JPH07254422A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH07254422A
JPH07254422A JP6044601A JP4460194A JPH07254422A JP H07254422 A JPH07254422 A JP H07254422A JP 6044601 A JP6044601 A JP 6044601A JP 4460194 A JP4460194 A JP 4460194A JP H07254422 A JPH07254422 A JP H07254422A
Authority
JP
Japan
Prior art keywords
spring
edge
plate
fuel cell
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6044601A
Other languages
Japanese (ja)
Inventor
Yasushi Shimizu
康 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6044601A priority Critical patent/JPH07254422A/en
Publication of JPH07254422A publication Critical patent/JPH07254422A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a high gas-sealed fuel cell by composing an edge spring using flat ceramic plates for forming a constitution in which defects are hard to occur in the edge spring. CONSTITUTION:For an edge spring 20, both surfaces of a spring plate 21 of ceramic are held by support plates 22, and both outer sides of it are held by tightening plates 23 of ceramic. The plates 22 facing each other holding the plate 21 have rectangular cross sectional surfaces. and they are arranged at the same pitch on both sides, where their phases are deflected by half a pitch. Tightening force from the plates 23 press the spring plate 21 on both sides through the plates 22 to deform it by resiliency to be wavy. As a result, the spring 20 has such a resiliency as to contract in the height direction. These springs 20 are disposed on circumferential four sides of a current collector to be provided between an edge plate and a connector. Contact of the edge plate and carbonate matrix with each other is secured by reaction force when the spring 20 is contracted, thereby gas can be sealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭酸塩マトリックスを
アノード(燃料極)とカソード(空気極)とで挟んだ単
電池と、そのアノードに燃料ガスを、カソードに酸化剤
ガスをそれぞれ隔てて導くセパレータを交互に積層した
溶融炭酸塩型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unit cell in which a carbonate matrix is sandwiched between an anode (fuel electrode) and a cathode (air electrode), and a fuel gas is provided at the anode and an oxidant gas is provided at the cathode. The present invention relates to a molten carbonate fuel cell in which separators are alternately laminated.

【0002】[0002]

【従来の技術】燃料電池は電極上で生じる電気化学的反
応を直接電気出力に変換する発電方式であり、この反応
を行わせるには燃料ガスと酸化剤ガスとを、電解質マト
リックスを挟んで向き合うアノードとカソードとにそれ
ぞれ分けて供給しなければならない。この目的でアノー
ド、およびカソードからなる単電池を複数個積層して積
層型燃料電池を構成する場合に、燃料ガスと酸化剤ガス
の流路を形成するとともに、隣合う単電池同士を電気的
に接続するセパレータが介装される。
2. Description of the Related Art A fuel cell is a power generation system in which an electrochemical reaction occurring on an electrode is directly converted into an electric output. In order to carry out this reaction, a fuel gas and an oxidant gas face each other with an electrolyte matrix interposed therebetween. It must be supplied separately to the anode and the cathode. For this purpose, when a plurality of unit cells including an anode and a cathode are stacked to form a stacked fuel cell, a flow path for fuel gas and oxidant gas is formed, and adjacent unit cells are electrically connected to each other. The connecting separator is interposed.

【0003】セパレータと単電池とは密着するが、外縁
部ではそれらの密着によって燃料ガスと酸化剤ガスの気
密を保っている。このとき、単電池には電解質が液状で
含浸されており、密着面が電解質で濡れることにより、
気密性は確保される。セパレータと単電池を積層したと
き、外縁部の接触不良を防ぐために、セパレータの外縁
部にはエッジスプリングが配設される。このエッジスプ
リングは収縮してその反力でセパレータの外縁部を単電
池に押しつける機能を有する。
Although the separator and the unit cell are in close contact, the fuel gas and the oxidant gas are kept airtight at the outer edge by their close contact. At this time, the unit cell is impregnated with a liquid electrolyte, and the contact surface gets wet with the electrolyte,
Airtightness is secured. When the separator and the unit cells are stacked, an edge spring is arranged at the outer edge of the separator in order to prevent contact failure at the outer edge. The edge spring has a function of contracting and pressing the outer edge of the separator against the unit cell by its reaction force.

【0004】電解質として溶融炭酸塩を用いた燃料電池
は溶融炭酸塩型燃料電池と呼ばれ、電解質としてマトリ
ックスには炭酸塩が含浸される。溶融炭酸塩型燃料電池
の一例を1セルだけ抜き出して図3に示す。また、その
A−A断面を2セル積層したものを図4に示す。単電池
1は炭酸塩マトリックス2と、その両面に密着して配置
されるアノード3およびカソード4とから構成されてい
る。また、セパレータ5は金属製で、インターコネクタ
6、アノードエッジ板7、カソードエッジ板8、アノー
ド集電板9、カソード集電板10からなり、単電池に密
着して配設され、アノードに燃料ガス11を、カソード
に酸化剤ガス12を導く。アノード3とカソード4を電
極と呼ぶ。
A fuel cell using a molten carbonate as an electrolyte is called a molten carbonate fuel cell, and a matrix is impregnated with a carbonate as an electrolyte. One example of the molten carbonate fuel cell is extracted and shown in FIG. Moreover, what laminated | stacked the 2 cell of the AA cross section is shown in FIG. The unit cell 1 is composed of a carbonate matrix 2 and an anode 3 and a cathode 4 which are arranged in close contact with both surfaces of the carbonate matrix 2. The separator 5 is made of metal, and includes an interconnector 6, an anode edge plate 7, a cathode edge plate 8, an anode current collector plate 9, and a cathode current collector plate 10. The gas 11 and the oxidant gas 12 are introduced to the cathode. The anode 3 and the cathode 4 are called electrodes.

【0005】図3には描かれていないが、アノードエッ
ジスプリング13とカソードエッジスプリング14は双
方のエッジ板7、8と電解質マトリックス2の接触を確
保するため、インターコネクタ6と双方のエッジ板7、
8の間に配設される。エッジスプリングの位置は図4に
示す。この図ではエッジスプリングは収縮した状態であ
る。
Although not shown in FIG. 3, the anode edge spring 13 and the cathode edge spring 14 ensure the contact between the edge plates 7 and 8 and the electrolyte matrix 2, so that the interconnector 6 and both edge plates 7 are provided. ,
It is arranged between eight. The position of the edge spring is shown in FIG. In this figure, the edge spring is in a contracted state.

【0006】ところで、燃料ガス11と酸化剤ガス12
とは、マニホールドからアノードとカソードとにそれぞ
れ供給されるが、マニホールドは隣接する上下のセパレ
ータ同士をマニホールドリング15で接続されて構成さ
れている。
By the way, the fuel gas 11 and the oxidant gas 12
Is supplied from the manifold to the anode and the cathode, respectively. The manifold is configured by connecting adjacent upper and lower separators with a manifold ring 15.

【0007】[0007]

【発明が解決しようとする課題】上記したように、エッ
ジスプリングは常時収縮して応力を生じているために、
溶融炭酸塩型燃料電池の作動温度である650℃におい
ては、応力緩和が生じて、スプリングの反力は時間とと
もに低下する。そこで、エッジスプリングの材料に、応
力緩和の生じにくいセラミックスが用いられる(67A
923043)。しかしながら、セラミックスには成形
性の難しいという欠点がある。特に、薄板を複雑な形に
成形するのは難しく、薄板に欠陥が入りやすかった。ス
プリングの収縮によって応力の集中する箇所にそのよう
な欠陥を有すると、エッジスプリングが破壊し、ガスの
ノール性能が損なわれた。
As described above, since the edge spring constantly contracts to generate stress,
At 650 ° C., which is the operating temperature of the molten carbonate fuel cell, stress relaxation occurs and the reaction force of the spring decreases with time. Therefore, ceramics that are less likely to cause stress relaxation are used as the material of the edge spring (67A).
923043). However, ceramics have the drawback of being difficult to form. In particular, it is difficult to form a thin plate into a complicated shape, and defects are likely to occur in the thin plate. Such defects at points of stress concentration due to spring contraction broke the edge springs and impaired the gas's noll performance.

【0008】従来のセラミックス製のエッジスプリング
の構造の一例を図5に示す。薄板を波板状に成形したも
のを重ねて構成されている。曲がり部分に欠陥が入りや
すく、破損の原因となる。そこで本発明は、エッジスプ
リングを欠陥の入りにくい構成とし、曳いては、ガスシ
ール性能の高い溶融炭酸塩型燃料電池を提供することを
目的とする。
An example of the structure of a conventional ceramic edge spring is shown in FIG. It is configured by stacking thin plates formed in a corrugated shape. Defects are likely to occur in the bent part, causing damage. Therefore, it is an object of the present invention to provide a molten carbonate fuel cell having a structure in which an edge spring is less likely to have defects and, by extension, having a high gas sealing performance.

【0009】[0009]

【課題を解決するための手段】セパレータの外縁部を単
電池に押しつけて前記ガスの気密性を保持するエッジス
プリングを、セラミックス製の平板を用いて構成する。
また、セパレータの外縁部を単電池に押しつけて前記ガ
スの気密性を保持するエッジスプリングを、セラミック
スの平面部分を撓ませる構成とする。
An edge spring for pressing the outer edge portion of a separator against a unit cell to maintain the airtightness of the gas is constructed by using a flat plate made of ceramics.
In addition, an edge spring that presses the outer edge portion of the separator against the unit cell to maintain the airtightness of the gas is configured to bend the flat surface portion of the ceramic.

【0010】[0010]

【作用】セラミックスを複雑な形状に成形するのは欠陥
が入りやすいが、平坦な部分には欠陥が入りにくい。セ
ラミックスの平坦部分を撓ませて、その部分に応力を生
じさせることで、エッジスプリングは破損しにくくな
る。その結果、ガスシール性が損なわれることを防ぐこ
とができる。
Function: Molding ceramics into a complicated shape is likely to cause defects, but flat parts are less likely to have defects. The edge spring is less likely to be damaged by bending the flat portion of the ceramic to generate stress in the flat portion. As a result, it is possible to prevent the gas sealability from being impaired.

【0011】[0011]

【実施例】本発明の実施例を図を用いて説明する。図1
は本発明のエッジスプリングの一実施例の一部を示す斜
視図である。このエッジスプリング20はセラミックス
製のスプリング板21の両面を支持板22で挟み、さら
に、その両外側をセラミックス製の締め付け板23で挟
んだ構造を有する。スプリング板21を挟んで対向する
支持板22は矩形断面を有し、両側同じピッチで配列さ
れているが、位相が半ピッチ分ずらされている。締め付
け板23からの締め付け力は支持板22を介して、スプ
リング板21を両面から押えて波状に弾性変形させる。
その結果、エッジスプリング20は高さ方向に収縮する
弾性を有する。
Embodiments of the present invention will be described with reference to the drawings. Figure 1
FIG. 3 is a perspective view showing a part of an embodiment of the edge spring of the present invention. The edge spring 20 has a structure in which both sides of a ceramic spring plate 21 are sandwiched by support plates 22, and both outer sides thereof are sandwiched by ceramic tightening plates 23. The support plates 22 facing each other with the spring plate 21 interposed therebetween have a rectangular cross section and are arranged at the same pitch on both sides, but the phases are shifted by a half pitch. The tightening force from the tightening plate 23 presses the spring plate 21 from both sides via the support plate 22 to elastically deform it in a wave shape.
As a result, the edge spring 20 has elasticity that contracts in the height direction.

【0012】このエッジスプリング20は、従来のエッ
ジスプリングと同様にカレントコレクターの周囲四辺に
配設され、エッジ板とインターコネクタの間に介装され
た。このスプリングが収縮したときの反力によって、エ
ッジ板と炭酸塩マトリックスの接触を確保し、ガスをシ
ールすることができた。
Like the conventional edge spring, the edge spring 20 is arranged on four sides around the current collector and is interposed between the edge plate and the interconnector. The reaction force when the spring contracted ensured the contact between the edge plate and the carbonate matrix and could seal the gas.

【0013】スプリング板21と支持板22と締め付け
板23とは接着剤で簡易に接合されたが、接合されなく
ても機能は同等である。また、支持板22と締め付け板
23とは金属製であっても同様な効果が得られる。
Although the spring plate 21, the support plate 22, and the tightening plate 23 are easily joined with an adhesive, the functions are the same even if they are not joined. Even if the support plate 22 and the tightening plate 23 are made of metal, the same effect can be obtained.

【0014】図2は本発明のエッジスプリングの他の実
施例を示す斜視図である。このエッジスプリング25は
スプリング板21を締め付け板26で両側から挟んだも
のである。締め付け板26には金属製の薄板をプレス加
工して突起27を形成し、突起27のある側をスプリン
グ板に向けてある。スプリング板21を挟んで対向する
締め付け板26は、突起27が両側同じピッチで配列さ
れているが、位相が半ピッチ分ずらされている。締め付
け板26からの締め付け力は突起27を介して、スプリ
ング板21を両面から押えて波状に弾性変形させる。そ
の結果、エッジスプリング25は高さ方向に収縮する弾
性を有する。
FIG. 2 is a perspective view showing another embodiment of the edge spring of the present invention. The edge spring 25 is formed by sandwiching the spring plate 21 with tightening plates 26 from both sides. A thin plate made of metal is pressed on the tightening plate 26 to form a protrusion 27, and the side having the protrusion 27 faces the spring plate. In the tightening plates 26 facing each other with the spring plate 21 sandwiched, the protrusions 27 are arranged at the same pitch on both sides, but the phases are shifted by a half pitch. The tightening force from the tightening plate 26 presses the spring plate 21 from both sides via the protrusion 27 to elastically deform it in a wave shape. As a result, the edge spring 25 has elasticity that contracts in the height direction.

【0015】このエッジスプリングも図1に示すエッジ
スプリングと同様な効果が得られた。このように、セラ
ミックス製の平板を撓ませるような構成のエッジスプリ
ングは、スプリング板に欠陥が入りにくく、破損しにく
かった。また、そればかりでなく、製造が容易で、コス
トの低減を図ることができた。
This edge spring also had the same effect as the edge spring shown in FIG. As described above, in the edge spring configured to bend the ceramic flat plate, the spring plate is not likely to be defective and is hard to be damaged. Not only that, but also the manufacturing is easy and the cost can be reduced.

【0016】エッジスプリングの収縮量を大きくするた
めに、複数のスプリング板を組み合わせて用いることも
できる。例えば、図1に示す構造のエッジスプリングで
は、あるピッチの支持板を挟んで2枚のスプリング板を
対向させ、さらに両スプリング板の外側に同ピッチで位
相の半ピッチずれた支持板を配設して構成することがで
きる。この場合、スプリングが直列に接続されたことに
なり、スプリング板1枚の場合に比べて、同じ締め付け
圧で収縮量は2倍となる。図2のエッジスプリングにつ
いても、同様にスプリング板の複数構成とすることがで
きる。スプリング板の材料には、窒化珪素が用いられ
た。窒化珪素は高温強度が大きくバネ特性に優れている
ため、エッジスプリングの材料として有効であった。
In order to increase the amount of contraction of the edge spring, a plurality of spring plates can be used in combination. For example, in the edge spring having the structure shown in FIG. 1, two spring plates are opposed to each other with a support plate having a certain pitch sandwiched therebetween, and support plates having the same pitch and a half-pitch offset are provided outside the both spring plates. Can be configured. In this case, the springs are connected in series, and the contraction amount is doubled with the same tightening pressure as compared with the case of one spring plate. Similarly, the edge spring shown in FIG. 2 may have a plurality of spring plates. Silicon nitride was used as the material of the spring plate. Since silicon nitride has high strength at high temperature and excellent spring characteristics, it was effective as a material for the edge spring.

【0017】[0017]

【発明の効果】エッジスプリングをセラミックス製の平
板を用いて構成することにより、セラミックスに欠陥が
入りにくくなり、エッジスプリングの破損を防ぐことが
できた。その結果、エッジ板と炭酸塩マトリックスの接
触を良好に保つことができ、溶融炭酸塩型燃料電池の性
能を高めることができた。また同時に、製造コストを低
減させることができた。
EFFECTS OF THE INVENTION By constructing the edge spring by using a flat plate made of ceramics, it becomes difficult for defects to enter into the ceramics, and damage to the edge spring can be prevented. As a result, good contact between the edge plate and the carbonate matrix could be maintained, and the performance of the molten carbonate fuel cell could be improved. At the same time, the manufacturing cost could be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の溶融炭酸塩型燃料電池におけるエッジ
スプリングの一実施例を示す斜視図
FIG. 1 is a perspective view showing an embodiment of an edge spring in a molten carbonate fuel cell of the present invention.

【図2】本発明の溶融炭酸塩型燃料電池におけるエッジ
スプリングの他の実施例を示す斜視図
FIG. 2 is a perspective view showing another embodiment of the edge spring in the molten carbonate fuel cell of the present invention.

【図3】溶融炭酸塩型燃料電池の分解斜視図FIG. 3 is an exploded perspective view of a molten carbonate fuel cell

【図4】溶融炭酸塩型燃料電池の断面図FIG. 4 is a sectional view of a molten carbonate fuel cell.

【図5】従来の溶融炭酸塩型燃料電池におけるエッジス
プリングを示す斜視図
FIG. 5 is a perspective view showing an edge spring in a conventional molten carbonate fuel cell.

【符号の説明】[Explanation of symbols]

1…単電池 2…炭酸塩マトリックス 3…アノード
4…カソード 5…セパレータ 6…インターコネクタ
7…アノードエッジ板 8…カソードエッジ板 9…
アノード集電板 10…カソード集電板 11…燃料ガ
ス 12…酸化剤ガス 13…アノードエッジスプリン
グ 14…カソードエッジスプリング 20…エッジスプリング 21…スプリング板 22…
支持板 23,26…締め付け板 27…突起
1 ... Single cell 2 ... Carbonate matrix 3 ... Anode
4 ... Cathode 5 ... Separator 6 ... Interconnector 7 ... Anode edge plate 8 ... Cathode edge plate 9 ...
Anode current collector 10 ... Cathode current collector 11 ... Fuel gas 12 ... Oxidizer gas 13 ... Anode edge spring 14 ... Cathode edge spring 20 ... Edge spring 21 ... Spring plate 22 ...
Support plate 23, 26 ... Tightening plate 27 ... Protrusion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭酸塩マトリックスをアノードとカソー
ドとで挟んだ単電池と、そのアノードに燃料ガスを、カ
ソードに酸化剤ガスをそれぞれ隔てて導くセパレータと
を交互に積層して発電させるようにした溶融炭酸塩型燃
料電池において、セパレータの外縁部を単電池に押しつ
けて前記ガスの気密性を保持するエッジスプリングを、
セラミックス製の平板を用いて構成したことを特徴とす
る溶融炭酸塩型燃料電池。
1. A unit cell in which a carbonate matrix is sandwiched between an anode and a cathode and a separator for guiding a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated to generate electric power. In a molten carbonate fuel cell, an edge spring that presses the outer edge portion of the separator against the unit cell to maintain airtightness of the gas,
A molten carbonate fuel cell, which is configured by using a flat plate made of ceramics.
【請求項2】 炭酸塩マトリックスをアノードとカソー
ドとで挟んだ単電池と、そのアノードに燃料ガスを、カ
ソードに酸化剤ガスをそれぞれ隔てて導くセパレータと
を交互に積層して発電させるようにした溶融炭酸塩型燃
料電池において、セパレータの外縁部を単電池に押しつ
けて前記ガスの気密性を保持するエッジスプリングを、
セラミックスの平面部分を撓ませる構成としたことを特
徴とする溶融炭酸塩型燃料電池。
2. A unit cell in which a carbonate matrix is sandwiched between an anode and a cathode and a separator for introducing a fuel gas to the anode and a separator for guiding an oxidant gas to the cathode are alternately laminated to generate electricity. In a molten carbonate fuel cell, an edge spring that presses the outer edge portion of the separator against the unit cell to maintain airtightness of the gas,
A molten carbonate fuel cell, characterized in that a flat portion of ceramics is bent.
【請求項3】 エッジスプリングについて、金属製の部
材とセラミックス製の平板を組み合わせて構成したこと
を特徴とする請求項1又は請求項2に記載の溶融炭酸塩
型燃料電池。
3. The molten carbonate fuel cell according to claim 1, wherein the edge spring is configured by combining a metal member and a ceramic flat plate.
【請求項4】 エッジスプリングのセラミックス部材を
窒化珪素製としたことを特徴とする請求項1ないし請求
項3に記載の溶融炭酸塩型燃料電池。
4. The molten carbonate fuel cell according to claim 1, wherein the ceramic member of the edge spring is made of silicon nitride.
JP6044601A 1994-03-16 1994-03-16 Molten carbonate fuel cell Pending JPH07254422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6044601A JPH07254422A (en) 1994-03-16 1994-03-16 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6044601A JPH07254422A (en) 1994-03-16 1994-03-16 Molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH07254422A true JPH07254422A (en) 1995-10-03

Family

ID=12695982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6044601A Pending JPH07254422A (en) 1994-03-16 1994-03-16 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH07254422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102960A1 (en) * 2004-04-20 2005-11-03 Forschungszentrum Jülich GmbH Spring elements and production and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102960A1 (en) * 2004-04-20 2005-11-03 Forschungszentrum Jülich GmbH Spring elements and production and use thereof

Similar Documents

Publication Publication Date Title
KR100531049B1 (en) Fuel cell assembly
RU2431220C2 (en) Compression assembly for distribution of external compression force to pile of solid-oxide fuel elements, and pile of solid-oxide fuel elements
US20160372778A1 (en) Fuel cell stack and method of producing the same
JP3101464B2 (en) Fuel cell
CN101496207B (en) Fuel cell
JP3815518B2 (en) Molten carbonate fuel cell
JP3345240B2 (en) Polymer electrolyte fuel cell and method of manufacturing the same
JP5113350B2 (en) Gas sealing method and structure for SOFC
US6017649A (en) Multiple step fuel cell seal
JP3146758B2 (en) Solid polymer electrolyte fuel cell
JPH03114147A (en) High temperature fuel cell device
JPH05166523A (en) Plate-like solid electrolyte fuel cell
JPH02129857A (en) Separator of fuel cell
CA3030811C (en) Pressure-resistant fuel cell stack with separators
JPH1092447A (en) Layer-built fuel cell
KR101162669B1 (en) Solid oxide fuel cell
JPH07254422A (en) Molten carbonate fuel cell
JPH10261423A (en) Fuel cell
JP2708500B2 (en) Stacked fuel cell
JPS6353857A (en) Fuel cell separator
JPH02160372A (en) Separator of fuel battery
JPH0850911A (en) Platelike solid electrolytic fuel cell
JP7186208B2 (en) Electrochemical reaction cell stack
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
JPH0193061A (en) Molten carbonate fuel cell