JPH0725564Y2 - Refrigerator oil return controller - Google Patents

Refrigerator oil return controller

Info

Publication number
JPH0725564Y2
JPH0725564Y2 JP1988062039U JP6203988U JPH0725564Y2 JP H0725564 Y2 JPH0725564 Y2 JP H0725564Y2 JP 1988062039 U JP1988062039 U JP 1988062039U JP 6203988 U JP6203988 U JP 6203988U JP H0725564 Y2 JPH0725564 Y2 JP H0725564Y2
Authority
JP
Japan
Prior art keywords
compressor
oil return
valve
flow rate
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988062039U
Other languages
Japanese (ja)
Other versions
JPH01163779U (en
Inventor
直昭 田中
慎之介 山本
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1988062039U priority Critical patent/JPH0725564Y2/en
Publication of JPH01163779U publication Critical patent/JPH01163779U/ja
Application granted granted Critical
Publication of JPH0725564Y2 publication Critical patent/JPH0725564Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はスクリュー圧縮機などの容量可変形圧縮機を備
えた冷凍機において、始動時の液吸込みによる油上りを
防止し安定した冷凍機の運転が可能な油戻し制御装置に
関する。
[Detailed Description of the Invention] (Industrial field of application) The present invention is directed to a refrigerator equipped with a variable capacity compressor such as a screw compressor, which prevents the oil from rising due to liquid suction at the time of start and is a stable refrigerator. The present invention relates to an oil return control device that can be operated.

(従来の技術) 圧縮機の吸入口に接続する吸入ラインにアキュムレータ
を配設して圧縮機に液冷媒が直接吸込まれないようにす
ることは周知の技術であり、実開昭52−169150号公報、
実開昭53−92751号公報及び実開昭63−63660号公報によ
って開示される通りである。
(Prior Art) It is a well-known technology to dispose an accumulator in a suction line connected to a suction port of a compressor to prevent liquid refrigerant from being directly sucked into the compressor. Bulletin,
As disclosed in Japanese Utility Model Publication No. 53-92751 and Japanese Utility Model Publication No. 63-63660.

(考案が解決しようとする課題) このようにアキュムレータを設けた場合、液冷媒はでき
るだけ吸込まない代わりにアキュムレータ内に溜まって
いる潤滑油は圧縮機側に戻す必要があり、そのために実
開昭52−169150号公報の記載は出口配管の最下部に油戻
し穴を設けると共に、油溜まり量が少ないときは閉じ、
多いときは開くフロート弁を油戻し穴に設けている。
(Problems to be solved by the invention) When the accumulator is provided in this way, the liquid refrigerant is not sucked in as much as possible, but the lubricating oil accumulated in the accumulator must be returned to the compressor side. No. 52-169150 discloses that an oil return hole is provided at the bottom of the outlet pipe and is closed when the amount of oil pool is small.
A float valve that opens when there are many is provided in the oil return hole.

一方、実開昭53−92751号公報の記載は油戻し口(穴)
に低圧ガスが湿り状態になったとき閉じる開閉弁を設け
た構造と成している。
On the other hand, the description in Japanese Utility Model Publication No. 53-92751 discloses an oil return port (hole).
It has a structure in which an on-off valve that closes when the low-pressure gas becomes wet is provided.

それ等両例は圧縮機が運転中の場合は液冷媒を吸込まさ
ないようにしながらアキュムレータ内に溜まっている潤
滑油を吸上げることができるが、圧縮機が始動する場合
にはアキュムレータ内の液冷媒が多くて各弁が開いた状
態にあるため圧縮機起動と同時に貯溜液冷媒が一挙に吸
込まれることになり、従って吸入ガスが湿りとなって吐
出ガス温度低下による油分離機能の低下が起こり油上が
り現象を生じる問題がある。
In both of these examples, when the compressor is in operation, it is possible to suck up the lubricating oil that has accumulated in the accumulator while not sucking the liquid refrigerant, but when the compressor starts, the liquid in the accumulator can be Since the amount of refrigerant is large and each valve is open, the stored liquid refrigerant is sucked in at the same time when the compressor is started, and therefore the suction gas becomes moist and the oil separation function deteriorates due to the decrease in the discharge gas temperature. There is a problem that occurs and causes the oil rising phenomenon.

しかも前記両例は設計時点で仕様が決められた弁はアキ
ュムレータの器内に収納しているので、外部からは全く
調整が行えなく、使用状態に適応させ難くて万全な油戻
しができない不便もあった。そのため実開昭63−63660
号公報によりアキュムレータと圧縮機吸入管との間に電
磁弁を有するバイパス回路を設け、同電磁弁を圧縮機吸
入管温度に応じて開閉すると共に圧縮機始動時、一定時
間、閉状態に保持することが提案された。
Moreover, in both of the above examples, the valve whose specifications were determined at the time of design is housed inside the accumulator, so it cannot be adjusted from the outside at all, and it is difficult to adapt it to the usage state and it is inconvenient to fully return oil. there were. Therefore, the actual exploitation 63-63660
According to the publication, a bypass circuit having an electromagnetic valve is provided between the accumulator and the compressor suction pipe, and the solenoid valve is opened / closed according to the temperature of the compressor suction pipe and is kept closed for a certain time when the compressor is started. Was proposed.

しかし、この装置は起動後、一定時間は弁が完全に閉で
あり、しかも、そ後も温度による制御とは云え、弁の開
(100%)と閉の(0%)の制御であるため速やかな安
定運転が得難い難がなった。
However, the valve is completely closed for a certain period of time after the start-up, and even after that, it can be said that the control is based on temperature, and the valve is open (100%) and closed (0%). The problem was that it was difficult to obtain quick and stable operation.

本考案はかかる従来の問題点を解決するために特に外部
からの調整が容易に行えて殊に始動時の液戻りを防止し
ながら潤滑油の戻しは確実に実行し得る装置を提供しよ
うとするものであって、圧縮機の長寿命化による信頼性
の増大を期せしめることを目的とする。
SUMMARY OF THE INVENTION In order to solve the conventional problems, the present invention intends to provide a device which can be easily adjusted especially from the outside and which can reliably return the lubricating oil while preventing the liquid from returning at the time of starting. The purpose of the present invention is to improve reliability by extending the life of the compressor.

(課題を解決するための手段) しかして本考案は添付図面の実施例に示される通り、ま
ず請求項1の考案については、容量可変形圧縮機
(1)、アキュムレータ(5)の底部と吸入管(7)と
の間を接続する油戻し配管(8)を備えた冷凍機におい
て、前記油戻し配管(8)の途中に流通量を増減し得る
流量制御機構(9)を介設すると共に、前記圧縮機
(1)の始動直後に圧縮機容量が増加するのに応じて前
記流量制御機構(9)を流量制御弁の弁開度を制御し得
る弁開度の増加により又は複数個の弁(12),(13)を
設け開操作をした弁の増加により最少流量から増加せし
める制御手段(10)を設けた構成としたことを特徴とす
る。
(Means for Solving the Problems) The present invention, as shown in the embodiment of the accompanying drawings, firstly relates to the invention of claim 1, the variable displacement compressor (1), the bottom of the accumulator (5) and the suction. In a refrigerator provided with an oil return pipe (8) connecting to a pipe (7), a flow control mechanism (9) capable of increasing or decreasing the flow rate is provided in the middle of the oil return pipe (8). , The flow control mechanism (9) is capable of controlling the valve opening of the flow control valve in response to the increase of the compressor capacity immediately after the start of the compressor (1), or by increasing the valve opening. The present invention is characterized in that the control means (10) is provided to increase the minimum flow rate by increasing the number of valves (12) and (13) that have been opened.

また、請求項2の考案については流量制御機構(9)を
略々同機能である2個の電磁弁(12),(13)を並列接
続してなる弁回路に形成し、前記制御手段(10)を容量
可変形圧縮機(1)の運転容量が約50%以下のときは一
方の電磁弁(12)を開弁操作し、約50%を超過するとき
は2個の電磁弁(12),(13)を開弁操作する2段階的
制御方式に形成したことを特徴とする。
Further, in the invention of claim 2, the flow rate control mechanism (9) is formed in a valve circuit in which two electromagnetic valves (12) and (13) having substantially the same function are connected in parallel, and the control means ( 10) Open one solenoid valve (12) when the operating capacity of the variable capacity compressor (1) is about 50% or less, and open two solenoid valves (12) when it exceeds about 50%. ) And (13) are formed in a two-step control system in which the valve is opened.

(作用) 圧縮機(1)が低容量で始動するに際しては、流量制御
機構(9)が流量を絞っているのでアキュムレータ
(5)内に液冷媒が溜まっていても圧縮機側に急激に吸
込まれることは防止される。
(Operation) When the compressor (1) is started with a low capacity, the flow rate control mechanism (9) throttles the flow rate, so that even if the liquid refrigerant accumulates in the accumulator (5), it is rapidly sucked into the compressor side. Being caught is prevented.

そして圧縮機(1)の運転が安定して急激な吸込圧力の
変化が生じなくなった時点で油戻し配管(8)の絞りを
解除し流量の増加をはからせているので、潤滑油の戻し
は正常に行われる。
Then, when the operation of the compressor (1) is stable and a sudden change in suction pressure does not occur, the throttle of the oil return pipe (8) is released to increase the flow rate. Is done normally.

請求項2については、流量制御機構(9)を2個の電磁
弁(12),(13)で構成しているので構造は簡単であ
り、制御手段(10)もオン・オフの2段階制御方式であ
るために簡素化されたもので良い。
In the second aspect, the flow rate control mechanism (9) is composed of two solenoid valves (12) and (13), so that the structure is simple and the control means (10) is a two-step control of ON / OFF. Since it is a system, it may be simplified.

(実施例) 以下、本考案の実施例を添付図面によって説明する。Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本考案の例に係る装置回路図であり、圧縮機
(1)例えばスクリュー圧縮機、凝縮器(2)、膨張弁
(3)、蒸発器(4)及びアキュムレータ(5)により
周知の冷凍サイクルを形成している。
FIG. 1 is a circuit diagram of an apparatus according to an example of the present invention, which is known by a compressor (1), for example, a screw compressor, a condenser (2), an expansion valve (3), an evaporator (4) and an accumulator (5). Form a refrigeration cycle.

上記冷凍サイクルにおいて、圧縮機(1)と凝縮器
(2)とを接続する吐出管の途中には油回収器(6)が
設けられ、図示しないが該回収器(6)で分離された油
は該底部に溜められ、冷媒ガスだけが凝縮器(2)に吐
出される。
In the refrigeration cycle, an oil recovery unit (6) is provided in the middle of the discharge pipe connecting the compressor (1) and the condenser (2), and the oil separated by the recovery unit (6) (not shown). Are stored at the bottom and only the refrigerant gas is discharged to the condenser (2).

スクリュー圧縮機(1)は周知の通りスライド弁の開度
を駆動機構(14)例えばモジュトロールモータ(14)で
絞り、また、拡げることによって運転時の圧縮容量を減
少、増加させて、10〜100%の範囲で無段階的に制御し
得るようになっている。
As is well known, the screw compressor (1) reduces or increases the compression capacity during operation by reducing and increasing the opening degree of a slide valve by a drive mechanism (14), for example, a mod roll motor (14), and increasing It is possible to control steplessly in the range of 100%.

一方、アキュムレータ(5)は、蒸発器(4)の出口側
と低圧ガス管で接続すると共に、圧縮機(1)の吸入口
と吸入管(7)で接続していて蒸発器(4)を経た冷媒
をアキュムレータ(5)器内にいったん拡散させて液分
とガス分とに分割し、潤滑油を含んだ液分は器内底部に
溜め、ガス分は吸入管(7)の送り込ませて、液冷媒が
吸入管(7)に直接吸い込まれることのないように機能
するものである。
On the other hand, the accumulator (5) is connected to the outlet side of the evaporator (4) via a low pressure gas pipe, and is connected to the suction port of the compressor (1) via a suction pipe (7) to connect the evaporator (4). The passed refrigerant is once diffused in the accumulator (5) to be divided into a liquid component and a gas component, the liquid component containing the lubricating oil is stored at the bottom of the container, and the gas component is fed into the suction pipe (7). The liquid refrigerant functions so as not to be directly sucked into the suction pipe (7).

上記アキュムレータ(5)は、底部から油戻し配管
(8)を引出させてその端部を吸入管(7)に分岐接続
しており、この油戻し配管(8)の途中にアキュムレー
タ(5)側からフイルタ(11)及び流量制御機構(9)
を介設している。
The accumulator (5) has an oil return pipe (8) drawn out from the bottom and its end is branched and connected to a suction pipe (7). The accumulator (5) side is provided in the middle of the oil return pipe (8). From filter (11) and flow control mechanism (9)
Is installed.

流量制御機構(9)は電動弁等無段階に弁開度を制御し
得る流量制御弁でも良いが、図示例は略々同機能の2個
の電磁弁(12),(13)を並列に接続してなる弁回路が
用いられ、これは請求項2に係る考案の例であって、両
電磁弁(12),(13)はコイル励磁によって全開するよ
うになっている。
The flow rate control mechanism (9) may be a flow rate control valve capable of controlling the valve opening steplessly such as an electric valve, but in the illustrated example, two solenoid valves (12) and (13) having substantially the same function are arranged in parallel. A connected valve circuit is used, which is an example of the invention according to claim 2, in which both solenoid valves (12) and (13) are fully opened by coil excitation.

上記流量制御機構(9)を制御するための制御手段(1
0)は、前記圧縮機(1)の運転容量、すなわちスライ
ド弁の開度に応じて出力を発するものであり、図示例は
前記モジュトロールモータ(14)の回転変位を検出し圧
縮機能力が最小となるときに相当するスライド弁開度位
置を検出する第1リミットスイッチ(15)と、同じく50
%程度のときに相当するスライド弁開度位置を検出する
第2リミットスイッチ(16)とからの信号を受けて前記
両電磁弁(12),(13)に開閉弁出力を発するようにな
っている。
Control means (1) for controlling the flow rate control mechanism (9)
0) outputs an output according to the operating capacity of the compressor (1), that is, the opening of the slide valve. In the illustrated example, the rotational displacement of the modtrol motor (14) is detected and the compression functional force is The same as the first limit switch (15) that detects the slide valve opening position corresponding to the minimum
In response to a signal from the second limit switch (16) that detects the slide valve opening position corresponding to about%, the solenoid valve (12), (13) outputs an on-off valve output. There is.

なお、流量制御機構(9)が無段階に弁開度調節し得る
制御弁を有する構造のときは、制御手段(10)がスライ
ド弁開度に比例した電気信号を受けて、スライド弁開度
に対応した弁開度になるよう制御弁に出力を与える如き
構造にすれば良い。
When the flow rate control mechanism (9) has a structure that has a control valve capable of continuously adjusting the valve opening degree, the control means (10) receives an electric signal proportional to the slide valve opening degree to change the slide valve opening degree. The structure may be such that an output is given to the control valve so that the valve opening corresponds to.

次いでこの油戻し装置の作動を説明すると、前記圧縮機
(1)が停止中は電磁弁(12),(13)を何れも閉弁さ
せておくものであって、制御手段(10)は出力を発して
いない。
Next, the operation of the oil return device will be described. The solenoid valves (12) and (13) are both closed while the compressor (1) is stopped, and the control means (10) outputs Did not emit.

圧縮機(1)に対して始動指令が出され運転を開始する
と、圧縮機(1)は最小能力から始まるために第1リミ
ットスイッチ(15)の信号により一方の電磁弁(12)だ
けを開かせる出力が制御手段(10)から発せられる。
When a start command is issued to the compressor (1) to start the operation, the compressor (1) starts from the minimum capacity, so only one solenoid valve (12) is opened by the signal of the first limit switch (15). The output that causes it is emitted from the control means (10).

かくして、油戻し配管(8)は流量制御機構(9)によ
って絞られた状態となり、一方、圧縮機(1)は吸込空
気量が回転増加とともに増し、吸込圧力も能力増加とと
もに低下してくるので、アキュムレータ(5)内の油含
有冷媒は徐々に増量しながら吸入管(7)に吸込まれる
ことになり、湿り圧縮の問題は生じない。
Thus, the oil return pipe (8) is throttled by the flow rate control mechanism (9), while the compressor (1) has an increased intake air amount with an increase in rotation and an intake pressure decrease with an increase in capacity. The oil-containing refrigerant in the accumulator (5) is sucked into the suction pipe (7) while gradually increasing its amount, so that the problem of wet compression does not occur.

圧縮機(1)の始動が進行し、かつ、能力増加制御が行
われて50%程度に達すると、第2リミットスイッチ(1
6)が検出作動することにより、制御手段(10)は電磁
弁(13)に対し全開させる出力を発する。
When the start of the compressor (1) progresses and the capacity increase control is performed to reach about 50%, the second limit switch (1
The control means (10) outputs an output for fully opening the solenoid valve (13) by the detection operation of 6).

かくして油戻し配管(8)は絞りが解消されて全開の状
態となり、油含有冷媒の戻り量は当初設計通りの値とな
って所定の能力で運転する圧縮機(1)に対し湿りの状
態をもたらさなく、吐出ガス温度は規定通りに上昇する
ため油回収器(6)の油分離効率の低下がなく、油上り
現象は解消される。
Thus, the oil return pipe (8) is fully opened with the restriction removed, and the return amount of the oil-containing refrigerant becomes the value as originally designed and the compressor (1) operating with a predetermined capacity is kept wet. Without this, the discharge gas temperature rises as stipulated, so the oil separation efficiency of the oil recovery unit (6) does not decrease, and the oil rising phenomenon is eliminated.

以上説明した圧縮機始動時における圧縮機能力と油戻し
量との関係は第2図に示す通りであり、圧縮機(1)へ
の吸込風量(Q)と油戻し量(q)との関係は、ΔP∞
Q2から の関係式にもとづいて略々比例することが明らかであ
る。なお、ΔPはアキュムレータ(5)内圧力と吸入管
(7)内圧力との差圧を示している。
The relationship between the compression function force and the oil return amount at the time of starting the compressor described above is as shown in FIG. 2, and the relationship between the intake air amount (Q) to the compressor (1) and the oil return amount (q). Is ΔP∞
From Q 2 It is clear that they are approximately proportional based on the relational expression of. In addition, ΔP represents a differential pressure between the internal pressure of the accumulator (5) and the internal pressure of the suction pipe (7).

(考案の効果) 本考案は以上説明したように圧縮機(1)始動時の能力
増加運転の際は流量制御機構(9)と制御手段(10)の
組合わせにより、圧縮機(1)の吸込空気量に略々比例
的に油戻し量を増加させることが可能であって、始動に
際してアキュムレータ(5)内の油含有冷媒を大量に戻
すことによって湿り圧縮が生じる問題を解決することが
できる。
(Effects of the Invention) As described above, the present invention uses the combination of the flow rate control mechanism (9) and the control means (10) during the capacity increasing operation at the time of starting the compressor (1) to improve the compressor (1). It is possible to increase the oil return amount almost in proportion to the intake air amount, and it is possible to solve the problem of wet compression by returning a large amount of the oil-containing refrigerant in the accumulator (5) at the time of starting. .

かくして吐出ガス温度が低いことによる油上り現象も解
決されて安定した運転が行われる。
Thus, the oil rising phenomenon due to the low discharge gas temperature is also solved, and stable operation is performed.

また、請求項2においては汎用形の電磁弁(12),(1
3)を2個使用した簡易構造であって、制御手段(10)
も2段階オンオフ方式の制御回路で済むので装置は簡素
化されながら所期通りの流量制御機構を発揮することが
できる。
Further, in claim 2, a general-purpose solenoid valve (12), (1
Control structure (10) with a simple structure using two 3)
Also, since the control circuit of the two-stage on / off system is sufficient, the device can be simplified while exhibiting the desired flow control mechanism.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例に係る装置回路図、第2図は同
じく制御の態様を説明する特性線図である。 (1)……容量可変形圧縮機、(5)……アキュムレー
タ、(7)……吸入管、(8)……油戻し配管、(9)
……流量制御機構、(10)……制御手段、(12),(1
3)……電磁弁。
FIG. 1 is a device circuit diagram according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram similarly illustrating a control mode. (1) …… Variable capacity compressor, (5) …… Accumulator, (7) …… Suction pipe, (8) …… Oil return pipe, (9)
...... Flow rate control mechanism, (10) …… Control means, (12), (1
3) ... Solenoid valve.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】容量可変形圧縮機(1)、アキュムレータ
(5)の底部と吸入管(7)との間を接続する油戻し配
管(8)を備えた冷凍機において、前記油戻し配管
(8)の途中に流通量を増減し得る流量制御機構(9)
を介設すると共に、前記圧縮機(1)の指導直後に圧縮
機容量が増加するのに応じて前記流量制御機構(9)を
流量制御弁の弁開度を制御し得る弁開度の増加により、
又は複数個の弁(12),(13)を設け、開操作をした弁
の増加により最少流量から増加せしめる制御手段(10)
を設けたことを特徴とする冷凍機の油戻し制御装置。
1. A refrigerator having a variable capacity compressor (1) and an oil return pipe (8) connecting a bottom portion of an accumulator (5) and a suction pipe (7), wherein the oil return pipe ( Flow rate control mechanism (9) that can increase or decrease the flow rate in the middle of 8)
And an increase in the valve opening degree by which the flow rate control mechanism (9) can control the valve opening degree of the flow rate control valve according to the increase in the compressor capacity immediately after the instruction of the compressor (1). Due to
Alternatively, a control means (10) provided with a plurality of valves (12) and (13) and increasing the minimum flow rate by increasing the number of valves that have been opened.
An oil return control device for a refrigerator, characterized by being provided with.
【請求項2】前記流量制御機構(9)が略々同機能であ
る2個の電磁弁(12),(13)を並列接続してなる弁回
路であり、前記制御手段(10)が容量可変形圧縮機
(1)の運転容量が約50%以下のときは一方の電磁弁
(12)を開弁操作し、約50%を超過するときは2個の電
磁弁(12),(13)を開弁操作する2段階的制御方式に
形成されてなる請求項1記載の冷凍機の油戻し制御装
置。
2. The flow control mechanism (9) is a valve circuit in which two solenoid valves (12) and (13) having substantially the same function are connected in parallel, and the control means (10) has a capacity. When the operating capacity of the variable compressor (1) is less than about 50%, one solenoid valve (12) is opened, and when it exceeds about 50%, two solenoid valves (12), (13) 3. The oil return control device for a refrigerator according to claim 1, wherein the oil return control device is formed in a two-step control system for opening the valve.
JP1988062039U 1988-05-10 1988-05-10 Refrigerator oil return controller Expired - Lifetime JPH0725564Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988062039U JPH0725564Y2 (en) 1988-05-10 1988-05-10 Refrigerator oil return controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988062039U JPH0725564Y2 (en) 1988-05-10 1988-05-10 Refrigerator oil return controller

Publications (2)

Publication Number Publication Date
JPH01163779U JPH01163779U (en) 1989-11-15
JPH0725564Y2 true JPH0725564Y2 (en) 1995-06-07

Family

ID=31287674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988062039U Expired - Lifetime JPH0725564Y2 (en) 1988-05-10 1988-05-10 Refrigerator oil return controller

Country Status (1)

Country Link
JP (1) JPH0725564Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576199B2 (en) * 1988-07-05 1997-01-29 三菱電機株式会社 Air conditioner
JP2013122361A (en) * 2011-12-12 2013-06-20 Daikin Industries Ltd Air conditioning device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363660B2 (en) * 1985-02-22 1988-12-08

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363660U (en) * 1986-10-15 1988-04-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363660B2 (en) * 1985-02-22 1988-12-08

Also Published As

Publication number Publication date
JPH01163779U (en) 1989-11-15

Similar Documents

Publication Publication Date Title
JP2537314B2 (en) Refrigeration cycle equipment
JPS58108361A (en) Controller for air conditioner for car
JPH04316962A (en) Refrigeration cycle
EP1519128A2 (en) Refrigeration cycle
JPS6329117B2 (en)
GB2053358A (en) Oil-cooled compressor
JPH0725564Y2 (en) Refrigerator oil return controller
JP5506830B2 (en) Screw compressor
JP4301546B2 (en) Refrigeration equipment
JPH062962A (en) Air conditioner
JPS63294466A (en) Method of controlling refrigeration cycle
JPH109690A (en) Refrigerator
CN117490184B (en) Air conditioning unit oil return control method and air conditioning unit
JP2584173B2 (en) Operating method of oil-cooled compressor
JPS61135953A (en) Idling-speed control apparatus
JPH0972620A (en) Injection type refrigerating equipment
JP3039941U (en) Compressor starting load reduction device
JPH0477220B2 (en)
JPH05172077A (en) Refrigerant compressor
JP2000088370A (en) Oil equalizing system for plural compressor
KR100228133B1 (en) Unload valve for automobile air conditioner
JP3813228B2 (en) Refrigeration equipment
JPH0579357U (en) Air conditioner
JPS63169445A (en) Starter for tandem type turbo refrigerator
JPS60186661A (en) Air conditioner