える
ことができる。その他の構成、作用は前記第6実施例と
同様である。第10図は本発明に係る車両用空気調和装
置の第8実施例を示すもので、油圧回路Cの放熱回路C
2で放熱器34の出口側と第2油タンク30bとの間に
サブタンク39aを配置するとともに、サブタンク39
aと第2油タンク30bとの間には第2油圧ポンプ31
bの吸入側に連結するバイパス管39bが連結してい
る。また、サブタンク39aからの作動油をバイパス管
39b或いは第2油タンク30bに切換える第2切換え
弁、例えば電磁式の二方弁39cが設けられている。更
に、サブタンク39a内の作動油の温度を検知し、この
温度に基づき二方弁39cを操作するサーモスタット3
9dが設けられている。このサーモスタット39dは設
定温度(暖房或いは除湿暖房に適した温度、例えば80
℃)以下のときはサブタンク39aから流出した作動油
をバイパス管39bに流し、所定温度を越えるときは作
動油を第2油タンク30bに戻すようになっている。
尚、39eはバイパス管39bから流出した作動油が第
2油タンク30bへ戻るのを防止する逆止弁である。本
実施例によれば、作動油が発熱オリフィス38を通ると
き、発熱オリフィス38で圧力差を生じ作動油が発熱す
るが、サブタンク39a内の作動油の温度が設定温度に
達していないとき(暖房運転始動時)は、サーモスタッ
ト39dにより二方弁39cがバイパス管39bに作動
油を流し油圧ポンプ31b側に戻す。これにより、発熱
オリフィス38にて加熱された作動油が第2油タンク3
0b内に戻ることなく放熱回路C2内を循環し、循環作
動油の温度が短時間で上昇することとなる。その後設定
温度に達したときは二方弁39cは作動油を第2油タン
ク30b内に戻すこととなる。その他の構成、作用は前
記第6実施例と同様である。 (発明の効果)以上説明したように、本発明によれば、
第1油圧ポンプに作動油を流す油タンクと第2油圧ポン
プに作動油を流す油タンクとをそれぞれ別個に設けたか
ら、第2油圧ポンプ側の油タンクにおける作動油の量を
少なくすることができ、これに伴ない放熱器における放
熱温度を短時間で上昇させることができる。従って、車
室内の暖房を短時間で行なうことができるという利点を
有する。また、放熱器に循環する作動油が油圧モータに
循環する作動油により影響を受けることがないから、安
定した暖房温度を確保することができるという利点を有
する。
TECHNICAL FIELD The present invention relates to a vehicle air conditioner suitable for a vehicle provided with a hydraulic circuit and a refrigeration circuit, for example, a working vehicle such as a rough terrain crane. (Prior Art) Generally, in the case of a rough terrain crane in which the cabin rotates 360 °, the engine cooling water that circulates below the cabin cannot be introduced into the cabin unlike an ordinary automobile, and this engine cooling water is It cannot be used as a heat source for heating. Therefore, the applicant has proposed an air conditioner for cooling and heating such a vehicle as shown in FIG. 2 (Actual Application No. 1-123836).
issue). This vehicle air conditioner includes a hydraulic circuit A and a refrigeration circuit B. The hydraulic circuit A is a hydraulic motor drive circuit A.
1 and a heat dissipation circuit A2. The hydraulic motor drive circuit A1 includes an oil tank 10 and a first hydraulic pump 11a.
And the hydraulic motor 12, the hydraulic oil in the oil tank 10 is pumped up by the first hydraulic pump 11a, and the hydraulic motor 12 is driven by the pumped hydraulic oil. The heat radiation circuit A2 includes an oil tank 10, a second hydraulic pump 11b, a relief valve 13, a radiator 14, and a normally open solenoid valve 15. When the solenoid valve 15 is open, the hydraulic oil pumped up by the second hydraulic pump 11b returns directly to the oil tank 10 via the solenoid valve 15, and the solenoid valve 15 is closed. At this time, the working oil is allowed to flow to the radiator 14 via the relief valve 13. Each hydraulic pump 11a, 11b is driven by the engine of the vehicle,
The hydraulic oil in the oil tank 10 is made to flow also to various hydraulic actuators (not shown). Further, since the relief valve 13 causes a constant pressure difference in the hydraulic oil between the inlet side and the outlet side, the hydraulic oil generates heat. The refrigeration circuit B includes a compressor 20 and a condenser 2
1, the liquid receiver 22, the expansion valve 23, and the evaporator 24 are sequentially connected, and the condenser 21 and the evaporator 24 are forced to exchange heat with air by the blower fans 21a and 24a, respectively. Further, the compressor 20 is connected to the hydraulic motor 12 via a clutch mechanism 25. Further, the blower fan 24a is provided with the air conditioning air passage 2 for guiding the air conditioning air into the cabin.
It is installed in 6. In this vehicle air conditioner, when heating operation is performed in winter, the clutch mechanism 25 disconnects the hydraulic motor 12 from the compressor 20, closes the solenoid valve 15, and further drives the blower fan 24a. . At this time, in the hydraulic motor drive circuit A1,
The hydraulic oil flows and the hydraulic motor 12 is driven as shown by the broken line arrow in FIG. 2, but the compressor 20 is in a stopped state. On the other hand, the hydraulic oil pumped up by the second hydraulic pump 11b is sequentially circulated in the order of relief valve 13 → radiator 14 → oil tank 10 as shown by the broken line arrow in FIG. Here, when the hydraulic oil passes through the relief valve 13, a pressure difference is generated between the inlet side and the outlet side of the relief valve 13, and the hydraulic oil generates heat. The heat of the hydraulic oil is released by the radiator 14 and heats the air in the air conditioning air passage 26 blown by the blower fan 24a. As a result, the cabin is heated. (Problems to be Solved by the Invention) In such a conventional vehicle air conditioner, an oil tank 10 for flowing hydraulic oil to the first hydraulic pump 11a of the hydraulic motor drive circuit A1;
Since the oil tanks 10 for flowing hydraulic oil to the second hydraulic pumps 11b of the heat radiation circuit A2 are the same,
The oil tank 10 has a large capacity. However, during heating, such a large-capacity oil tank 1
When the hydraulic oil in 0 flows to the heat dissipation circuit A2, it takes a very long time for the temperature of the hydraulic oil to rise to the heating temperature.
There is a problem that the cabin cannot be heated in a short time. In addition, the total pressure loss of hydraulic oil is different when various hydraulic actuators are used and not used.
Since the amount of heat generation changes accordingly, the amount of heat radiation in the radiator 14 fluctuates, which makes it difficult to obtain a desired heating temperature. In view of the above conventional problems, an object of the present invention is to provide a vehicular air conditioner that can improve immediate warming and obtain a stable heating temperature. (Means for Solving the Problems) In order to solve the above problems, the present invention provides a first hydraulic pump that circulates hydraulic oil in a hydraulic motor and a second hydraulic pressure that circulates hydraulic oil in a radiator that releases heat from the hydraulic oil. A vehicle air conditioner comprising a hydraulic circuit having a pump, the radiator being installed in an air-conditioning air passage for guiding conditioned air into a vehicle compartment, wherein an oil tank for flowing hydraulic oil to the first hydraulic pump and the second It is characterized in that an oil tank for supplying hydraulic oil to the hydraulic pump is separately provided. (Operation) According to the present invention, the oil tank of the first hydraulic pump and the oil tank of the second hydraulic pump are provided separately, so that the working oil flows through the oil tank of the second hydraulic pump, that is, the radiator. You can use a small oil tank, or
Since the hydraulic oil circulated in the radiator is not affected by the hydraulic oil circulated in the hydraulic motor, the temperature of the oil in the oil tank of the second hydraulic pump can be kept substantially constant, and the desired heating temperature can be maintained. Obtainable. (Embodiment) FIGS. 1 and 3 show a first embodiment of a vehicle air conditioner according to the present invention, and FIG. 1 is a circuit diagram showing a hydraulic circuit and a refrigeration circuit. The hydraulic circuit C is composed of a hydraulic motor drive circuit C1 and a heat radiation circuit C2. This hydraulic motor drive circuit is C1, the first oil tank 3
0a, the first hydraulic pump 31a, and the hydraulic motor 32, and the hydraulic oil in the first oil tank 30a is transferred to the first hydraulic pump 3
The hydraulic motor 32 is driven by the pumped hydraulic oil 1a. The first hydraulic pump 31a is directly driven by the engine of the vehicle. Incidentally, 33a is a first relief valve for adjusting the hydraulic pressure to the hydraulic motor 32. The heat dissipation circuit C2 includes a second oil tank 30b installed separately from the first oil tank 30a,
It has a second hydraulic pump 31b, a second relief valve 33b, a radiator 34, and a normally open electromagnetic valve 35a. Solenoid valve 3
When 5a is open, the hydraulic oil pumped up by the second hydraulic pump 31b returns directly to the radiator 34 and the second oil tank 30b via the electromagnetic valve 35a, and the electromagnetic valve 35a is closed. If it is, the second relief valve 3
The hydraulic oil flows to the radiator 34 via 3b. The second hydraulic pump 31b is connected to the hydraulic motor 32 via the first clutch mechanism 36. here,
The second relief valve 33b causes a constant pressure difference in the hydraulic oil between the inlet side and the outlet side, so that the hydraulic oil generates heat. This calorific value is calculated by the following formula. That is, H = 1.41 × Q × ΔP H: calorific value (kcal / h), Q: hydraulic oil flow rate (l / m)
in), ΔP: pressure difference (kgf / cm 2 ), 1.41:
Therefore, the heat radiation amount of the radiator 34 is determined by the second relief valve 3 according to the constant.
It is proportional to the set pressure of 3b. The refrigeration circuit D is
Similar to the conventional example shown in FIG.
1, the liquid receiver 42, the expansion valve 43, and the evaporator 44 are sequentially connected, and the condenser 41 and the evaporator 44 are forcibly exchanged with each other by the blower fans 41a and 44a. Further, the compressor 40 has the second clutch mechanism 4
It is connected to the hydraulic motor 32 via 5. FIG. 3 is a schematic configuration diagram showing a state in which the vehicle air conditioner according to the present embodiment is mounted on a rough terrain crane. That is, the air conditioning unit 51 is installed in the cabin 50, and the ventilation fan 4 is installed in the air conditioning air passage 52 in the air conditioning unit 51.
4a, the evaporator 44, and the radiator 34 are installed. The air-conditioning air passage 52 can be switched between a heating air passage and a cooling air passage by a damper 53. During heating and dehumidifying and heating, as shown by the solid arrow, the air in the cabin 50 is changed. The air is sucked into the cabin 50 through the intake port 54 through the evaporator 44 and the radiator 34, and is blown into the cabin 50 only through the evaporator 44 during cooling, as indicated by the dashed arrow. When the heating operation is performed in the winter in this embodiment, the first clutch mechanism 36 connects the second hydraulic pump 31b and the hydraulic motor 32, and the second clutch mechanism 45 connects the hydraulic motor 3 to each other.
The connection between 2 and the compressor 40 is released, the solenoid valve 35a is closed, and the blower fan 44a is driven. At this time, in the hydraulic motor drive circuit C1, the hydraulic oil flows as shown by the broken line arrow in FIG. 1 to drive the hydraulic motor 32.
The compressor 40 is in a stopped state. On the other hand, the hydraulic oil pumped up by the hydraulic pump 31b, as shown by the broken line arrow in FIG.
→ Circulates sequentially with the second oil tank 30b. Here, when the hydraulic oil passes through the second relief valve 33b, a pressure difference is generated between the inlet side and the outlet side of the second relief valve 33b, and the hydraulic oil generates heat. The heat of the hydraulic oil is released by the radiator 34 and heats the air in the air conditioning air passage 52 blown by the blowing fan 44a. As a result, the interior of the cabin 50 is heated. When the solenoid valve 35a is opened, the working oil flows directly to the radiator 34 without passing through the second relief valve 33b, and at this time, the heat generated by the pressure loss in the pipeline is generated by this radiator. Emitted from 34. When performing the cooling operation in the summer, the first clutch mechanism 36 causes the second hydraulic pump 31b and the hydraulic motor 32 to operate.
The second clutch mechanism 45 connects the hydraulic motor 32 and the compressor 40, and further drives the blower fans 41a 44a. As a result, the hydraulic oil pumped up by the first hydraulic pump 31a circulates in the hydraulic motor 32 and drives the hydraulic motor 32, as indicated by the broken line arrow in FIG. The compressor 40 is driven by the rotational force of the hydraulic motor 32, and the refrigerant discharged from the compressor 40 is, as indicated by the solid line arrow, condenser 41 → liquid receiver 42 → expansion valve 43 → evaporator 44 → compressor. It circulates in sequence with 40. As a result, the air in the air conditioning circuit 52 is cooled by the evaporator 44, the inside of the cabin 50 is cooled, and when the dehumidifying and heating operation is performed during the rainy season, etc., the clutch mechanisms 36, 4 are used.
5, the hydraulic motor 32 is connected to the second hydraulic pump 31b and the compressor 40, the electromagnetic valve 35a is closed, and the blower fans 41a and 44a are driven. As a result, the hydraulic oil pumped up by the second hydraulic pump 31b circulates as indicated by the broken line arrow as in the heating operation,
The air inside the air conditioning air passage 52 is heated by the radiator 34.
Further, the refrigerant discharged from the compressor 40 circulates as shown by the solid arrow as in the cooling operation, and the evaporator 44 dehumidifies and cools the air in the air conditioning air passage 52. By the dehumidifying cooling by the evaporator 44 and the heating by the radiator 34, the cabin 5
Dehumidification heating in 0 will be performed. In such heating operation and dehumidifying heating operation, the first oil tank 30a for flowing the hydraulic oil to the hydraulic motor 32 and the second oil tank 30b for flowing the hydraulic oil to the radiator 34 are separately provided. The amount of hydraulic oil in the oil tank 30b need only be a sufficient amount for heat dissipation, and the amount of hydraulic oil can be smaller than that of the conventional vehicle air conditioner. Therefore, the temperature of the hydraulic oil circulating in the heat radiation circuit C2 rises in a short time. Further, the hydraulic oil circulating in the heat radiation circuit C2 is the hydraulic motor drive circuit C.
Since the working oil circulated to No. 1 is not affected by heat, the radiator 34 can obtain a stable amount of heat radiation. FIG. 4 is a second part of the vehicle air conditioner according to the present invention.
An example is shown, and the above-mentioned second relief valve 33b.
An example in which a variable relief valve 33c for adjusting and adjusting the pressure difference of the hydraulic oil is used instead of is shown. According to this embodiment, the amount of heat released by the radiator 34 can be changed by changing the pressure difference of the variable relief valve 33c. The rest of the configuration and operation are the same as in the first embodiment. FIG. 5 is a third view of a vehicle air conditioner according to the present invention.
The embodiment shows the second relief valve 33b and the second relief valve 33b.
A variable throttle valve 37 capable of adjusting the flow rate of hydraulic oil is inserted in a circuit between the hydraulic pump 31b and the hydraulic pump 31b. According to this embodiment, the flow rate of the hydraulic oil flowing through the second relief valve 33b is adjusted by the variable throttle valve 37, and the amount of heat generated by the second relief valve 33b is adjusted. Other configurations and operations are similar to those of the first embodiment. FIG. 6 shows a fourth embodiment of the vehicle air conditioner according to the present invention. A variable throttle valve 37 is provided in the circuit between the variable relief valve 33c and the second hydraulic pump 31b according to the second embodiment. Is inserted. According to this embodiment, the flow rate of the hydraulic oil is adjusted by the variable throttle valve 37, the pressure of the hydraulic oil is adjusted by the variable relief valve 33c, and the heat generation amount in the variable relief valve 33c is adjusted in a wide range by the adjusting action of both. it can. Other configurations and operations are similar to those of the second embodiment. FIG. 7 shows a fifth embodiment of the vehicle air conditioner according to the present invention, in which two relief valves 33d and 33e are inserted in parallel between the second hydraulic pump 31b and the radiator 34. Is. The relief valves 33d and 33e have different set pressures.
Is set higher than the set pressure of the relief valve 35e. A solenoid valve 35b is provided on the inlet side of the relief valve 33e. When the solenoid valve 35b is opened, operating oil flows through the relief valve 33e having a low set pressure, and when the solenoid valve 35b is closed, a relief valve having a high set pressure is provided. Three
The hydraulic oil is circulated in 3d. According to this embodiment, the pressure difference of the hydraulic oil can be adjusted by opening / closing the solenoid valve 35b, and the amount of heat released by the radiator 34 can be changed. Other configurations and operations are similar to those of the first embodiment. FIG. 8 shows a sixth embodiment of the vehicle air conditioner according to the present invention. The relief valve 3 of the first embodiment is shown in FIG.
In place of 3b, a heat-generating orifice 38 that causes a predetermined pressure difference in the working oil is provided, and on the suction side of the heat-generating orifice 38, flow rate control means, that is, solenoid valves 35c and 35d having different flow rates of the working oil are provided in parallel. It is a thing. According to this embodiment, by opening / closing each of the solenoid valves 35c, 35d, the flow rate of the working oil to the heat generating orifice 38 changes, and the heat generation amount in the heat generating orifice 38 can be changed. Other configurations and operations are similar to those of the first embodiment. FIG. 9 is a seventh embodiment of a vehicle air conditioner according to the present invention.
An embodiment is shown, and each solenoid valve 35 of the sixth embodiment is shown.
The variable throttle valve 37 is inserted between c and 35d and the second hydraulic pump 31b. According to this example,
The heat generation amount in the heat generation orifice 38 can be changed by adjusting the flow rates of the variable throttle valve 37 and the electromagnetic valves 35c and 35d. Other configurations and operations are similar to those of the sixth embodiment. FIG. 10 shows an eighth embodiment of the vehicle air conditioner according to the present invention, in which the heat radiation circuit C of the hydraulic circuit C is shown.
The sub-tank 39a is arranged between the outlet side of the radiator 34 and the second oil tank 30b at 2, and the sub-tank 39
The second hydraulic pump 31 is provided between a and the second oil tank 30b.
A bypass pipe 39b connected to the suction side of b is connected. Further, a second switching valve for switching the hydraulic oil from the sub tank 39a to the bypass pipe 39b or the second oil tank 30b, for example, an electromagnetic two-way valve 39c is provided. Further, the thermostat 3 that detects the temperature of the hydraulic oil in the sub tank 39a and operates the two-way valve 39c based on this temperature.
9d is provided. This thermostat 39d has a set temperature (a temperature suitable for heating or dehumidifying heating, for example 80
(° C) or less, the hydraulic oil flowing out from the sub tank 39a is caused to flow into the bypass pipe 39b, and when the temperature exceeds a predetermined temperature, the hydraulic oil is returned to the second oil tank 30b.
Incidentally, 39e is a check valve for preventing the hydraulic oil flowing out from the bypass pipe 39b from returning to the second oil tank 30b. According to the present embodiment, when the hydraulic oil passes through the heat-generating orifice 38, a pressure difference is generated in the heat-generating orifice 38 and the hydraulic oil generates heat, but when the temperature of the hydraulic oil in the sub tank 39a does not reach the set temperature (heating). At the start of operation), the two-way valve 39c causes the hydraulic oil to flow through the bypass pipe 39b by the thermostat 39d and returns it to the hydraulic pump 31b side. As a result, the hydraulic oil heated by the heat generating orifice 38 is transferred to the second oil tank 3
The temperature of the circulating hydraulic oil rises in a short time as it circulates in the heat dissipation circuit C2 without returning to 0b. Then, when the set temperature is reached, the two-way valve 39c returns the working oil into the second oil tank 30b. Other configurations and operations are similar to those of the sixth embodiment. As described above, according to the present invention,
Since the oil tank for flowing hydraulic oil to the first hydraulic pump and the oil tank for flowing hydraulic oil to the second hydraulic pump are separately provided, the amount of hydraulic oil in the oil tank on the second hydraulic pump side can be reduced. As a result, the heat radiation temperature in the radiator can be raised in a short time. Therefore, there is an advantage that the vehicle interior can be heated in a short time. Further, since the hydraulic oil circulating in the radiator is not affected by the hydraulic oil circulating in the hydraulic motor, there is an advantage that a stable heating temperature can be secured.

【図面の簡単な説明】 第1図及び第3図は本発明の第1実施例を示すもので、
第1図は車両用空気調和装置の回路図、第2図は従来の
車両用空気調和装置の回路図、第3図は車両用空気調和
装置の設置状態を示す概略構成図、第4図は本発明の第
2実施例の要部を示す回路図、第5図は本発明の第3実
施例の要部を示す回路図、第6図は本発明の第4実施例
の要部を示す回路図、第7図は本発明の第5実施例の要
部を示す回路図、第8図は本発明の第6実施例の要部を
示す回路図、第9図は本発明の第7実施例の要部を示す
回路図、第10図は本発明の第8実施例の要部を示す回
路図である。図中、30a…第1油タンク、30b…第
2油タンク、31a,31b…油圧ポンプ、32…油圧
モータ、34…放熱器、52…空調風路、C…油圧回
路。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 3 show a first embodiment of the present invention.
FIG. 1 is a circuit diagram of a vehicle air conditioner, FIG. 2 is a circuit diagram of a conventional vehicle air conditioner, FIG. 3 is a schematic configuration diagram showing an installation state of the vehicle air conditioner, and FIG. FIG. 5 is a circuit diagram showing an essential part of a second embodiment of the present invention, FIG. 5 is a circuit diagram showing an essential part of a third embodiment of the present invention, and FIG. 6 is an essential part of a fourth embodiment of the present invention. Circuit diagram, FIG. 7 is a circuit diagram showing an essential part of a fifth embodiment of the present invention, FIG. 8 is a circuit diagram showing an essential part of a sixth embodiment of the present invention, and FIG. 9 is a seventh embodiment of the present invention. FIG. 10 is a circuit diagram showing an essential part of the embodiment, and FIG. 10 is a circuit diagram showing an essential part of the eighth embodiment of the present invention. In the drawing, 30a ... First oil tank, 30b ... Second oil tank, 31a, 31b ... Hydraulic pump, 32 ... Hydraulic motor, 34 ... Radiator, 52 ... Air conditioning air passage, C ... Hydraulic circuit.

Claims (1)

【特許請求の範囲】 油圧モータに作動油を循環する第1油圧ポンプと作動油
の熱を放出する放熱器に作動油を循環する第2油圧ポン
プとを有する油圧回路を備え、該放熱器を車室内に空調
空気を導く空調風路内に設置した車両用空気調和装置に
おいて、 前記第1油圧ポンプに作動油を流す油タンクと前記第2
油圧ポンプに作動油を流す油タンクとをそれぞれ別個に
設けたことを特徴とする車両用空気調和装置。
What is claimed is: 1. A hydraulic circuit comprising: a first hydraulic pump that circulates hydraulic oil in a hydraulic motor; and a second hydraulic pump that circulates hydraulic oil in a radiator that radiates heat of the hydraulic oil. A vehicle air conditioner installed in an air-conditioning air duct for guiding conditioned air into a vehicle compartment, comprising: an oil tank for flowing hydraulic oil to the first hydraulic pump;
An air conditioner for a vehicle, wherein an oil tank for flowing hydraulic oil to a hydraulic pump is separately provided.
JP35499993A 1993-12-27 1993-12-27 Vehicle air-conditioning device Pending JPH07257156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35499993A JPH07257156A (en) 1993-12-27 1993-12-27 Vehicle air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35499993A JPH07257156A (en) 1993-12-27 1993-12-27 Vehicle air-conditioning device

Publications (1)

Publication Number Publication Date
JPH07257156A true JPH07257156A (en) 1995-10-09

Family

ID=18441294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35499993A Pending JPH07257156A (en) 1993-12-27 1993-12-27 Vehicle air-conditioning device

Country Status (1)

Country Link
JP (1) JPH07257156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109515111A (en) * 2018-11-20 2019-03-26 山东临工工程机械有限公司 The energy saving warm air heating system of electric excavator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128211A (en) * 1980-02-16 1981-10-07 Kloeckner Humboldt Deutz Ag Heating apparatus for indoor air

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128211A (en) * 1980-02-16 1981-10-07 Kloeckner Humboldt Deutz Ag Heating apparatus for indoor air

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109515111A (en) * 2018-11-20 2019-03-26 山东临工工程机械有限公司 The energy saving warm air heating system of electric excavator

Similar Documents

Publication Publication Date Title
JP6738157B2 (en) Vehicle air conditioner
JP3290031B2 (en) Vehicle air conditioner
US5085269A (en) Hydraulically driven heating and air conditioning system for vehicles such as mobile cranes
KR101628530B1 (en) Air conditioner for vehicle
CN109715422B (en) Air conditioner for vehicle
JP2020142789A (en) Heat management system
JP7349246B2 (en) Vehicle air conditioner
US20050028547A1 (en) Vehicle air-conditioner
WO2019031192A1 (en) Vehicle air-conditioning device
US20150020533A1 (en) Air-Conditioning Loop Functioning As A Pulse Electro-Thermal Deicing Heat Pump
JP2752899B2 (en) Vehicle air conditioner
CN111038210A (en) Heating, ventilating and air conditioning system for vehicle
JPH07257156A (en) Vehicle air-conditioning device
JPS6015217A (en) Air conditioner for vehicle
KR20120014671A (en) Air conditioner for vehicle
JPH0739685Y2 (en) Air conditioner for vehicle
JPH0739684Y2 (en) Air conditioner for vehicle
JP3339345B2 (en) Vehicle air conditioner
KR102577144B1 (en) Automotive heat pump system
JP2001206039A (en) Automatic air conditioner for vehicle
JP3301246B2 (en) Vehicle air conditioner
JPH0751932Y2 (en) Air conditioner for vehicle
JPH0733927Y2 (en) Air conditioner for vehicle
JP2011063084A (en) Heat exchanger used for air conditioner for automobile
CN116852935A (en) Thermal management system and control method thereof