JPH072568A - Alumina plastic material - Google Patents

Alumina plastic material

Info

Publication number
JPH072568A
JPH072568A JP3282015A JP28201591A JPH072568A JP H072568 A JPH072568 A JP H072568A JP 3282015 A JP3282015 A JP 3282015A JP 28201591 A JP28201591 A JP 28201591A JP H072568 A JPH072568 A JP H072568A
Authority
JP
Japan
Prior art keywords
alumina
plasticity
plastic material
water
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3282015A
Other languages
Japanese (ja)
Inventor
Yasuo Shibazaki
靖雄 芝崎
Kiichi Oda
喜一 小田
Yushi Fukuda
雄史 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
YKK Corp
Original Assignee
Agency of Industrial Science and Technology
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, YKK Corp, Yoshida Kogyo KK filed Critical Agency of Industrial Science and Technology
Priority to JP3282015A priority Critical patent/JPH072568A/en
Priority to CA002073471A priority patent/CA2073471C/en
Priority to DE199292111532T priority patent/DE522519T1/en
Priority to DE69208753T priority patent/DE69208753T2/en
Priority to EP92111532A priority patent/EP0522519B1/en
Priority to US08/301,734 priority patent/US6080380A/en
Publication of JPH072568A publication Critical patent/JPH072568A/en
Priority to US08/491,114 priority patent/US5587010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an alumina material excellent in plasticity. CONSTITUTION:This alumina plastic material is prepared by blending and kneading a plate-shaped powdery alumina having <=1.0mum particle size and <=0.1mum thickness and an organic water retention agent with water. As the organic water retention agent, methyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, polyethylene glycol, etc., are preferably used. This material is excellent in plasticity and, therefore, can be molded without requiring a large amount of a binder. Accordingly, a dense molding having stable properties can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可塑性を保有するアル
ミナ粉体に関するもので、さらに詳しくは粒径の整った
微細な板状粒子で、特に水と練ると可塑性が発現するア
ルミナ質可塑材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina powder having plasticity, and more specifically, it is a fine plate-like particle having a uniform particle size, and in particular, an alumina plastic material which exhibits plasticity when kneaded with water. Regarding

【0002】[0002]

【従来の技術】ファインセラミックスの代表的原料であ
るアルミナ粉体は、構造用部品、電子部品その他の分野
において、耐熱性、電気絶縁性、機械的強度等の優れた
材料として広く用いられている。しかし、アルミナ粉体
の成形において、可塑性を利用する成形を行うにあたっ
ては、これをただ水で練るだけでは粘土のような可塑性
は発現されない。そこで、成形に必要な可塑性を得るた
めには各種の成形助剤、例えば可塑性粘度や、多量の有
機バインダーを配合することによって、可塑成形が行わ
れている。しかし、これらの成形助剤を多量に使用する
場合、後工程における脱脂処理の必要性や成形密度の低
下ひいては焼結体の不均一という問題が発生する。
2. Description of the Related Art Alumina powder, which is a typical raw material for fine ceramics, is widely used as a material excellent in heat resistance, electrical insulation, mechanical strength and the like in structural parts, electronic parts and other fields. . However, in the molding of alumina powder, when molding is carried out by utilizing plasticity, the plasticity like clay cannot be exhibited by simply kneading the powder with water. Therefore, in order to obtain the plasticity required for molding, plastic molding is performed by adding various molding aids such as plastic viscosity and a large amount of organic binder. However, when a large amount of these molding aids is used, there arises a problem of necessity of degreasing treatment in a later step, reduction of molding density, and nonuniformity of the sintered body.

【0003】一方、従来より普通陶磁器用原料として用
いられているカオリナイト質粘土は、それ自体で大きな
可塑性を有している。そこでこの可塑性発現の要因であ
るが、素木氏や奥田氏らの解説(窯業原料第4集、99
−106,1952、粘土科学,8,14−23,19
68)によると、a.粒子は細かくコロイド領域に近い
こと、b.その形が偏平であること、c.水に対して粒
子表面の水膜(水素結合による)が厚いこと、等が挙げ
られている。しかし、この可塑性発現の原因の本質は未
だ未解決な問題が多いとも指摘している。
On the other hand, the kaolinite clay, which has been conventionally used as a raw material for pottery, has a great plasticity by itself. The reason for this plasticity development is explained by Mr. Motoki and Mr. Okuda (ceramic raw materials Vol. 4, 99
-106, 1952, Clay Science, 8, 14-23, 19
68), a. The particles are fine and close to the colloidal region, b. Its shape is flat, c. It is mentioned that the water film on the surface of particles (by hydrogen bond) is thicker than water. However, it is also pointed out that there are still many unsolved problems regarding the essence of the cause of this plasticity development.

【0004】[0004]

【発明が解決しようとする課題】上記従来の技術に鑑
み、ファインセラミックスの製造に用いるアルミナ粒子
に、カオリナイト粘土に匹敵する大きな可塑性をもた
せ、すぐれた成形性とともに成形密度を向上せしめよう
とするものである。
In view of the above-mentioned conventional techniques, the alumina particles used in the production of fine ceramics have a large plasticity comparable to that of kaolinite clay, and an attempt is made to improve the molding density as well as the excellent moldability. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明は、粒子形状が板
状で、粒子の大きさが1.0μm以下、厚さが0.1μ
m以下であるアルミナ粉体を、有機系保水材と水とで混
練してなることを特徴とするアルミナ質可塑材料であ
る。
According to the present invention, the particle shape is plate-like, the particle size is 1.0 μm or less, and the thickness is 0.1 μm.
It is an alumina-based plastic material characterized by kneading an alumina powder having a particle size of m or less with an organic water-retaining material and water.

【0006】いずれも基本となるアルミナ粒子の形状は
板状のものがよく、大きさが1.0μm以下、厚さが
0.1μm以下という微細さが必要である。形状が板状
でない、またはこれらの数値より大きな粒子では可塑性
の低下を招く。特に、粒子形状は六角板状であること
が、粒子を最密充填する上で好ましい。
In all cases, the basic shape of the alumina particles is preferably plate-like, and it is necessary that the size is 1.0 μm or less and the thickness is 0.1 μm or less. Particles that are not plate-shaped or have a size larger than these values lead to a decrease in plasticity. In particular, it is preferable that the particle shape is a hexagonal plate shape for the closest packing of the particles.

【0007】有機系保水剤としては、混練材料に保水性
と流動性を与えるものならば特に制限はない。例えばト
ラガカントゴムのような天然物から合成高分子まで多岐
に渡っている。主要なものを挙げれば、ポリビニルアル
コール、ポリビニルブチラート、ポリエチレングリコー
ル、メチルセルロース、カルボキシメチルセルロース、
エチレンセルロース、ヒドロキシプロピルセルロースの
少なくとも1種である。特にメチルセルロース、ポリビ
ニルアルコール、カルボキシメチルセルロース、ポリエ
チレングリコールが保水性または流動性の点で好まし
い。
The organic water retention agent is not particularly limited as long as it gives the kneaded material water retention and fluidity. For example, it ranges from natural products such as tragacanth gum to synthetic polymers. The main ones are polyvinyl alcohol, polyvinyl butyrate, polyethylene glycol, methyl cellulose, carboxymethyl cellulose,
It is at least one of ethylene cellulose and hydroxypropyl cellulose. In particular, methyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, and polyethylene glycol are preferable from the viewpoint of water retention or fluidity.

【0008】これらの有機系保水剤を少量有することに
よって、前記形状のアルミナ粒子が、水の存在によって
粘土のような可塑成形が可能となる。本発明の基本をな
すアルミナの板状粒子を得る方法としては、例えば、仮
焼工程で弗化アルミニウム等の鉱化剤を添加して製造す
る方法、アルミン酸ソーダ液に水酸化アルミニウムを加
えて加水分解して微細板状水酸化アルミを得て、これを
仮焼して製造する方法、水熱合成法などがあるが、本発
明においては、板状粒子を得る方法については、特には
限定しない。本発明は、得られた粒子が微細な板状であ
ればよい。こうして得られたアルミナ粒子は微細な板状
粒子で、この粉体は水で練ると従来のアルミナ粒子には
ない可塑性を発現するが、その表面に有機系保水剤を保
持せしめることにより、アルミナ系粘土に匹敵する可塑
性を発現するようになる。
By containing a small amount of these organic water retention agents, the alumina particles having the above-mentioned shape can be plastically molded like clay by the presence of water. As a method for obtaining the plate-like particles of alumina forming the basis of the present invention, for example, a method of producing by adding a mineralizing agent such as aluminum fluoride in the calcination step, adding aluminum hydroxide to a sodium aluminate solution There are methods such as hydrolyzing to obtain fine plate-like aluminum hydroxide and calcining it to produce hydrothermal synthesis method. In the present invention, the method for obtaining plate-like particles is particularly limited. do not do. In the present invention, the particles obtained may be in the form of fine plates. The alumina particles thus obtained are fine plate-like particles, and when this powder is kneaded with water, it exhibits plasticity not found in conventional alumina particles, but by holding an organic water retention agent on its surface, It develops plasticity comparable to clay.

【0009】[0009]

【実施例】バイヤー法による水酸化アルミニウムをボー
ルミルにて中心径0.7μmに粒度調整を行ったものを
10g所定量の純水でスラリーを作成し、これを小型オ
ートクレーブ100ccに充填し、温度600℃、圧力
200kg/cm2にて2時間水熱処理を行った。処理
後の生成物は水洗、濾過、乾燥して試料とする。得られ
たアルミナ粉体は粒度のそろった中心径1.0μmの六
角板状粒子であった。同試料の電子顕微鏡写真を図1に
示す。かかるアルミナ粉体100gにポリエチレングリ
コール3g部と水とを添加して混練し、本発明可塑材料
とした。
[Examples] Aluminum hydroxide prepared by the Bayer method was subjected to particle size adjustment with a ball mill to a central diameter of 0.7 μm to prepare a slurry with 10 g of a predetermined amount of pure water, and the slurry was filled in a small autoclave 100 cc at a temperature of 600 Hydrothermal treatment was carried out for 2 hours at a temperature of 200 ° C. and a pressure of 200 kg / cm 2 . The treated product is washed with water, filtered and dried to obtain a sample. The obtained alumina powder was hexagonal plate-like particles having a uniform particle size and a central diameter of 1.0 μm. An electron micrograph of the sample is shown in FIG. To 100 g of the alumina powder, 3 g of polyethylene glycol and water were added and kneaded to obtain a plastic material of the present invention.

【0010】この本発明可塑材料と市販のカオリナイト
質粘土について可塑性を評価した。可塑性評価法として
は、混練材料中の含水量と塑性変形量を表示するPfe
fferKorn法により、変形比3.3における試料
の100℃乾燥時の含水率を可塑含水率PI、又、40
℃から100℃の乾燥で逃げる水分(束縛水に相当する
と考えられる水分)を保水率WR、そして下記式に示す
保水率と可塑含水率の比を可塑特性値CVにおいて評価
する。(窯業協会誌,92,77−82,1984) CV=(WR/PI)×100
The plasticity of this inventive plastic material and the commercially available kaolinite clay were evaluated. As a plasticity evaluation method, Pfe indicating the water content and the plastic deformation amount in the kneaded material is displayed.
According to the fferKorn method, the water content at the time of drying at 100 ° C. of the sample at a deformation ratio of 3.3 was calculated as the plastic water content PI,
Moisture that escapes from drying at 100 ° C to 100 ° C (water considered to be bound water) is evaluated by the water retention rate WR, and the ratio of the water retention rate and the plastic water content shown in the following formula is evaluated by the plastic characteristic value CV. (Ceramics Association Magazine, 92, 77-82, 1984) CV = (WR / PI) × 100

【0011】結果は下記のとおりであった。 PI WR CV 市販カオリナイト 38.64 0.589 1.523 本発明可塑材料 33.08 0.623 1.884 上記評価結果から明らかなように、本発明の可塑材料は
市販カオリナイト質粘土に匹敵する可塑特性値を有する
ものであることが確認された。
The results were as follows: PI WR CV Commercial kaolinite 38.64 0.589 1.523 Plastic material of the present invention 33.08 0.623 1.884 As is apparent from the above evaluation results, the plastic material of the present invention is comparable to commercial kaolinite clay. It was confirmed that the resin has a plastic property value that

【0012】[0012]

【発明の効果】本発明によれば、市販のカオリナイト質
粘土に匹敵する可塑性を有するアルミナ質可塑材料が得
られ、従来の可塑成形法のように、多量の結合剤(成形
助剤)を必要としないため、緻密で密度の高い成形体を
得ることができる。したがって、構造用部品、電子部品
その他の分野に耐熱性、電気絶縁性、機械的強度等の優
れた材料として広く応用することができる。
INDUSTRIAL APPLICABILITY According to the present invention, an alumina-based plastic material having a plasticity comparable to that of a commercially available kaolinite clay can be obtained, and a large amount of binder (molding auxiliary agent) can be added as in the conventional plastic molding method. Since it is not necessary, it is possible to obtain a compact and dense molded body. Therefore, it can be widely applied to structural parts, electronic parts and other fields as a material excellent in heat resistance, electrical insulation, mechanical strength and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本のアルミナ粒子の粒子構造を示す
電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the particle structure of basic alumina particles of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月19日[Submission date] October 19, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document name] Statement

【発明の名称】 アルミナ質可塑材料Title of invention Alumina-based plastic material

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可塑性を保有するアル
ミナ粉体に関するもので、さらに詳しくは粒径の整った
微細な板状粒子で、特に水と練ると可塑性が発現するア
ルミナ質可塑材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina powder having plasticity, and more specifically, it is a fine plate-like particle having a uniform particle size, and in particular, an alumina plastic material which exhibits plasticity when kneaded with water. Regarding

【0002】[0002]

【従来の技術】ファインセラミックスの代表的原料であ
るアルミナ粉体は、構造用部品、電子部品その他の分野
において、耐熱性、電気絶縁性、機械的強度等の優れた
材料として広く用いられている。しかし、アルミナ粉体
の成形において、可塑性を利用する成形を行うにあたっ
ては、これをただ水で練るだけでは粘土のような可塑性
は発現されない。そこで、成形に必要な可塑性を得るた
めには各種の成形助剤、例えば可塑性粘度や、多量の有
機バインダーを配合することによって、可塑成形が行わ
れている。しかし、これらの成形助剤を多量に使用する
場合、後工程における脱脂処理の必要性や成形密度の低
下ひいては焼結体の不均一という問題が発生する。
2. Description of the Related Art Alumina powder, which is a typical raw material for fine ceramics, is widely used as a material excellent in heat resistance, electrical insulation, mechanical strength and the like in structural parts, electronic parts and other fields. . However, in the molding of alumina powder, when molding is carried out by utilizing plasticity, the plasticity like clay cannot be exhibited by simply kneading the powder with water. Therefore, in order to obtain the plasticity required for molding, plastic molding is performed by adding various molding aids such as plastic viscosity and a large amount of organic binder. However, when a large amount of these molding aids is used, there arises a problem of necessity of degreasing treatment in a later step, reduction of molding density, and nonuniformity of the sintered body.

【0003】一方、従来より普通陶磁器用原料として用
いられているカオリナイト質粘土は、それ自体で大きな
可塑性を有している。そこでこの可塑性発現の要因であ
るが、素木氏や奥田氏らの解説(窯業原料第4集、99
−106,1952、粘土科学,8,14−23,19
68)によると、a.粒子は細かくコロイド領域に近い
こと、b.その形が偏平であること、c.水に対して粒
子表面の水膜(水素結合による)が厚いこと、等が挙げ
られている。しかし、この可塑性発現の原因の本質は未
だ未解決な問題が多いとも指摘している。
On the other hand, the kaolinite clay, which has been conventionally used as a raw material for pottery, has a great plasticity by itself. The reason for this plasticity development is explained by Mr. Motoki and Mr. Okuda (ceramic raw materials Vol. 4, 99
-106, 1952, Clay Science, 8, 14-23, 19
68), a. The particles are fine and close to the colloidal region, b. Its shape is flat, c. It is mentioned that the water film on the surface of particles (by hydrogen bond) is thicker than water. However, it is also pointed out that there are still many unsolved problems regarding the essence of the cause of this plasticity development.

【0004】[0004]

【発明が解決しようとする課題】上記従来の技術に鑑
み、ファインセラミックスの製造に用いるアルミナ粒子
に、カオリナイト粘土に匹敵する大きな可塑性をもた
せ、すぐれた成形性とともに成形密度を向上せしめよう
とするものである。
In view of the above-mentioned conventional techniques, the alumina particles used in the production of fine ceramics have a large plasticity comparable to that of kaolinite clay, and an attempt is made to improve the molding density as well as the excellent moldability. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明は、粒子形状が板
状で、粒子の大きさが1.0μm以下、厚さが0.1μ
m以下であるアルミナ粉体を、有機系保水材と水とで混
練してなることを特徴とするアルミナ質可塑材料であ
る。
According to the present invention, the particle shape is plate-like, the particle size is 1.0 μm or less, and the thickness is 0.1 μm.
It is an alumina-based plastic material characterized by kneading an alumina powder having a particle size of m or less with an organic water-retaining material and water.

【0006】いずれも基本となるアルミナ粒子の形状は
板状のものがよく、大きさが1.0μm以下、厚さが
0.1μm以下という微細さが必要である。形状が板状
でない、またはこれらの数値より大きな粒子では可塑性
の低下を招く。特に、粒子形状は六角板状であること
が、粒子を最密充填する上で好ましい。
In all cases, the basic shape of the alumina particles is preferably plate-like, and it is necessary that the size is 1.0 μm or less and the thickness is 0.1 μm or less. Particles that are not plate-shaped or have a size larger than these values lead to a decrease in plasticity. In particular, it is preferable that the particle shape is a hexagonal plate shape for the closest packing of the particles.

【0007】有機系保水剤としては、混練材料に保水性
と流動性を与えるものならば特に制限はない。例えばト
ラガカントゴムのような天然物から合成高分子まで多岐
に渡っている。主要なものを挙げれば、ポリビニルアル
コール、ポリビニルブチラート、ポリエチレングリコー
ル、メチルセルロース、カルボキシメチルセルロース、
エチレンセルロース、ヒドロキシプロピルセルロースの
少なくとも1種である。特にメチルセルロース、ポリビ
ニルアルコール、カルボキシメチルセルロース、ポリエ
チレングリコールが保水性または流動性の点で好まし
い。
The organic water retention agent is not particularly limited as long as it gives the kneaded material water retention and fluidity. For example, it ranges from natural products such as tragacanth gum to synthetic polymers. The main ones are polyvinyl alcohol, polyvinyl butyrate, polyethylene glycol, methyl cellulose, carboxymethyl cellulose,
It is at least one of ethylene cellulose and hydroxypropyl cellulose. In particular, methyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, and polyethylene glycol are preferable from the viewpoint of water retention or fluidity.

【0008】これらの有機系保水剤を少量有することに
よって、前記形状のアルミナ粒子が、水の存在によって
粘土のような可塑成形が可能となる。本発明の基本をな
すアルミナの板状粒子を得る方法としては、例えば、仮
焼工程で弗化アルミニウム等の鉱化剤を添加して製造す
る方法、アルミン酸ソーダ液に水酸化アルミニウムを加
えて加水分解して微細板状水酸化アルミを得て、これを
仮焼して製造する方法、水熱合成法などがあるが、本発
明においては、板状粒子を得る方法については、特には
限定しない。本発明は、得られた粒子が微細な板状であ
ればよい。こうして得られたアルミナ粒子は微細な板状
粒子で、この粉体は水で練ると従来のアルミナ粒子には
ない可塑性を発現するが、その表面に有機系保水剤を保
持せしめることにより、アルミナ系粘土に匹敵する可塑
性を発現するようになる。
By containing a small amount of these organic water retention agents, the alumina particles having the above-mentioned shape can be plastically molded like clay by the presence of water. As a method for obtaining the plate-like particles of alumina forming the basis of the present invention, for example, a method of producing by adding a mineralizing agent such as aluminum fluoride in the calcination step, adding aluminum hydroxide to a sodium aluminate solution There are methods such as hydrolyzing to obtain fine plate-like aluminum hydroxide and calcining it to produce hydrothermal synthesis method. In the present invention, the method for obtaining plate-like particles is particularly limited. do not do. In the present invention, the particles obtained may be in the form of fine plates. The alumina particles thus obtained are fine plate-like particles, and when this powder is kneaded with water, it exhibits plasticity not found in conventional alumina particles, but by holding an organic water retention agent on its surface, It develops plasticity comparable to clay.

【0009】[0009]

【実施例】バイヤー法による水酸化アルミニウムをボー
ルミルにて中心径0.7μmに粒度調整を行ったものを
10g所定量の純水でスラリーを作成し、これを小型オ
ートクレーブ100ccに充填し、温度600℃、圧力
200kg/cm2にて2時間水熱処理を行った。処理
後の生成物は水洗、濾過、乾燥して試料とする。得られ
たアルミナ粉体は粒度のそろった中心径1.0μmの六
角板状粒子であった。同試料の電子顕微鏡写真を図1に
示す。かかるアルミナ粉体100gにポリエチレングリ
コール3g部と水とを添加して混練し、本発明可塑材料
とした。
[Examples] Aluminum hydroxide prepared by the Bayer method was subjected to particle size adjustment with a ball mill to a central diameter of 0.7 μm to prepare a slurry with 10 g of a predetermined amount of pure water, and the slurry was filled in a small autoclave 100 cc at a temperature of 600 Hydrothermal treatment was carried out for 2 hours at a temperature of 200 ° C. and a pressure of 200 kg / cm 2 . The treated product is washed with water, filtered and dried to obtain a sample. The obtained alumina powder was hexagonal plate-like particles having a uniform particle size and a central diameter of 1.0 μm. An electron micrograph of the sample is shown in FIG. To 100 g of the alumina powder, 3 g of polyethylene glycol and water were added and kneaded to obtain a plastic material of the present invention.

【0010】この本発明可塑材料と市販のカオリナイト
質粘土について可塑性を評価した。可塑性評価法として
は、混練材料中の含水量と塑性変形量を表示するPfe
fferKorn法により、変形比3.3における試料
の100℃乾燥時の含水率を可塑含水率PI、又、40
℃から100℃の乾燥で逃げる水分(束縛水に相当する
と考えられる水分)を保水率WR、そして下記式に示す
保水率と可塑含水率の比を可塑特性値CVにおいて評価
する。(窯業協会誌,92,77−82,1984) CV=(WR/PI)×100 結果は下記のとおりであった。
The plasticity of this inventive plastic material and the commercially available kaolinite clay were evaluated. As a plasticity evaluation method, Pfe indicating the water content and the plastic deformation amount in the kneaded material is displayed.
According to the fferKorn method, the water content at the time of drying at 100 ° C. of the sample at a deformation ratio of 3.3 was calculated as the plastic water content PI,
Moisture that escapes from drying at 100 ° C to 100 ° C (water considered to be bound water) is evaluated by the water retention rate WR, and the ratio of the water retention rate and the plastic water content shown in the following formula is evaluated by the plastic characteristic value CV. (Ceramics Association Journal, 92, 77-82, 1984) CV = (WR / PI) × 100 The results were as follows.

【0011】 PI WR CV 市販カオリナイト 38.64 0.589 1.523 本発明可塑材料 33.08 0.623 1.884 上記評価結果から明らかなように、本発明の可塑材料は
市販カオリナイト質粘土に匹敵する可塑特性値を有する
ものであることが確認された。
PI WR CV Commercial kaolinite 38.64 0.589 1.523 Plastic material of the present invention 33.08 0.623 1.884 As is apparent from the above evaluation results, the plastic material of the present invention is a commercially available kaolinite. It was confirmed that it had a plastic property value comparable to that of clay.

【0012】[0012]

【発明の効果】本発明によれば、市販のカオリナイト質
粘土に匹敵する可塑性を有するアルミナ質可塑材料が得
られ、従来の可塑成形法のように、多量の結合剤(成形
助剤)を必要としないため、緻密で密度の高い成形体を
得ることができる。したがって、構造用部品、電子部品
その他の分野に耐熱性、電気絶縁性、機械的強度等の優
れた材料として広く応用することができる。
INDUSTRIAL APPLICABILITY According to the present invention, an alumina-based plastic material having a plasticity comparable to that of a commercially available kaolinite clay can be obtained, and a large amount of binder (molding auxiliary agent) can be added as in the conventional plastic molding method. Since it is not necessary, it is possible to obtain a compact and dense molded body. Therefore, it can be widely applied to structural parts, electronic parts and other fields as a material excellent in heat resistance, electrical insulation, mechanical strength and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本のアルミナ粒子の粒子構造を示す
電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the particle structure of basic alumina particles of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小田 喜一 愛知県名古屋市名東区平和が丘1−70 (72)発明者 福田 雄史 富山県黒部市中新403−3 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiichi Oda 1-70 Heiwagaoka, Meito-ku, Nagoya, Aichi Prefecture (72) Inventor Yushi Fukuda 403-3 Chushin, Kurobe-shi, Toyama

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒子形状が板状で、粒子の大きさが1.
0μm以下、厚さが0.1μm以下であるアルミナ粉体
を、有機系保水材と水とで混練してなることを特徴とす
るアルミナ質可塑材料。
1. The particle shape is plate-like, and the particle size is 1.
An alumina-based plastic material, which is obtained by kneading an alumina powder having a thickness of 0 μm or less and a thickness of 0.1 μm or less with an organic water retention material and water.
【請求項2】 粒子形状が六角板状粒子である請求項1
記載のアルミナ質可塑材料。
2. The particle shape is hexagonal plate-shaped particles.
The alumina-based plastic material described.
【請求項3】 有機系保水材がポリビニルアルコール、
ポリビニルブチラール、ポリエチレングリコール、メチ
ルセルロース、カルボキシメチルセルロース、エチレン
セルロース、ヒドロキシプロピルセルロースの少なくと
も1種である請求項1記載のアルミナ質可塑材料。
3. The organic water retention material is polyvinyl alcohol,
The alumina plastic material according to claim 1, which is at least one kind of polyvinyl butyral, polyethylene glycol, methyl cellulose, carboxymethyl cellulose, ethylene cellulose, and hydroxypropyl cellulose.
【請求項4】 有機系保水材がメチルセルロース、ポリ
ビニルアルコール、カルボキシメチルセルロース、ポリ
エチレングリコールの少なくとも1種である請求項3記
載のアルミナ質可塑材料。
4. The alumina plastic material according to claim 3, wherein the organic water retention material is at least one of methyl cellulose, polyvinyl alcohol, carboxymethyl cellulose, and polyethylene glycol.
JP3282015A 1991-07-09 1991-10-03 Alumina plastic material Pending JPH072568A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3282015A JPH072568A (en) 1991-10-03 1991-10-03 Alumina plastic material
CA002073471A CA2073471C (en) 1991-07-09 1992-07-08 Process for producing fine flaky alumina particles and alumina-based plastic material
DE199292111532T DE522519T1 (en) 1991-07-09 1992-07-08 METHOD FOR THE PRODUCTION OF FINE PLATE-SHAPED PARTICLES AND PLASTICS BASED ON ALUMINUM OXIDE.
DE69208753T DE69208753T2 (en) 1991-07-09 1992-07-08 Process for the production of fine platelet-shaped particles as well as plastic materials based on aluminum oxide
EP92111532A EP0522519B1 (en) 1991-07-09 1992-07-08 Process for producing fine flaky alumina particles and alumina-based plastic material
US08/301,734 US6080380A (en) 1991-07-09 1994-09-07 Process for producing fine flaky alumina particles and alumina-based plastic material
US08/491,114 US5587010A (en) 1991-07-09 1995-06-16 Process for producing fine flaky alumina particles and alumina-based plastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3282015A JPH072568A (en) 1991-10-03 1991-10-03 Alumina plastic material

Publications (1)

Publication Number Publication Date
JPH072568A true JPH072568A (en) 1995-01-06

Family

ID=17647048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3282015A Pending JPH072568A (en) 1991-07-09 1991-10-03 Alumina plastic material

Country Status (1)

Country Link
JP (1) JPH072568A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363408A (en) * 1976-11-17 1978-06-06 Matsushita Electric Ind Co Ltd Device for manufacturing ceramic raw sheets of oriented property
JPS6433055A (en) * 1987-07-27 1989-02-02 Sumitomo Cement Co Sintered body of alumina having high strength and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363408A (en) * 1976-11-17 1978-06-06 Matsushita Electric Ind Co Ltd Device for manufacturing ceramic raw sheets of oriented property
JPS6433055A (en) * 1987-07-27 1989-02-02 Sumitomo Cement Co Sintered body of alumina having high strength and its production

Similar Documents

Publication Publication Date Title
WO1997006117A1 (en) Synthetic clay for ceramics and process for preparing the same
EP0325425B1 (en) Plastic compositions of inorganic powders and sintered bodies of the same
CA2073471C (en) Process for producing fine flaky alumina particles and alumina-based plastic material
EP0514205B1 (en) Process of producing cordierite honeycomb structure
JPH064487B2 (en) Finely powdered magnesium oxide and its uses
JPH072568A (en) Alumina plastic material
JP4056258B2 (en) Method for producing oxygen radical-containing calcium aluminate
Yu et al. Colloidal Isopressing: A New Shape‐Forming Method
JP2992667B2 (en) Metal titanate fiber and high dielectric material
JPS62182158A (en) Cordierite honeycom structure and manufacture
JP2596080B2 (en) Ceramic raw material for dry molding and method for producing ceramic molded body using the same
JPH04317402A (en) Aluminum nitride power and its production
JP2004262735A (en) Ceramic and method of manufacturing ceramic
JPS5926966A (en) Manufacture of ceramics green molded body
JPS623065A (en) Manufacture of magnesia ceramic
JP3035607B2 (en) Highly plasticized alumina particles coated with alumina hydrate and method for producing the same
JPH046162A (en) Aln-bn-based composite sintered body and production thereof
JPH0597523A (en) Production of sintered aluminum nitride
JPS60151271A (en) Manufacture of ceramic product
JP2959402B2 (en) High strength porcelain
JP3280017B2 (en) Calcium silicate sintered body
SU1127875A1 (en) Ceramic material
JPS63166764A (en) Manufacture of aluminum nitride sintered body
JPS60191064A (en) Manufacture of light permeable sialon
JPH01122962A (en) Hydration-resistant high strength sintered magnesia and production thereof