JP3813228B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3813228B2
JP3813228B2 JP04548496A JP4548496A JP3813228B2 JP 3813228 B2 JP3813228 B2 JP 3813228B2 JP 04548496 A JP04548496 A JP 04548496A JP 4548496 A JP4548496 A JP 4548496A JP 3813228 B2 JP3813228 B2 JP 3813228B2
Authority
JP
Japan
Prior art keywords
condenser
liquid
liquid level
expansion valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04548496A
Other languages
Japanese (ja)
Other versions
JPH09210474A (en
Inventor
浩一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04548496A priority Critical patent/JP3813228B2/en
Publication of JPH09210474A publication Critical patent/JPH09210474A/en
Application granted granted Critical
Publication of JP3813228B2 publication Critical patent/JP3813228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、満液式凝縮器を搭載し、高圧フロートにより凝縮器の液面高さが一定となるように膨張弁の開度を制御する冷凍装置に関するものである。
【0002】
【従来の技術】
図5は従来の冷凍装置の構成図であり、当該冷凍サイクルは、冷媒ガスを圧縮する圧縮機1と、圧縮された冷媒ガスを凝縮液化する満液式凝縮器2と、凝縮された冷媒液の圧力を降下させる膨張弁3と、冷媒液を蒸発させて冷凍出力を得る蒸発器4から構成されている。また、圧縮機1と満液式凝縮器2の間には吐出配管6が、満液式凝縮器2と膨張弁3及び膨張弁3と蒸発器4の間には主液配管7a,bが、蒸発器4と圧縮機1の間には吸込配管8が配設されている。
また、5はニードル部5nを有する高圧フロートであり、高圧フロート5と満液式凝縮器2の間はガス側配管9a及び液側配管9bにより接続され、高圧フロート5と膨張弁3の間は配管10により接続されている。
【0003】
次に、上記冷凍装置の動作について説明する。
圧縮機1から吐出された冷媒ガスは、吐出配管6を通り満液式凝縮器2で凝縮液化され、凝縮された冷媒液は主液配管7aを通り膨張弁3で絞り膨張された後、主液配管7bを通り蒸発器4へ供給される。そして冷媒液は蒸発器4で蒸発しガスとなり吸込配管8を通り圧縮機1へ吸込まれる。
満液式凝縮器2の冷媒液の一部は、液側配管9b,高圧フロート5,配管10を通り膨張弁3の開度を制御した後、配管7bへ合流する。膨張弁3の開度は、高圧フロート5の内部のニードル部5nにより減圧された配管10の冷媒の圧力により制御され、配管10の圧力が高いほど開方向へ、低いほど閉方向へと移動する。
高圧フロート5の内部のニードル部5nは、満液式凝縮器2の液面が高くなるほど開方向へ動作し、配管10の圧力は高くなり、液面が低くなるほど閉方向へ動作し、配管10の圧力は低くなる。なお、高圧フロート5のニードル部が全閉、全開となる凝縮器2の液面高さの差は10mm程度である。
この結果、高圧フロート5により凝縮器2の液面高さはほぼ一定(制御幅10mm)となるように膨張弁3の開度は制御される。
【0004】
【発明が解決しようとする課題】
従来の冷凍装置は以上のように構成されているので、圧縮機1が吐き出す冷媒ガスの量が圧縮機1の容量制御等により急激に減少した場合、満液式凝縮器2の液面高さの低下により高圧フロート5のニードル部5nが閉方向に動作しても、配管10の圧力は配管10中の冷媒液が膨張弁3を通り配管7bへ合流するまで低下しないため、膨張弁開度の制御遅れが発生し、凝縮器2の液面が低下し、その分蒸発器4の液面が上昇することにより圧縮機1が冷媒液を吸い込み、液圧縮運転する不具合が生じていた。
【0005】
この発明は、上記のような問題点を解消するためになされたもので冷凍ユニット運転中の圧縮機の液バック(液圧縮)運転を防止することを目的とする。
【0006】
【課題を解決するための手段】
請求項1の発明に係る冷凍装置は、凝縮器2の冷媒液の一部を凝縮器2の液面高さに応じて圧力調整して膨張弁3に送出し、膨張弁3の開度を制御する液面高さ制御手段(高圧フロート5)と、凝縮器2の液面高さの下限値を検知する第1の検知手段(フロートスイッチ12a)に加え、上記液面高さの下限位置より高い所定位置を検知する第2の検知手段(フロートスイッチ12b)を設け、第1の検知手段12aが液面高さの下限値を検出すると液面高さ制御手段における膨張弁3への冷媒液の送出を停止し膨張弁3を全閉とし、第2の検知手段12bが所定位置を検知すると膨張弁3への冷媒液の送出停止を解除するようにした。
【0007】
請求項の発明は、冷凍装置の動作停止中に凝縮器2の液面が低下した場合、蒸発器4内の冷媒を凝縮器2へ戻すための回路配管15a,b、17a,bを付設した。
【0008】
請求項の発明は、上記回路配管15a,b、17a,bを、凝縮器2と蒸発器4の間の主液配管7a,bの1/3程度とする。
【0009】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1による冷凍装置を示す構成図である。
図において、冷凍サイクルは、冷媒ガスを圧縮する圧縮機1と、圧縮された冷媒ガスを凝縮液化する満液式凝縮器2と、凝縮された冷媒液の圧力を降下させる膨張弁3と、冷媒液を蒸発させて冷凍出力を得る蒸発器4から構成されており、5はニードル部5nを有する高圧フロート、6は吐出配管、7a,bは主液配管、8は吸込配管、9a,bは高圧フロート5と満液式凝縮器2を接続するガス側配管及び液側配管、10は高圧フロート5と膨張弁3を接続する配管である。なお、上記構成部分は従来例(図5)の構成と同様である。
本実施の形態1の特徴となる構成部品は11、12a,b、13a,bであり、11は配管10に設けられた電磁弁、12aは凝縮器2の液面高さの下限値を設定するためのフロートスイッチ、12bは制御を終了する凝縮器の液面高さを設定するフロートスイッチであり、その設定液面高さはフロートスイッチ12aの設定液面高さよりも高くなっている。13a,bは凝縮器2とフロートスイッチ12a,bを接続する配管である。
【0010】
次に、上記装置の動作について説明する。
通常の運転動作は従来例と同様であり、圧縮機1から吐出された冷媒ガスは、吐出配管6を通り満液式凝縮器2で凝縮液化され、凝縮された冷媒液は主液配管7aを通り膨張弁3で絞り膨張された後、主液配管7bを通り蒸発器4へ供給される。そして蒸発器4で蒸発しガスとなり吸込配管8を通り圧縮機1へ吸込まれる。また、満液式凝縮器2の冷媒液の一部は、液側配管9b,高圧フロート5,配管10を通り膨張弁3の開度を制御した後、配管7bへ合流する。膨張弁3の開度は、高圧フロート5の内部のニードル部5nにより減圧された配管10の冷媒の圧力により制御され、配管10の圧力が高いほど開方向へ、低いほど閉方向へと移動する。ここで、高圧フロート5の内部のニードル部5nは、満液式凝縮器2の液面が高くなるほど開方向へ動作し、配管10の圧力は高くなり、液面が低くなるほど閉方向へ動作し、配管10の圧力は低くなる。
【0011】
本実施の形態1においては、上記の様な通常のユニット運転中、凝縮器2の液面高さが、フロートスイッチ12aよりも低くなった場合、電磁弁11を閉とし膨張弁3を即座に全閉とし、凝縮器2の液面高さを上昇させる。凝縮器2の液面高さがフロートスイッチ12bよりも高くなったら電磁弁6を開とし、上記制御を終了し通常のユニット運転を行う。
上記の動作を図2のフローチャートで説明すると、冷凍装置ユニットが通常の高圧フロート5による膨張弁制御で運転中(S100)、フロートスイッチ12aのON,OFF状態を判定し(S101)、フロートスイッチ12aが凝縮器2の液面低下によりOFFすると、電磁弁11を閉(S102)として膨張弁3を全閉状態とする。
そして凝縮器2の液面が上昇し、フロートスイッチ12bがONすると(S103)、電磁弁11を開(S104)とし通常の高圧フロート5による膨張弁制御を行う。
ここで、フロートスイッチ12a及びフロートスイッチ12bで設定される凝縮器2の液面高さの上限及び下限は、蒸発器4及び凝縮器2の伝熱特性が低下しない範囲で設定する。凝縮器の伝熱特性が低下すると高圧の異常上昇を招き、蒸発器の伝熱特性が低下すると低圧の異常低下が発生するためである。
【0012】
実施の形態2.
実施の形態2は実施の形態1について冷凍ユニット起動直後の液バック防止の信頼性を高くするためのものである。
即ち、冷凍ユニット起動前に、すでに凝縮器2の液面が低下し、蒸発器4の液面が高くなった場合、蒸発器4の冷媒液を凝縮器2に戻し、ユニット起動直後の液バック運転を防止する。
図3は実施の形態2に係る冷凍装置の構成図であり、構成部品1〜13は実施の形態1と同様である。
本実施形態の特徴となる構成部品は、14、15a,b、16、17a,bであり、14は蒸発器4の冷媒を凝縮器2へ戻すための電磁弁、15a,bは凝縮器2と蒸発器4を電磁弁14を介して接続する液側配管(直径15.8mm程度)、16は凝縮器2と蒸発器4の内圧を均圧にするための電磁弁、17a,bは凝縮器2と蒸発器4を電磁弁16を介して接続するガス側配管(直径15.8mm程度)である。
主液配管7a,bは直径50.8mm程度であるが、即座に冷媒液を凝縮器2に戻す必要はないため、液側配管及びガス側配管はその1/3程度のもので良い。
なお、蒸発器4と凝縮器2の位置関係は、蒸発器4が上、凝縮器2が下の関係である。
【0013】
次に、上記装置の動作について説明する。
通常の運転操作は従来と同じである。
本実施の形態において、ユニット停止中、凝縮器2の液面が低下し、フロートスイッチ12aよりも低くなった場合、電磁弁14及び電磁弁16を開とし、凝縮器2と蒸発器4内を均圧にする。蒸発器4は凝縮器2より高い位置にあるので、蒸発器4の冷媒は自重で凝縮器2に落ちる。
蒸発器4の冷媒が過少となった場合、ユニット起動直後に低圧が下がり過ぎる不具合が発生するため、凝縮器2の液面がフロートスイッチ12bの高さとなったら、電磁弁14及び電磁弁16を閉として制御を終了する。
このフローチャートを図4に示す。
すなわち、ユニット運転停止中(S200)に凝縮器2の液面が低下し、フロートスイッチ12aがOFFした場合(S201)、電磁弁14及び電磁弁16を開とし(S202)、冷媒の自重により蒸発器4の冷媒を凝縮器2へ落とし、凝縮器2の液面を上昇させる。
凝縮器2の液面がフロートスイッチ12bより高くなり当該スイッチがONしたら(S203)、電磁弁14及び電磁弁16を閉として(S204)制御を終了し、ユニットを通常の停止状態にする。
【0014】
【発明の効果】
以上のように請求項1の発明によれば、冷凍ユニット運転中の液面低下に伴う圧縮機の液圧縮運転(液バック運転)を防止できる。
【0015】
また、請求項の発明によれば、冷凍ユニット起動直後の液圧縮運転(液バック運転)を防止でき、信頼性を向上させる。
【0016】
更に、請求項の発明によれば、配管設置のための省スペース化が可能となる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る冷凍装置の構成図である。
【図2】 実施の形態1によるフローチャートである。
【図3】 実施の形態2による冷凍装置を示す構成図である。
【図4】 実施の形態2によるフローチャートである。
【図5】 従来の冷凍機の構成図である。
【符号の説明】
1 圧縮機、2 凝縮器、3 膨張弁、4 蒸発器、5 高圧フロート、
5n ニードル部、6 吐出配管、7a,b 主液配管、8 吸込配管、
9a,b 配管、10 配管、11 電磁弁、12a,b フロートスイッチ、
13a,b 配管、14 電磁弁、15a,b 配管、16 電磁弁、17a 配管、
18a 配管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus that is equipped with a full-liquid condenser and controls the opening degree of an expansion valve so that the liquid level of the condenser is constant by a high-pressure float.
[0002]
[Prior art]
FIG. 5 is a configuration diagram of a conventional refrigeration apparatus. The refrigeration cycle includes a compressor 1 that compresses a refrigerant gas, a full-liquid condenser 2 that condenses and liquefies the compressed refrigerant gas, and a condensed refrigerant liquid. An expansion valve 3 for lowering the pressure of the refrigerant and an evaporator 4 for evaporating the refrigerant liquid to obtain a refrigeration output. A discharge pipe 6 is provided between the compressor 1 and the full liquid condenser 2, and main liquid pipes 7 a and b are provided between the full liquid condenser 2 and the expansion valve 3 and between the expansion valve 3 and the evaporator 4. A suction pipe 8 is disposed between the evaporator 4 and the compressor 1.
Reference numeral 5 denotes a high pressure float having a needle portion 5n. The high pressure float 5 and the full liquid condenser 2 are connected by a gas side pipe 9a and a liquid side pipe 9b, and the high pressure float 5 and the expansion valve 3 are connected. Connected by a pipe 10.
[0003]
Next, the operation of the refrigeration apparatus will be described.
The refrigerant gas discharged from the compressor 1 is condensed and liquefied by the full-liquid condenser 2 through the discharge pipe 6, and the condensed refrigerant liquid is squeezed and expanded by the expansion valve 3 through the main liquid pipe 7a. It is supplied to the evaporator 4 through the liquid pipe 7b. The refrigerant liquid evaporates in the evaporator 4 and becomes gas, and is sucked into the compressor 1 through the suction pipe 8.
A part of the refrigerant liquid of the full-liquid condenser 2 passes through the liquid side pipe 9b, the high-pressure float 5, and the pipe 10 and controls the opening degree of the expansion valve 3, and then merges into the pipe 7b. The opening degree of the expansion valve 3 is controlled by the pressure of the refrigerant in the pipe 10 decompressed by the needle portion 5n inside the high-pressure float 5 and moves in the opening direction as the pressure in the pipe 10 is higher, and in the closing direction as the pressure is lower. .
The needle portion 5n inside the high-pressure float 5 operates in the opening direction as the liquid level of the full liquid condenser 2 increases, and the pressure in the pipe 10 increases, and operates in the closing direction as the liquid level decreases. The pressure of becomes low. In addition, the difference in the liquid level height of the condenser 2 in which the needle part of the high-pressure float 5 is fully closed and fully opened is about 10 mm.
As a result, the opening degree of the expansion valve 3 is controlled by the high-pressure float 5 so that the liquid level of the condenser 2 is substantially constant (control width 10 mm).
[0004]
[Problems to be solved by the invention]
Since the conventional refrigeration apparatus is configured as described above, when the amount of refrigerant gas discharged from the compressor 1 is drastically reduced by the capacity control of the compressor 1 or the like, the liquid level of the full liquid condenser 2 is increased. Even if the needle portion 5n of the high pressure float 5 operates in the closing direction due to the decrease in the pressure, the pressure in the pipe 10 does not decrease until the refrigerant liquid in the pipe 10 merges into the pipe 7b through the expansion valve 3, so that the expansion valve opening degree , The liquid level of the condenser 2 is lowered, and the liquid level of the evaporator 4 is raised by that amount, so that the compressor 1 sucks the refrigerant liquid and the liquid compression operation occurs.
[0005]
The present invention has been made to solve the above-described problems, and an object thereof is to prevent a liquid back (liquid compression) operation of a compressor during operation of a refrigeration unit.
[0006]
[Means for Solving the Problems]
In the refrigeration apparatus according to the first aspect of the present invention, a part of the refrigerant liquid in the condenser 2 is pressure-adjusted according to the liquid level height of the condenser 2 and sent to the expansion valve 3. In addition to the liquid level control means (high pressure float 5) to be controlled and the first detection means (float switch 12a) for detecting the lower limit value of the liquid level of the condenser 2, the lower limit position of the liquid level. A second detection means (float switch 12b) for detecting a higher predetermined position is provided, and when the first detection means 12a detects the lower limit value of the liquid level, the refrigerant to the expansion valve 3 in the liquid level control means The liquid supply is stopped and the expansion valve 3 is fully closed. When the second detection means 12b detects a predetermined position, the supply stop of the refrigerant liquid to the expansion valve 3 is released.
[0007]
The invention of claim 2 is provided with circuit piping 15a, b, 17a, b for returning the refrigerant in the evaporator 4 to the condenser 2 when the liquid level of the condenser 2 is lowered while the operation of the refrigeration apparatus is stopped. did.
[0008]
According to a third aspect of the present invention, the circuit pipes 15a, b, 17a, b are about 1/3 of the main liquid pipes 7a, b between the condenser 2 and the evaporator 4.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a block diagram showing a refrigeration apparatus according to Embodiment 1 of the present invention.
In the figure, the refrigeration cycle includes a compressor 1 that compresses refrigerant gas, a full-liquid condenser 2 that condenses and liquefies the compressed refrigerant gas, an expansion valve 3 that reduces the pressure of the condensed refrigerant liquid, and a refrigerant It consists of an evaporator 4 that evaporates the liquid to obtain a refrigeration output, 5 is a high-pressure float having a needle portion 5n, 6 is a discharge pipe, 7a and b are main liquid pipes, 8 is a suction pipe, and 9a and b are A gas side pipe and a liquid side pipe 10 for connecting the high pressure float 5 and the full liquid condenser 2 are pipes for connecting the high pressure float 5 and the expansion valve 3. The above components are the same as those of the conventional example (FIG. 5).
The component parts that characterize the first embodiment are 11, 12a, b, 13a, b, 11 is an electromagnetic valve provided in the pipe 10, and 12a sets a lower limit value of the liquid level of the condenser 2. The float switch 12b is a float switch for setting the liquid level height of the condenser for finishing the control, and the set liquid level height is higher than the set liquid level height of the float switch 12a. Reference numerals 13a and 13b are pipes connecting the condenser 2 and the float switches 12a and 12b.
[0010]
Next, the operation of the above apparatus will be described.
The normal operation is the same as in the conventional example. The refrigerant gas discharged from the compressor 1 passes through the discharge pipe 6 and is condensed and liquefied by the full-liquid condenser 2, and the condensed refrigerant liquid passes through the main liquid pipe 7a. After being throttled and expanded by the passage expansion valve 3, it is supplied to the evaporator 4 through the main liquid pipe 7 b. Then, it evaporates in the evaporator 4 and becomes gas, and is sucked into the compressor 1 through the suction pipe 8. Further, a part of the refrigerant liquid of the full liquid condenser 2 passes through the liquid side pipe 9b, the high pressure float 5, and the pipe 10 and controls the opening degree of the expansion valve 3, and then merges into the pipe 7b. The opening degree of the expansion valve 3 is controlled by the pressure of the refrigerant in the pipe 10 decompressed by the needle portion 5n inside the high-pressure float 5 and moves in the opening direction as the pressure in the pipe 10 is higher, and in the closing direction as the pressure is lower. . Here, the needle portion 5n inside the high-pressure float 5 operates in the opening direction as the liquid level of the full liquid condenser 2 increases, and operates in the closing direction as the pressure of the pipe 10 increases and the liquid level decreases. The pressure of the pipe 10 becomes low.
[0011]
In Embodiment 1, when the liquid level of the condenser 2 becomes lower than the float switch 12a during the normal unit operation as described above, the solenoid valve 11 is closed and the expansion valve 3 is immediately turned on. Fully closed to raise the liquid level of the condenser 2. When the liquid level of the condenser 2 becomes higher than the float switch 12b, the electromagnetic valve 6 is opened, the above control is terminated, and the normal unit operation is performed.
The above operation will be described with reference to the flowchart of FIG. 2. When the refrigeration unit is operating with the expansion valve control by the normal high pressure float 5 (S100), the ON / OFF state of the float switch 12a is determined (S101), and the float switch 12a. Is turned off due to a drop in the liquid level of the condenser 2, the electromagnetic valve 11 is closed (S102), and the expansion valve 3 is fully closed.
When the liquid level of the condenser 2 rises and the float switch 12b is turned on (S103), the electromagnetic valve 11 is opened (S104), and the expansion valve control by the normal high-pressure float 5 is performed.
Here, the upper limit and the lower limit of the liquid level height of the condenser 2 set by the float switch 12a and the float switch 12b are set in a range in which the heat transfer characteristics of the evaporator 4 and the condenser 2 are not deteriorated. This is because if the heat transfer characteristic of the condenser 2 decreases, an abnormal increase in high pressure is caused, and if the heat transfer characteristic of the evaporator 4 decreases, an abnormal decrease in low pressure occurs.
[0012]
Embodiment 2. FIG.
The second embodiment is for increasing the reliability of preventing liquid back immediately after the start of the refrigeration unit in the first embodiment.
That is, when the liquid level of the condenser 2 has already dropped and the liquid level of the evaporator 4 has risen before the refrigeration unit is started, the refrigerant liquid of the evaporator 4 is returned to the condenser 2 and the liquid back immediately after the unit is started. Prevent driving.
FIG. 3 is a configuration diagram of the refrigeration apparatus according to the second embodiment. Components 1 to 13 are the same as those in the first embodiment.
The component parts that characterize this embodiment are 14, 15a, b, 16, 17a, b, 14 is an electromagnetic valve for returning the refrigerant of the evaporator 4 to the condenser 2, and 15a, b are the condenser 2. And a liquid side pipe (diameter of about 15.8 mm) for connecting the evaporator 4 and the evaporator 4 via a solenoid valve 14, 16 is a solenoid valve for equalizing the internal pressure of the condenser 2 and the evaporator 4, 17a and b are condensed This is a gas side pipe (diameter of about 15.8 mm) connecting the vessel 2 and the evaporator 4 via the electromagnetic valve 16.
The main liquid pipes 7a and 7b have a diameter of about 50.8 mm. However, since it is not necessary to immediately return the refrigerant liquid to the condenser 2, the liquid side pipe and the gas side pipe may be about 1/3 of that.
The positional relationship between the evaporator 4 and the condenser 2 is such that the evaporator 4 is on the upper side and the condenser 2 is on the lower side.
[0013]
Next, the operation of the above apparatus will be described.
Normal driving operation is the same as before.
In this embodiment, when the unit is stopped, when the liquid level of the condenser 2 decreases and becomes lower than the float switch 12a, the electromagnetic valve 14 and the electromagnetic valve 16 are opened, and the inside of the condenser 2 and the evaporator 4 is opened. Make equal pressure. Since the evaporator 4 is located higher than the condenser 2, the refrigerant in the evaporator 4 falls to the condenser 2 by its own weight.
When the refrigerant in the evaporator 4 becomes too low, there is a problem that the low pressure is too low immediately after starting the unit. Therefore, when the liquid level of the condenser 2 reaches the height of the float switch 12b, the solenoid valve 14 and the solenoid valve 16 are turned on. Control is terminated as closed.
This flowchart is shown in FIG.
That is, when the liquid level of the condenser 2 is lowered and the float switch 12a is turned off (S201) while the unit operation is stopped (S200), the solenoid valve 14 and the solenoid valve 16 are opened (S202), and the refrigerant evaporates by its own weight. The refrigerant in the condenser 4 is dropped into the condenser 2 and the liquid level of the condenser 2 is raised.
When the liquid level of the condenser 2 becomes higher than the float switch 12b and the switch is turned on (S203), the solenoid valve 14 and the solenoid valve 16 are closed (S204), the control is terminated, and the unit is brought into a normal stop state.
[0014]
【The invention's effect】
As described above, according to the invention of the first aspect, it is possible to prevent the liquid compression operation (liquid back operation) of the compressor accompanying the liquid level drop during the operation of the refrigeration unit.
[0015]
According to the invention of claim 2 , the liquid compression operation (liquid back operation) immediately after the start of the refrigeration unit can be prevented, and the reliability is improved.
[0016]
Furthermore, according to the invention of claim 3 , it is possible to save space for piping installation.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a flowchart according to the first embodiment.
3 is a configuration diagram showing a refrigeration apparatus according to Embodiment 2. FIG.
FIG. 4 is a flowchart according to the second embodiment.
FIG. 5 is a configuration diagram of a conventional refrigerator.
[Explanation of symbols]
1 compressor, 2 condenser, 3 expansion valve, 4 evaporator, 5 high pressure float,
5n Needle part, 6 Discharge piping, 7a, b Main liquid piping, 8 Suction piping,
9a, b piping, 10 piping, 11 solenoid valve, 12a, b float switch,
13a, b piping, 14 solenoid valve, 15a, b piping, 16 solenoid valve, 17a piping,
18a piping.

Claims (3)

圧縮機、凝縮器、膨張弁、蒸発器を備えた冷凍装置であって、上記凝縮器の冷媒液の一部を凝縮器の液面高さに応じて圧力調整して膨張弁に送出し当該膨張弁の開度を制御する液面高さ制御手段と、上記凝縮器の液面高さの下限値を検知する第1の検知手段と、上記凝縮器の液面高さの下限位置より高い所定位置を検知する第2の検知手段と、第1の検知手段が液面高さの下限値を検出すると上記液面高さ制御手段における膨張弁への冷媒液の送出を停止し膨張弁を閉とし、第2の検知手段が上記所定位置を検知すると上記膨張弁への冷媒液の送出停止を解除する手段を設けたことを特徴とする冷凍装置。A refrigeration apparatus including a compressor, a condenser, an expansion valve, and an evaporator, wherein a part of the refrigerant liquid in the condenser is pressure-adjusted according to the liquid level of the condenser and sent to the expansion valve. Liquid level control means for controlling the opening of the expansion valve, first detection means for detecting a lower limit value of the liquid level of the condenser, and higher than a lower limit position of the liquid level of the condenser When the second detection means for detecting the predetermined position and the first detection means detect the lower limit value of the liquid level height, the supply of the refrigerant liquid to the expansion valve in the liquid level height control means is stopped and the expansion valve is turned off. A refrigeration apparatus comprising a means for closing and releasing the suspension of the supply of the refrigerant liquid to the expansion valve when the second detection means detects the predetermined position. 請求項1において、冷凍装置動作停止中に上記凝縮器の液面が低下した場合、上記蒸発器内の冷媒を上記凝縮器へ戻すための回路配管を付設したことを特徴とする冷凍装置。2. The refrigeration apparatus according to claim 1, further comprising a circuit pipe for returning the refrigerant in the evaporator to the condenser when the liquid level of the condenser is lowered while the operation of the refrigeration apparatus is stopped. 上記回路配管の直径は、凝縮器と蒸発器の間の主液配管の直径の1/3程度であることを特徴とする請求項2記載の冷凍装置。The refrigeration apparatus according to claim 2, wherein the diameter of the circuit pipe is about 1/3 of the diameter of the main liquid pipe between the condenser and the evaporator.
JP04548496A 1996-02-06 1996-02-06 Refrigeration equipment Expired - Lifetime JP3813228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04548496A JP3813228B2 (en) 1996-02-06 1996-02-06 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04548496A JP3813228B2 (en) 1996-02-06 1996-02-06 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH09210474A JPH09210474A (en) 1997-08-12
JP3813228B2 true JP3813228B2 (en) 2006-08-23

Family

ID=12720682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04548496A Expired - Lifetime JP3813228B2 (en) 1996-02-06 1996-02-06 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3813228B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032731B (en) * 2010-12-08 2013-08-14 海尔集团公司 Central air conditioner and method for controlling flow of refrigerant therein

Also Published As

Publication number Publication date
JPH09210474A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP3813228B2 (en) Refrigeration equipment
JPH06341720A (en) Refrigerator
JPH06207758A (en) Air conditioner
JPH06159270A (en) Scroll compressor incorporating overheat preventing device
JPH07120086A (en) Heat pump
JP3481274B2 (en) Separate type air conditioner
JPH02230056A (en) Operation control device for freezer
JP3505209B2 (en) Refrigeration equipment
JP2504161B2 (en) Defrost operation controller for air conditioner
JPH109690A (en) Refrigerator
JPH07294073A (en) Refrigeration device
JPH0694954B2 (en) Refrigerator superheat control device
JP2701623B2 (en) Operation control device for refrigeration equipment
JP2001289519A (en) Refrigerating apparatus
JP2504336B2 (en) Refrigeration system operation controller
JP3360311B2 (en) Air conditioner
JP2503785B2 (en) Operation control device for air conditioner
JPH05256496A (en) Operation controller for air conditioner
JPH04222354A (en) Operation controller for refrigerating equipment
JPH08313076A (en) Refrigerating apparatus
JPH02208452A (en) Pressure equalizing control device for refrigerator
JP2867794B2 (en) Heating and cooling machine
JPS6373054A (en) Refrigerator
JPS5934860Y2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

EXPY Cancellation because of completion of term