JPH07253543A - Rear focus type zoom lens - Google Patents

Rear focus type zoom lens

Info

Publication number
JPH07253543A
JPH07253543A JP6070003A JP7000394A JPH07253543A JP H07253543 A JPH07253543 A JP H07253543A JP 6070003 A JP6070003 A JP 6070003A JP 7000394 A JP7000394 A JP 7000394A JP H07253543 A JPH07253543 A JP H07253543A
Authority
JP
Japan
Prior art keywords
lens
group
refractive power
negative
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6070003A
Other languages
Japanese (ja)
Other versions
JP3064797B2 (en
Inventor
Akinaga Horiuchi
昭永 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6070003A priority Critical patent/JP3064797B2/en
Priority to US08/399,513 priority patent/US5612825A/en
Publication of JPH07253543A publication Critical patent/JPH07253543A/en
Application granted granted Critical
Publication of JP3064797B2 publication Critical patent/JP3064797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain excellent optical performance over a whole variable power range from the wide-angle end to the telescopic end and over all distances of an object from an object at infinity to the closest object while miniaturizing the whole lens by performing compensation due to power variation and focusing by moving a fourth group. CONSTITUTION:This zoom lens comprised of four lens groups of a first lens group L1l having a positive refractive power, a second lens group L2 having a negative refractive power, a third lens group L3 having a positive refractive power and a fourth lens group L4 having a positive refractive power in order from the object side. Power variation from a wide-angle end to a telescopic end is performed by moving the second group L2 to the image plane side, the fluctuation of the image plane due to the power variation is compensated by moving the fourth group L4 and focusing is performed by moving the fourth group L4. The third group L3 comprised of a positive lens on the object side and a meniscus-like negative lens, whose concave surface confronts the image-plane side, on the closest side of the image plane and the fourth group L4 comprised of a negative lens and two positive lenses. By representing focal length of the third group L3 and the fourth group L4 by f3, f4, respectively, the condition: 0.73<f3<f4<1.00 is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリヤーフォーカス式のズ
ームレンズに関し、特に写真用カメラやビデオカメラ、
そして放送用カメラ等に用いられる変倍比12、Fナン
バー1.8程度の大口径比で高変倍比のリヤーフォーカ
ス式のズームレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rear focus type zoom lens, and more particularly to a photographic camera, a video camera,
Further, the present invention relates to a rear focus type zoom lens having a large aperture ratio with a variable power ratio of 12, an F number of about 1.8, and a high variable power ratio, which is used in broadcast cameras and the like.

【0002】[0002]

【従来の技術】最近、ホームビデオカメラ等の小型軽量
化に伴い、撮像用のズームレンズの小型化にも目覚まし
い進歩が見られ、特にレンズ全長の短縮化や前玉径の小
型化、構成の簡略化に力が注がれている。
2. Description of the Related Art Recently, as home video cameras have become smaller and lighter, remarkable progress has been made in the miniaturization of zoom lenses for image pickup. Especially, the total lens length and front lens diameter have been reduced. The effort is focused on simplification.

【0003】これらの目的を達成する一つの手段とし
て、物体側の第1群以外のレンズ群を移動させてフォー
カスを行う、所謂リヤーフォーカス式のズームレンズが
知られている。
As one means for achieving these objects, there is known a so-called rear focus type zoom lens in which a lens unit other than the first lens unit on the object side is moved for focusing.

【0004】一般にリヤーフォーカス式のズームレンズ
は第1群を移動させてフォーカスを行うズームレンズに
比べて第1群の有効径が小さくなり、レンズ系全体の小
型化が容易になり、又近接撮影、特に極近接撮影が容易
となり、更に比較的小型軽量のレンズ群を移動させて行
っているので、レンズ群の駆動力が小さくてすみ迅速な
焦点合わせができる等の特長がある。
Generally, in a rear focus type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens in which the first lens group is moved to perform focusing, which facilitates downsizing of the entire lens system and close-up photography. In particular, since extremely close-up photography is facilitated and the relatively small and lightweight lens group is moved, the driving force of the lens group is small, and quick focusing is possible.

【0005】このようなリヤーフォーカス式のズームレ
ンズとして例えば特開昭62−24213号公報や、特
開昭63−247316号公報では、物体側より順に正
の屈折力の第1群、負の屈折力の第2群、正の屈折力の
第3群、そして正の屈折力の第4群の4つのレンズ群を
有し、第2群を移動させて変倍を行い、第4群を移動さ
せて変倍に伴う像面変動とフォーカスを行っている。
As such a rear focus type zoom lens, for example, in JP-A-62-24213 and JP-A-63-247316, a first group having a positive refractive power and a negative refractive power are arranged in order from the object side. It has four lens groups, a second lens group of power, a third lens group of positive refractive power, and a fourth lens group of positive refractive power, and moves the second lens group to perform zooming and move the fourth lens group. Then, the image plane variation and the focus due to the magnification change are performed.

【0006】又、特開平4−43311号公報や特開平
4−153615号公報で提案しているリヤーフォーカ
ス式のズームレンズでは、第4群が広角端に比べて望遠
端において像面側に位置している。これにより望遠側で
の第4群のフォーカスの際の移動距離を多くして、超至
近距離(テレマクロ撮影)物体へのフォーカスを可能と
している。
In the rear focus type zoom lens proposed in JP-A-4-43311 and JP-A-4-153615, the fourth lens unit is located closer to the image plane side at the telephoto end than at the wide-angle end. is doing. As a result, the moving distance during focusing of the fourth lens unit on the telephoto side is increased, and it is possible to focus on a super close-range (tele-macro shooting) object.

【0007】[0007]

【発明が解決しようとする課題】一般にズームレンズに
おいてリヤーフォーカス方式を採用すると前述の如くレ
ンズ系全体が小型化され又迅速なるフォーカスが可能と
なり、更に近接撮影が容易となる等の特長が得られる。
Generally, when a rear focus system is adopted in a zoom lens, the entire lens system is downsized as described above, quick focusing is possible, and further close-up photography is facilitated. .

【0008】しかしながら反面、フォーカスの際の収差
変動が大きくなり、無限遠物体から近距離物体に至る物
体距離全般にわたり高い光学性能を得るのが大変難しく
なってくるという問題点が生じてくる。
On the other hand, however, the aberration variation at the time of focusing becomes large, and it becomes very difficult to obtain high optical performance over the entire object distance from an object at infinity to a near object.

【0009】特に大口径比で高変倍のズームレンズでは
全変倍範囲にわたり、又物体距離全般にわたり高い光学
性能を得るのが大変難しくなってくるという問題点が生
じてくる。
Particularly in a zoom lens having a large aperture ratio and a high zoom ratio, it becomes very difficult to obtain high optical performance over the entire zoom range and over the entire object distance.

【0010】前述の各リヤーフォーカス式のズームレン
ズは変倍比が8倍程度であり、最近のビデオカメラ用の
ズームレンズとしては変倍比が必ずしも十分でなかっ
た。
The zoom ratios of the rear focus type zoom lenses described above are about 8 times, and the zoom ratios have not always been sufficient for recent zoom lenses for video cameras.

【0011】又、特開平2−55308号公報や特開平
4−26811号公報、そして特開平4−88309号
公報で提案されているリヤーフォーカス式のズームレン
ズは前玉径やレンズ全長等、レンズ系全体の小型化の点
が必ずしも十分ではない。
Further, the rear focus type zoom lens proposed in JP-A-2-55308, JP-A-4-26811, and JP-A-4-88309 is a lens having a front lens diameter, a total lens length, and the like. The downsizing of the entire system is not always sufficient.

【0012】本発明はリヤーフォーカス方式を採用しつ
つ、大口径比化及び高変倍化を図る際、レンズ系全体の
小型化を図りつつ広角端から望遠端に至る全変倍範囲に
わたり、又無限遠物体から超至近物体に至る物体距離全
般にわたり、良好なる光学性能を有したリヤーフォーカ
ス式のズームレンズの提供を目的とする。
The present invention adopts the rear focus method, and at the time of achieving a large aperture ratio and a high zoom ratio, downsizing the entire lens system while over the entire zoom range from the wide-angle end to the telephoto end. An object of the present invention is to provide a rear focus type zoom lens having good optical performance over the entire object distance from an infinitely distant object to a super close object.

【0013】[0013]

【課題を解決するための手段】本発明のリヤーフォーカ
ス式のズームレンズは、物体側より順に正の屈折力の第
1群、負の屈折力の第2群、正の屈折力の第3群、そし
て正の屈折力の第4群の4つのレンズ群を有し、該第2
群を像面側へ移動させて広角端から望遠端への変倍を行
い、変倍に伴う像面変動を該第4群を移動させて補正す
ると共に該第4群を移動させてフォーカスを行い、該第
3群は物体側に少なくとも1つの正レンズと最も像面側
に像面側に凹面を向けたメニスカス状の負レンズとを有
し、該第4群は1つの負レンズと2つの正レンズとを有
しており、該第3群と第4群の焦点距離を各々f3,f
4とするとき 0.73<f3/f4<1.00 ・・・・・・・・(1) なる条件を満足することを特徴としている。
A rear focus type zoom lens according to the present invention comprises a first group having a positive refractive power, a second group having a negative refractive power, and a third group having a positive refractive power in order from the object side. , And a fourth lens group of a fourth lens group having a positive refractive power,
The lens unit is moved to the image plane side to change the magnification from the wide-angle end to the telephoto end, and the image plane variation due to the magnification change is corrected by moving the fourth unit and moving the fourth unit. The third group has at least one positive lens on the object side and a meniscus-shaped negative lens having a concave surface closest to the image surface on the image side, and the fourth group includes one negative lens and two negative lenses. Two positive lenses, and the focal lengths of the third group and the fourth group are f3 and f, respectively.
When it is set to 4, 0.73 <f3 / f4 <1.00 (1) is satisfied.

【0014】[0014]

【実施例】図1〜図4は本発明のリヤーフォーカス式の
ズームレンズの後述する数値実施例1〜4の広角端のレ
ンズ断面図、図5〜図7は数値実施例1、図8〜図10
は数値実施例2、図11〜図13は数値実施例3、図1
4〜図16は数値実施例4の諸収差図である。収差図に
おいて図5,8,11,14は広角端、図6,9,1
2,15は中間、図7,10,13,16は望遠端を示
す。
1 to 4 are sectional views of a rear focus type zoom lens according to the present invention at the wide-angle end in Numerical Examples 1 to 4 to be described later, and FIGS. 5 to 7 are Numerical Example 1 and FIG. Figure 10
Is a numerical example 2, FIGS. 11 to 13 are numerical examples 3, FIG.
4 to 16 are various aberration diagrams of Numerical Example 4. In the aberration diagrams, FIGS. 5, 8, 11 and 14 are at the wide angle end, and FIGS.
Reference numerals 2 and 15 are intermediate, and FIGS. 7, 10, 13 and 16 are telephoto ends.

【0015】図中L1は正の屈折力の第1群、L2は負
の屈折力の第2群、L3は正の屈折力の第3群、L4は
正の屈折力の第4群である。SPは開口絞りであり、第
3群L3の前方に配置している。Gはフェースプレート
やフィルター等のガラスブロック、IPは像面である。
In the figure, L1 is a first group having a positive refractive power, L2 is a second group having a negative refractive power, L3 is a third group having a positive refractive power, and L4 is a fourth group having a positive refractive power. . SP is an aperture stop, which is arranged in front of the third lens unit L3. G is a glass block such as a face plate or filter, and IP is an image plane.

【0016】本実施例では広角端から望遠端への変倍に
際して矢印のように第2群を像面側へ移動させると共
に、変倍に伴う像面変動を第4群を物体側に凸状の軌跡
を有しつつ移動させて補正している。
In this embodiment, the second lens unit is moved to the image plane side as indicated by the arrow when the magnification is changed from the wide-angle end to the telephoto end, and the fourth lens unit is convex toward the object side due to the image plane variation due to the magnification change. It is corrected by moving while having the locus of.

【0017】又、第4群を光軸上移動させてフォーカス
を行うリヤーフォーカス式を採用している。同図に示す
第4群の実線の曲線4aと点線の曲線4bは各々無限遠
物体と近距離物体にフォーカスしているときの広角端か
ら望遠端への変倍に伴う際の像面変動を補正する為の移
動軌跡を示している。尚、第1群と第3群は変倍及びフ
ォーカスの際固定である。
Further, a rear focus type in which focusing is performed by moving the fourth lens unit on the optical axis is adopted. The solid curve 4a and the dotted curve 4b of the fourth group shown in the same figure represent image plane fluctuations due to zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and a near object, respectively. The movement locus for correction is shown. The first and third groups are fixed during zooming and focusing.

【0018】本実施例においては第4群を移動させて変
倍に伴う像面変動の補正を行うと共に第4群を移動させ
てフォーカスを行うようにしている。特に同図の曲線4
a、4bに示すように広角端から望遠端への変倍に際し
て物体側へ凸状の軌跡を有するように移動させている。
これにより第3群と第4群との空間の有効利用を図りレ
ンズ全長の短縮化を効果的に達成している。
In the present embodiment, the fourth lens unit is moved to correct the image plane variation due to zooming, and the fourth lens unit is moved to perform focusing. Curve 4 in the figure
As shown in a and 4b, the zoom lens is moved so as to have a convex locus toward the object side during zooming from the wide-angle end to the telephoto end.
As a result, the space between the third group and the fourth group is effectively used, and the total lens length is effectively shortened.

【0019】本実施例において、例えば望遠端において
無限遠物体から近距離物体へフォーカスを行う場合は同
図の直線4cに示すように第4群を前方へ繰り出すこと
により行っている。
In this embodiment, for example, when focusing from an object at infinity to a near object at the telephoto end, the fourth lens unit is moved forward as indicated by a straight line 4c in the figure.

【0020】本発明のズームレンズはズーム比が12倍
と高変倍比であるため、変倍に伴う第4群の移動量が比
較的多くなり、変倍に伴う収差変動も増大してくる傾向
がある。また同時に、望遠端における合焦のための第4
群の移動量も大きくなり、無限遠物体から至近物体まで
のフォーカシングによる収差変動を補正するのが難しく
なってくる。
Since the zoom lens of the present invention has a high zoom ratio of 12 times, the moving amount of the fourth lens unit due to zooming becomes relatively large, and the variation of aberration due to zooming also increases. Tend. At the same time, the fourth lens for focusing at the telephoto end
The amount of movement of the group also increases, and it becomes difficult to correct aberration fluctuations due to focusing from an object at infinity to a close object.

【0021】そこで本発明では第3群と第4群のレンズ
構成を前述の如く特定することにより、変倍及びフォー
カスの際の収差変動を良好に補正している。また第3群
の最も像面側に像面側に強い凹面を向けたメニスカス状
の負レンズを配置することにより、レンズ系の小型化に
よって不足ぎみになるバックフォーカスを長くしてい
る。そして第3群と第4群の屈折力が前述の条件式
(1)を満足するように設定してレンズ系全体の小型化
を図りつつ、諸収差を良好に補正している。
Therefore, in the present invention, by specifying the lens configurations of the third group and the fourth group as described above, aberration fluctuations during zooming and focusing are satisfactorily corrected. Further, by disposing a meniscus-shaped negative lens with a strong concave surface facing the image surface side closest to the image surface in the third lens group, the back focus, which is insufficient due to the size reduction of the lens system, is lengthened. Then, the refracting powers of the third and fourth groups are set so as to satisfy the above-mentioned conditional expression (1), and the various aberrations are corrected well while the overall size of the lens system is reduced.

【0022】本発明に係るズームレンズにおいて、レン
ズ系全体の小型化を追求すると焦点距離f3は小さくな
り、第3群から射出する軸上光束は収れん系になってく
る。このためバックフォーカスが短くなってくる。その
問題を解決するためには第3群中の上記メニスカス状の
負レンズが重要になってくる。また収れん系で第4群に
入射すると第4群の移動により入射高が大きく変動する
ために収差変動が大きくなってくる。その問題を解決す
るためには第4群のレンズ構成が重要になってくる。
In the zoom lens according to the present invention, if the miniaturization of the entire lens system is pursued, the focal length f3 becomes short, and the axial light flux emerging from the third lens group becomes a convergent system. Therefore, the back focus becomes shorter. In order to solve the problem, the meniscus-shaped negative lens in the third lens group becomes important. Further, when the light beam enters the fourth lens unit in the convergent system, the aberration height increases due to a large change in the incident height due to the movement of the fourth lens unit. In order to solve the problem, the lens structure of the fourth group becomes important.

【0023】本発明は以上の点を考慮して第3群と第4
群のレンズ構成を前述の如く設定して、レンズ系全体の
小型化を図りつつ、諸収差を良好に補正している。
In consideration of the above points, the present invention provides the third group and the fourth group.
By setting the lens configuration of the group as described above, various aberrations are satisfactorily corrected while aiming at downsizing of the entire lens system.

【0024】次に前述の条件式(1)の技術的意味につ
いて説明する。条件式(1)の上限値を越えて焦点距離
f3が長くなりすぎると、バックフォーカスが長くなり
すぎてレンズ系全体の小型化が難しくなってくる。また
下限値を越えて焦点距離f3が短くなりすぎると、バッ
クフォーカスが短くなりすぎ、それを長くするために第
3群中のメニスカス状の負レンズの屈折力を強くすると
曲率が小さくなりすぎ、球面収差やコマ収差等の諸収差
の発生が大きくなり、これらを良好に補正するのが困難
になってくる。
Next, the technical meaning of the conditional expression (1) will be described. If the focal length f3 becomes too long beyond the upper limit of the conditional expression (1), the back focus becomes too long and it becomes difficult to downsize the entire lens system. If the focal length f3 becomes too short beyond the lower limit, the back focus becomes too short. If the refractive power of the meniscus negative lens in the third lens group is increased to make it longer, the curvature becomes too small. The occurrence of various aberrations such as spherical aberration and coma becomes large, and it becomes difficult to satisfactorily correct these aberrations.

【0025】本発明の目的とするリヤーフォーカス式の
ズームレンズは以上の諸条件を満足することにより達成
されるが、更にレンズ系全体の小型化を図りつつ全変倍
範囲にわたり良好なる光学性能を得るには、前記第2群
を物体側より順に像面側に強い凹面を向けたメニスカス
状の負の第21レンズ、両レンズ面が凹面の負の第22
レンズ、そして像面側に比べ物体側に強い屈折力の凸面
を向けた正の第23レンズの3枚の単レンズで構成する
ことである。
The rear focus type zoom lens, which is the object of the present invention, can be achieved by satisfying the above-mentioned various conditions. Further, the overall lens system can be downsized and good optical performance can be obtained over the entire zoom range. To obtain, the second lens unit has a negative meniscus 21st lens with a strong concave surface facing the image surface side in order from the object side, and a negative 22nd lens element with both lens surfaces concave.
The third lens element is a lens and a positive 23rd lens having a convex surface having a stronger refractive power toward the object side than the image side.

【0026】本実施例では第2群を前述の如く構成する
ことにより、ズーミングする際に特に歪曲収差の変動量
を少なくしている。従来の一般的なズームレンズでは歪
曲収差が広角端で−5%を越え、望遠端で+5%前後あ
った。
In the present embodiment, the second group is configured as described above, so that the amount of fluctuation of the distortion aberration is particularly reduced during zooming. In a conventional general zoom lens, the distortion aberration exceeds -5% at the wide-angle end and around + 5% at the telephoto end.

【0027】これに対して本実施例では歪曲収差が広角
端で−5%を下回り、望遠端では+3%以下と激減させ
ている。
On the other hand, in this embodiment, the distortion aberration is less than -5% at the wide-angle end and is drastically reduced to + 3% or less at the telephoto end.

【0028】又、第2群の前側主点の位置をより物体側
に設定し、第1群との主点間隔を短くし、又第1群を絞
り位置に近づけている。これにより第1群に入射する軸
外光束の光軸からの高さが低くなり、第1群のレンズ径
を小さくし、レンズ全長の短縮及び小型軽量化を図って
いる。
Further, the position of the front principal point of the second group is set closer to the object side, the principal point interval with the first group is shortened, and the first group is brought closer to the diaphragm position. As a result, the height of the off-axis light beam entering the first group from the optical axis is lowered, the lens diameter of the first group is reduced, and the overall lens length is shortened and the size and weight are reduced.

【0029】本実施例では第2群中の負の第22レンズ
と正の第23レンズを単レンズで構成することにより、
双方のレンズで形成される空気レンズにより収差補正を
行なっている。これにより球面収差、コマ収差、軸上色
収差等の諸収差の補正をバランス良く行なっている。
In the present embodiment, the negative 22nd lens and the positive 23rd lens in the second lens group are composed of a single lens,
Aberration correction is performed by an air lens formed by both lenses. As a result, various aberrations such as spherical aberration, coma and axial chromatic aberration are corrected in good balance.

【0030】又本実施例においては第22レンズと第2
3レンズとを単レンズで構成したために第2群中を通過
する軸上光束が第22レンズを出射後、第23レンズに
入射する際の光軸からの高さが従来の一般的な貼合わせ
レンズのときよりも高くなる。
In this embodiment, the 22nd lens and the 2nd lens
Since the three lenses are composed of a single lens, the height from the optical axis when the on-axis light flux passing through the second lens group enters the 23rd lens after exiting the 22nd lens, the conventional general bonding It will be higher than when using a lens.

【0031】このため第23レンズで補正する諸収差の
効果が強くなりすぎる。このためその分、第23レンズ
の物体側のレンズ面の曲率、第21レンズの像面側のレ
ンズ面の曲率そして第22レンズの両レンズ面の曲率を
緩くすることができる。
Therefore, the effects of various aberrations corrected by the 23rd lens become too strong. Therefore, the curvature of the object-side lens surface of the 23rd lens, the curvature of the image-side lens surface of the 21st lens, and the curvatures of both lens surfaces of the 22nd lens can be reduced accordingly.

【0032】本実施例ではこれにより第2群から発生す
る諸収差を少なくし、変倍に伴なう収差変動を良好に補
正している。
In this embodiment, various aberrations generated from the second lens group are thereby reduced, and aberration fluctuations associated with zooming are corrected well.

【0033】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。数値実施例に
おいて最終の2つのレンズ面はフェースプレートやフィ
ルター等のガラスブロックである。
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are respectively from the object side in the i-th lens. The refractive index of glass and the Abbe number. In the numerical examples, the last two lens surfaces are glass blocks such as face plates and filters.

【0034】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
K,B,C,D,Eを各々非球面係数としたとき、
The aspherical shape has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis, a positive light traveling direction, and R as a paraxial radius of curvature,
When K, B, C, D and E are aspherical coefficients,

【0035】[0035]

【数1】 なる式で表わしている。 (数値実施例1) F= 1〜12.01 fNO= 1:1.8〜2.6 2ω= 64.3°〜 6.0° R 1= 9.584 D 1= 0.255 N 1=1.84666 ν 1= 23.8 R 2= 4.918 D 2= 1.139 N 2=1.60311 ν 2= 60.7 R 3= -43.318 D 3= 0.039 R 4= 4.096 D 4= 0.599 N 3=1.71300 ν 3= 53.8 R 5= 10.014 D 5=可変 R 6= 6.188 D 6= 0.117 N 4=1.88300 ν 4= 40.8 R 7= 1.209 D 7= 0.520 R 8= -2.220 D 8= 0.117 N 5=1.77250 ν 5= 49.6 R 9= 2.220 D 9= 0.150 R10= 2.646 D10= 0.353 N 6=1.84666 ν 6= 23.8 R11= -11.640 D11=可変 R12= (絞り) D12= 0.216 R13= 2.915 D13= 0.613 N 7=1.58313 ν 7= 59.4 R14= -8.355 D14= 0.029 R15= 2.695 D15= 0.458 N 8=1.63854 ν 8= 55.4 R16= -24.147 D16= 0.123 R17= 6.138 D17= 0.137 N 9=1.72825 ν 9= 28.5 R18= 1.714 D18=可変 R19= 2.550 D19= 0.117 N10=1.80518 ν10= 25.4 R20= 1.424 D20= 0.530 N11=1.51633 ν11= 64.2 R21= -14.796 D21= 0.029 R22= 5.917 D22= 0.235 N12=1.51633 ν12= 64.2 R23= -31.294 D23= 0.589 R24= ∞ D24= 0.982 N13=1.51633 ν13= 64.2 R25= ∞ 非球面係数 第13面 R= 2.915 K= 1.432 B=-2.274×10-2 C=-2.665×10-3 D=-2.484×10-4 E= 1.433×10-4 [Equation 1] It is expressed by (Numerical Example 1) F = 1 to 12.01 fNO = 1: 1.8 to 2.6 2ω = 64.3 ° to 6.0 ° R 1 = 9.584 D 1 = 0.255 N 1 = 1.84666 ν 1 = 23.8 R 2 = 4.918 D 2 = 1.139 N 2 = 1.60311 ν 2 = 60.7 R 3 = -43.318 D 3 = 0.039 R 4 = 4.096 D 4 = 0.599 N 3 = 1.71300 ν 3 = 53.8 R 5 = 10.014 D 5 = variable R 6 = 6.188 D 6 = 0.117 N 4 = 1.88300 ν 4 = 40.8 R 7 = 1.209 D 7 = 0.520 R 8 = -2.220 D 8 = 0.117 N 5 = 1.77250 ν 5 = 49.6 R 9 = 2.220 D 9 = 0.150 R10 = 2.646 D10 = 0.353 N 6 = 1.84666 ν 6 = 23.8 R11 = -11.640 D11 = Variable R12 = (Aperture) D12 = 0.216 R13 = 2.915 D13 = 0.613 N 7 = 1.58313 ν 7 = 59.4 R14 = -8.355 D14 = 0.029 R15 = 2.695 D15 = 0.458 N 8 = 1.63854 ν 8 = 55.4 R16 = -24.147 D16 = 0.123 R17 = 6.138 D17 = 0.137 N 9 = 1.72825 ν 9 = 28.5 R18 = 1.714 D18 = Variable R19 = 2.550 D19 = 0.117 N10 = 1.80518 ν10 = 25.4 R20 = 1.424 D20 = 0.530 N11 = 1.51633 ν11 = 64.2 R21 = -14.796 D21 = 0.029 R22 = 5.917 D22 = 0.235 N12 = 1.51633 ν12 = 64.2 R23 = -31.294 D23 = 0.589 R24 = ∞ D24 = 0.982 N13 = 1.51633 ν13 = 64.2 R25 = ∞ Aspherical surface No. 13 Surface R = 2.915 K = 1.432 B = -2.274 × 10 -2 C = -2.665 × 10 -3 D = -2.484 × 10 -4 E = 1.433 × 10 -4

【0036】[0036]

【表1】 (数値実施例2) F= 1〜12.00 fNO= 1:1.8〜2.5 2ω= 64.3°〜 6.0° R 1= 9.495 D 1= 0.255 N 1=1.84666 ν 1= 23.8 R 2= 4.990 D 2= 1.139 N 2=1.60311 ν 2= 60.7 R 3= -47.337 D 3= 0.039 R 4= 4.064 D 4= 0.599 N 3=1.71300 ν 3= 53.8 R 5= 9.696 D 5=可変 R 6= 6.607 D 6= 0.117 N 4=1.88300 ν 4= 40.8 R 7= 1.230 D 7= 0.520 R 8= -2.298 D 8= 0.117 N 5=1.77250 ν 5= 49.6 R 9= 2.298 D 9= 0.150 R10= 2.731 D10= 0.353 N 6=1.84666 ν 6= 23.8 R11= -13.327 D11=可変 R12= (絞り) D12= 0.216 R13= 2.709 D13= 0.637 N 7=1.58313 ν 7= 59.4 R14= -8.485 D14= 0.029 R15= 2.208 D15= 0.505 N 8=1.63854 ν 8= 55.4 R16= 159.833 D16= 0.123 R17= 5.431 D17= 0.137 N 9=1.74077 ν 9= 27.8 R18= 1.390 D18=可変 R19= 3.333 D19= 0.451 N10=1.51633 ν10= 64.2 R20= -2.532 D20= 0.117 N11=1.84666 ν11= 23.8 R21= -4.570 D21= 0.029 R22= 4.439 D22= 0.235 N12=1.51633 ν12= 64.2 R23= 15.125 D23= 0.589 R24= ∞ D24= 0.982 N13=1.51633 ν13= 64.2 R25= ∞ 非球面係数 第13面 R= 2.709 K= 1.185 B=-2.269×10-2 C=-3.263×10-3 D= 1.873×10-4 E=-1.852×10-4 [Table 1] (Numerical Example 2) F = 1 to 12.00 fNO = 1: 1.8 to 2.5 2 ω = 64.3 ° to 6.0 ° R 1 = 9.495 D 1 = 0.255 N 1 = 1.84666 ν 1 = 23.8 R 2 = 4.990 D 2 = 1.139 N 2 = 1.60311 ν 2 = 60.7 R 3 = -47.337 D 3 = 0.039 R 4 = 4.064 D 4 = 0.599 N 3 = 1.71300 ν 3 = 53.8 R 5 = 9.696 D 5 = variable R 6 = 6.607 D 6 = 0.117 N 4 = 1.88300 ν 4 = 40.8 R 7 = 1.230 D 7 = 0.520 R 8 = -2.298 D 8 = 0.117 N 5 = 1.77250 ν 5 = 49.6 R 9 = 2.298 D 9 = 0.150 R10 = 2.731 D10 = 0.353 N 6 = 1.84666 ν 6 = 23.8 R11 = -13.327 D11 = Variable R12 = (Aperture) D12 = 0.216 R13 = 2.709 D13 = 0.637 N 7 = 1.58313 ν 7 = 59.4 R14 = -8.485 D14 = 0.029 R15 = 2.208 D15 = 0.505 N 8 = 1.63854 ν 8 = 55.4 R16 = 159.833 D16 = 0.123 R17 = 5.431 D17 = 0.137 N 9 = 1.74077 ν 9 = 27.8 R18 = 1.390 D18 = Variable R19 = 3.333 D19 = 0.451 N10 = 1.51633 ν10 = 64.2 R20 = -2.532 D20 = 0.117 N11 = 1.84666 ν11 = 23.8 R21 = -4.570 D21 = 0.029 R22 = 4.439 D22 = 0.235 N12 = 1.51633 ν12 = 64.2 R23 = 15.125 D23 = 0.589 R24 = ∞ D24 = 0.982 N13 = 1.51633 ν13 = 64.2 R25 = ∞ Aspherical surface No. 13 R = 2.709 K = 1.185 B = -2.269 × 10 -2 C = -3.263 × 10 -3 D = 1.873 × 10 -4 E = -1.852 × 10 -4

【0037】[0037]

【表2】 (数値実施例3) F= 1〜12.00 fNO= 1:1.8〜2.5 2ω= 64.3°〜 6.0° R 1= 9.585 D 1= 0.255 N 1=1.84666 ν 1= 23.8 R 2= 5.063 D 2= 1.139 N 2=1.60311 ν 2= 60.7 R 3= -43.248 D 3= 0.039 R 4= 4.105 D 4= 0.599 N 3=1.71300 ν 3= 53.8 R 5= 9.849 D 5=可変 R 6= 7.587 D 6= 0.117 N 4=1.88300 ν 4= 40.8 R 7= 1.244 D 7= 0.520 R 8= -2.307 D 8= 0.117 N 5=1.77250 ν 5= 49.6 R 9= 2.307 D 9= 0.150 R10= 2.770 D10= 0.353 N 6=1.84666 ν 6= 23.8 R11= -11.822 D11=可変 R12= (絞り) D12= 0.216 R13= 3.405 D13= 0.520 N 7=1.58313 ν 7= 59.4 R14= -10.290 D14= 0.029 R15= 2.513 D15= 0.601 N 8=1.63854 ν 8= 55.4 R16= -5.548 D16= 0.123 R17= 7.406 D17= 0.137 N 9=1.76182 ν 9= 26.5 R18= 1.539 D18=可変 R19= 7.393 D19= 0.255 N10=1.51633 ν10= 64.2 R20= -10.413 D20= 0.029 R21= 3.628 D21= 0.117 N11=1.80518 ν11= 25.4 R22= 2.447 D22= 0.392 N12=1.51633 ν12= 64.2 R23= -12.050 D23= 0.589 R24= ∞ D24= 0.982 N13=1.51633 ν13= 64.2 R25= ∞ 非球面係数 第13面 R= 3.405 K= 2.650 B=-3.054×10-2 C=-4.716×10-3 D=-1.599×10-3 E= 8.430×10-4 [Table 2] (Numerical Example 3) F = 1 to 12.00 fNO = 1: 1.8 to 2.5 2ω = 64.3 ° to 6.0 ° R 1 = 9.585 D 1 = 0.255 N 1 = 1.84666 ν 1 = 23.8 R 2 = 5.063 D 2 = 1.139 N 2 = 1.60311 ν 2 = 60.7 R 3 = -43.248 D 3 = 0.039 R 4 = 4.105 D 4 = 0.599 N 3 = 1.71300 ν 3 = 53.8 R 5 = 9.849 D 5 = variable R 6 = 7.587 D 6 = 0.117 N 4 = 1.88300 ν 4 = 40.8 R 7 = 1.244 D 7 = 0.520 R 8 = -2.307 D 8 = 0.117 N 5 = 1.77250 ν 5 = 49.6 R 9 = 2.307 D 9 = 0.150 R10 = 2.770 D10 = 0.353 N 6 = 1.84666 ν 6 = 23.8 R11 = -11.822 D11 = Variable R12 = (Aperture) D12 = 0.216 R13 = 3.405 D13 = 0.520 N 7 = 1.58313 ν 7 = 59.4 R14 = -10.290 D14 = 0.029 R15 = 2.513 D15 = 0.601 N 8 = 1.63854 ν 8 = 55.4 R16 = -5.548 D16 = 0.123 R17 = 7.406 D17 = 0.137 N 9 = 1.76182 ν 9 = 26.5 R18 = 1.539 D18 = Variable R19 = 7.393 D19 = 0.255 N10 = 1.51633 ν10 = 64.2 R20 = -10.413 D20 = 0.029 R21 = 3.628 D21 = 0.117 N11 = 1.80518 ν11 = 25.4 R22 = 2.447 D22 = 0.392 N12 = 1.51633 ν12 = 64.2 R23 = -12.050 D23 = 0.589 R24 = ∞ D24 = 0.982 N13 = 1.51633 ν13 = 64.2 R25 = ∞ Aspheric surface No. 13 Surface R = 3.405 K = 2.650 B = -3.054 × 10 -2 C = -4.716 × 10 -3 D = -1.599 × 10 -3 E = 8.4 30 × 10 -4

【0038】[0038]

【表3】 (数値実施例4) F= 1〜11.99 fNO= 1:1.8〜2.5 2ω= 64.3°〜 6.0° R 1= 9.634 D 1= 0.255 N 1=1.84666 ν 1= 23.8 R 2= 4.960 D 2= 1.139 N 2=1.60311 ν 2= 60.7 R 3= -41.062 D 3= 0.039 R 4= 4.101 D 4= 0.599 N 3=1.71300 ν 3= 53.8 R 5= 9.967 D 5=可変 R 6= 6.071 D 6= 0.117 N 4=1.88300 ν 4= 40.8 R 7= 1.190 D 7= 0.520 R 8= -2.236 D 8= 0.117 N 5=1.77250 ν 5= 49.6 R 9= 2.236 D 9= 0.150 R10= 2.666 D10= 0.353 N 6=1.84666 ν 6= 23.8 R11= -11.097 D11=可変 R12= (絞り) D12= 0.216 R13= 3.563 D13= 0.512 N 7=1.58313 ν 7= 59.4 R14= -8.772 D14= 0.029 R15= 2.323 D15= 0.548 N 8=1.63854 ν 8= 55.4 R16= -9.751 D16= 0.123 R17= 7.535 D17= 0.137 N 9=1.76182 ν 9= 26.5 R18= 1.626 D18=可変 R19= 3.356 D19= 0.196 N10=1.51742 ν10= 52.4 R20= 9.402 D20= 0.196 R21= 6.363 D21= 0.550 N11=1.51742 ν11= 52.4 R22= -1.370 D22= 0.117 N12=1.80518 ν12= 25.4 R23= -2.593 D23= 0.589 R24= ∞ D24= 0.982 N13=1.51633 ν13= 64.2 R25= ∞ 非球面係数 第13面 R= 3.563 K= 2.468 B=-2.405×10-2 C=-1.233×10-4 D=-1.272×10-3 E=-2.165×10-4 [Table 3] (Numerical Example 4) F = 1 to 11.99 fNO = 1: 1.8 to 2.5 2ω = 64.3 ° to 6.0 ° R 1 = 9.634 D 1 = 0.255 N 1 = 1.84666 ν 1 = 23.8 R 2 = 4.960 D 2 = 1.139 N 2 = 1.60311 ν 2 = 60.7 R 3 = -41.062 D 3 = 0.039 R 4 = 4.101 D 4 = 0.599 N 3 = 1.71300 ν 3 = 53.8 R 5 = 9.967 D 5 = variable R 6 = 6.071 D 6 = 0.117 N 4 = 1.88300 ν 4 = 40.8 R 7 = 1.190 D 7 = 0.520 R 8 = -2.236 D 8 = 0.117 N 5 = 1.77250 ν 5 = 49.6 R 9 = 2.236 D 9 = 0.150 R10 = 2.666 D10 = 0.353 N 6 = 1.84666 ν 6 = 23.8 R11 = -11.097 D11 = Variable R12 = (Aperture) D12 = 0.216 R13 = 3.563 D13 = 0.512 N 7 = 1.58313 ν 7 = 59.4 R14 = -8.772 D14 = 0.029 R15 = 2.323 D15 = 0.548 N 8 = 1.63854 ν 8 = 55.4 R16 = -9.751 D16 = 0.123 R17 = 7.535 D17 = 0.137 N 9 = 1.76182 ν 9 = 26.5 R18 = 1.626 D18 = Variable R19 = 3.356 D19 = 0.196 N10 = 1.51742 ν10 = 52.4 R20 = 9.402 D20 = 0.196 R21 = 6.363 D21 = 0.550 N11 = 1.51742 ν11 = 52.4 R22 = -1.370 D22 = 0.117 N12 = 1.80518 ν12 = 25.4 R23 = -2.593 D23 = 0.589 R24 = ∞ D24 = 0.982 N13 = 1.51633 ν13 = 64.2 R25 = ∞ Aspheric coefficient No. 13 Surface R = 3.563 K = 2.468 B = -2.405 × 10 -2 C = -1.233 × 10 -4 D =- 1.272 × 10 -3 E = -2.165 × 10 -4

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】本発明によれば以上のようにレンズ構成
を設定することにより、リヤーフォーカス方式を採用し
つつ、Fナンバー1.8と大口径比でかつ変倍比12と
高変倍化を図る際、レンズ系全体の小型化を図りつつ広
角端から望遠端に至る全変倍範囲にわたり、又無限遠物
体から超至近物体に至る物体距離全般にわたり、良好な
る光学性能を有したリヤーフォーカス式のズームレンズ
を達成することができる。
According to the present invention, by setting the lens structure as described above, while adopting the rear focus system, the F number is 1.8 and the large aperture ratio is achieved, and the zoom ratio is 12 and the high zoom ratio is achieved. The rear focus has good optical performance over the entire zoom range from the wide-angle end to the telephoto end, and over the entire object distance from the infinity object to the ultra close object while reducing the overall size of the lens system. Formula zoom lens can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の数値実施例1のレンズ断面図FIG. 1 is a lens cross-sectional view of Numerical Example 1 of the present invention.

【図2】 本発明の数値実施例2のレンズ断面図FIG. 2 is a lens cross-sectional view of Numerical Example 2 of the present invention.

【図3】 本発明の数値実施例3のレンズ断面図FIG. 3 is a lens cross-sectional view of Numerical Example 3 of the present invention.

【図4】 本発明の数値実施例4のレンズ断面図FIG. 4 is a lens cross-sectional view of Numerical Example 4 of the present invention.

【図5】 本発明の数値実施例1の広角端の収差図FIG. 5 is an aberration diagram at the wide-angle end according to Numerical Example 1 of the present invention.

【図6】 本発明の数値実施例1の中間の収差図FIG. 6 is an intermediate aberration diagram of Numerical example 1 of the present invention.

【図7】 本発明の数値実施例1の望遠端の収差図FIG. 7 is an aberration diagram at a telephoto end according to Numerical Example 1 of the present invention.

【図8】 本発明の数値実施例2の広角端の収差図FIG. 8 is an aberration diagram at a wide-angle end according to Numerical Example 2 of the present invention.

【図9】 本発明の数値実施例2の中間の収差図FIG. 9 is an intermediate aberration diagram of Numerical example 2 of the present invention.

【図10】 本発明の数値実施例2の望遠端の収差図FIG. 10 is an aberration diagram at a telephoto end according to Numerical Example 2 of the present invention.

【図11】 本発明の数値実施例3の広角端の収差図FIG. 11 is an aberration diagram at a wide-angle end according to Numerical Example 3 of the present invention.

【図12】 本発明の数値実施例3の中間の収差図FIG. 12 is an intermediate aberration diagram of Numerical Example 3 of the present invention.

【図13】 本発明の数値実施例3の望遠端の収差図FIG. 13 is an aberration diagram at a telephoto end according to Numerical Example 3 of the present invention.

【図14】 本発明の数値実施例4の広角端の収差図FIG. 14 is an aberration diagram at the wide-angle end according to Numerical Example 4 of the present invention.

【図15】 本発明の数値実施例4の中間の収差図FIG. 15 is an intermediate aberration diagram of Numerical Example 4 of the present invention.

【図16】 本発明の数値実施例4の望遠端の収差図FIG. 16 is an aberration diagram at a telephoto end according to Numerical Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 SP 絞り d d線 g g線 ΔS サジタル像面 ΔM メリディオナル像面 L1 1st group L2 2nd group L3 3rd group L4 4th group SP Aperture d d line g g line ΔS Sagittal image surface ΔM Meridional image surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、負
の屈折力の第2群、正の屈折力の第3群、そして正の屈
折力の第4群の4つのレンズ群を有し、該第2群を像面
側へ移動させて広角端から望遠端への変倍を行い、変倍
に伴う像面変動を該第4群を移動させて補正すると共に
該第4群を移動させてフォーカスを行い、該第3群は物
体側に少なくとも1つの正レンズと最も像面側に像面側
に凹面を向けたメニスカス状の負レンズとを有し、該第
4群は1つの負レンズと2つの正レンズとを有してお
り、該第3群と第4群の焦点距離を各々f3,f4とす
るとき 0.73<f3/f4<1.00 なる条件を満足することを特徴とするリヤーフォーカス
式のズームレンズ。
1. Four lens groups, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. And moving the second lens group toward the image plane side to perform zooming from the wide-angle end to the telephoto end, and moving the fourth lens group to correct the image plane variation due to zooming and The third group includes at least one positive lens on the object side and a meniscus-shaped negative lens with a concave surface facing the image side closest to the image side, and the fourth group Has one negative lens and two positive lenses. When the focal lengths of the third group and the fourth group are f3 and f4, 0.73 <f3 / f4 <1.00 A rear-focus type zoom lens characterized by satisfaction.
【請求項2】 前記第2群は物体側より順に物体側に凸
面を向けたメニスカス状の負の第21レンズ、両レンズ
面が凹面の負の第22レンズ、そして像面側に比べ物体
側に強い正の屈折力の凸面を向けた正の第23レンズの
独立した3つのレンズより成っていることを特徴とする
請求項1のリヤーフォーカス式のズームレンズ。
2. The second lens unit is a negative meniscus lens having a convex surface directed toward the object side in order from the object side, a negative second lens having both concave lens surfaces, and a lens element facing the object side as compared to the image side. The rear-focus type zoom lens according to claim 1, wherein the rear-focus type zoom lens comprises three independent lenses of a positive 23rd lens having a convex surface having a strong positive refractive power.
JP6070003A 1994-03-14 1994-03-14 Rear focus zoom lens Expired - Fee Related JP3064797B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6070003A JP3064797B2 (en) 1994-03-14 1994-03-14 Rear focus zoom lens
US08/399,513 US5612825A (en) 1994-03-14 1995-03-07 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070003A JP3064797B2 (en) 1994-03-14 1994-03-14 Rear focus zoom lens

Publications (2)

Publication Number Publication Date
JPH07253543A true JPH07253543A (en) 1995-10-03
JP3064797B2 JP3064797B2 (en) 2000-07-12

Family

ID=13419004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070003A Expired - Fee Related JP3064797B2 (en) 1994-03-14 1994-03-14 Rear focus zoom lens

Country Status (1)

Country Link
JP (1) JP3064797B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227239A (en) * 2010-04-19 2011-11-10 Canon Inc Zoom lens and imaging device having the same
CN110119023A (en) * 2019-06-16 2019-08-13 福建福光股份有限公司 6000000 high-resolution zoom camera lenses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011227239A (en) * 2010-04-19 2011-11-10 Canon Inc Zoom lens and imaging device having the same
CN110119023A (en) * 2019-06-16 2019-08-13 福建福光股份有限公司 6000000 high-resolution zoom camera lenses

Also Published As

Publication number Publication date
JP3064797B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
JP3109342B2 (en) Rear focus zoom lens
JP3352240B2 (en) High zoom ratio zoom lens
JP2988164B2 (en) Rear focus zoom lens
JP5072447B2 (en) Zoom lens and imaging apparatus having the same
JP2876823B2 (en) Rear focus zoom lens
JPH05323194A (en) Rear focus type zoom lens
JPH08201695A (en) Rear focus type zoom lens
US5612825A (en) Zoom lens
JP3363688B2 (en) Zoom lens
JP4717399B2 (en) Zoom lens and imaging apparatus having the same
JP3387687B2 (en) Zoom lens
JPH04358108A (en) Rear focus type zoom lens
JPH08304700A (en) Zoom lens of rear focusing system
JP2001091830A (en) Zoom lens
JP4865218B2 (en) Zoom lens and imaging apparatus having the same
JPH06337353A (en) Rear-focus system zoom lens
JP3063459B2 (en) Rear focus type zoom lens and camera using the same
JPH0593862A (en) Rear focus type zoom lens
JP2623835B2 (en) Rear focus zoom lens
JP2623836B2 (en) Rear focus zoom lens
JPH07151972A (en) Rear focus type zoom lens
JP3320396B2 (en) Rear focus type zoom lens and camera using the same
JP4593716B2 (en) Rear focus zoom lens and optical apparatus using the same
JP3019664B2 (en) Rear focus zoom lens
JPH05288991A (en) Rear focus type zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees