JPH07249890A - Conductive material and its manufacture - Google Patents

Conductive material and its manufacture

Info

Publication number
JPH07249890A
JPH07249890A JP3728294A JP3728294A JPH07249890A JP H07249890 A JPH07249890 A JP H07249890A JP 3728294 A JP3728294 A JP 3728294A JP 3728294 A JP3728294 A JP 3728294A JP H07249890 A JPH07249890 A JP H07249890A
Authority
JP
Japan
Prior art keywords
conductive
base material
conductive material
tank
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3728294A
Other languages
Japanese (ja)
Other versions
JP3571364B2 (en
Inventor
Koji Kitagawa
弘二 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP03728294A priority Critical patent/JP3571364B2/en
Publication of JPH07249890A publication Critical patent/JPH07249890A/en
Application granted granted Critical
Publication of JP3571364B2 publication Critical patent/JP3571364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To provide a conductive material which can preferably shield an electromagnetic wave and has higher strength than that of prior art and a method for its manufacturing. CONSTITUTION:An electromagnetic shielding material 1 is formed of a base material 3 made of silicone rubber foam having numerous open-cells, and fine conductive particles 5 which are introduced to the numerous open-cells contained in the material 3. The particles 5 are fine particles of copper having a mean size of about 0.8mum and coated with nickel. The particles 5 are dispersed in liquid, and pressure-impregnated in the material 3 to be filled in the open-cells of the material 3. Accordingly, the particles 5 are filled in the state in contact with the open-cells of the material 3, and the entire material 1 exhibits conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器への電磁波の
侵入又は電子機器からの電磁波の漏出等を防止する電磁
波シールド材として用いる導電性材料とその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive material used as an electromagnetic wave shield material for preventing an electromagnetic wave from entering an electronic device or leaking an electromagnetic wave from an electronic device and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、合成樹脂の発泡体に導電性を
付与してなる導電性材料が知られ、シート状,板状,あ
るいはブロック状など種々の形状にされて、電子機器へ
の電磁波の侵入や、電子機器からの電磁波の漏出等を防
止する電磁波シールド材として利用されている。この導
電性材料は、発泡剤を使って合成樹脂を発泡させる際
に、合成樹脂中あるいは発泡剤中にあらかじめ導電性物
質を添加して製造され、合成樹脂発泡体の中に導電性物
質が分散した状態になっているものであった。
2. Description of the Related Art Conventionally, a conductive material made of synthetic resin foam having conductivity has been known, which is formed into various shapes such as a sheet shape, a plate shape, or a block shape, so that an electromagnetic wave to an electronic device can be obtained. It is used as an electromagnetic wave shielding material that prevents intrusion of electromagnetic waves and leakage of electromagnetic waves from electronic devices. This conductive material is manufactured by adding a conductive substance to the synthetic resin or the foaming agent in advance when the synthetic resin is foamed using the foaming agent, and the conductive substance is dispersed in the synthetic resin foam. It was in a state where it did.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術によれば、導電性物質が混入されているため、例えば
導電性物質が部分的に集中していたりすると、ベースと
なる合成樹脂発泡体が脆くなり、十分な強度が確保でき
ない場合があった。このため、上記導電性材料を電磁波
シールド材として成形する際には、薄いシート状にした
り、細いネック部を設けたりすると、電磁波シールド材
が破損して電磁波を遮断する性能が損なわれる恐れがあ
った。
However, according to the prior art, since the conductive substance is mixed, for example, if the conductive substance is partially concentrated, the synthetic resin foam as the base becomes brittle. In some cases, sufficient strength could not be secured. Therefore, when the conductive material is molded as an electromagnetic wave shielding material, if it is formed into a thin sheet or a thin neck portion is provided, the electromagnetic wave shielding material may be damaged and the performance of blocking electromagnetic waves may be impaired. It was

【0004】そこで本発明は、電磁波を良好に遮断で
き、従来よりも強度がある導電性材料と、その製造方法
を提供することを目的とする。
Therefore, an object of the present invention is to provide a conductive material which can shield electromagnetic waves satisfactorily and is stronger than conventional ones, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段及び作用】上述の目的を達
成するためになされた本発明は、電子機器への電磁波の
侵入又は電子機器からの電磁波の漏出等を防止する電磁
波シールド材として用いる導電性材料であって、流体が
含浸し得る無数の隙間を有するベース材に導電性物質を
含浸させてなることを特徴とする。
Means for Solving the Problems The present invention, which has been made to achieve the above-mentioned object, is a conductive material used as an electromagnetic wave shield material for preventing the intrusion of electromagnetic waves into electronic equipment or the leakage of electromagnetic waves from electronic equipment. It is characterized in that a conductive material is impregnated with a conductive material in a base material having innumerable gaps that can be impregnated with a fluid.

【0006】本発明の導電性材料によれば、ベース材が
有する無数の隙間に導電性物質が含浸して導電性を備え
た材料となる。このとき、導電性物質はベース材の隙間
に含浸するだけなので、ベース材自体の強度は維持され
る。ここで、ベース材は、流体が含浸し得る無数の隙間
を有するものであれば何でもよい。具体的には、ポリウ
レタン,ポリエチレン,ポリプロピレン,シリコンラバ
ー等の合成樹脂を発泡させた合成樹脂発泡体(ポリマー
フォーム)、コルク,バルサ,その他の木材、フェル
ト,不織布等の繊維質の成形体、発泡セラミック、合成
及び天然ゴムのフォームなどを挙げることができる。ま
た、導電性物質としては、金,銀,銅,アルミ等の導電
性の高い金属の微粒子、ガラス等の非導電性の微粒子に
メッキ,蒸着等の方法にて金属コーティングを施して導
電性を付与した微粒子、カーボン粉末,炭素繊維をカッ
トしたもの,及びこれに金属メッキを施したもの、ポリ
アニリン,ポリピロール,ポリアセチレン,ポリアセン
等の導電性高分子化合物の粉末等を挙げることができ
る。
According to the conductive material of the present invention, the innumerable gaps of the base material are impregnated with a conductive substance to be a material having conductivity. At this time, since the conductive substance only impregnates the gaps of the base material, the strength of the base material itself is maintained. Here, the base material may be any as long as it has innumerable gaps that can be impregnated with the fluid. Specifically, synthetic resin foam (polymer foam) obtained by foaming synthetic resin such as polyurethane, polyethylene, polypropylene, silicon rubber, fibrous moldings such as cork, balsa, other wood, felt, and non-woven fabric, foaming. Mention may be made of ceramics, synthetic and natural rubber foams and the like. As the conductive material, fine particles of highly conductive metal such as gold, silver, copper, and aluminum, and non-conductive fine particles such as glass are coated with a metal by a method such as plating or vapor deposition to make the conductive material conductive. Examples thereof include added fine particles, carbon powder, carbon fiber cut material, metal plated material, and conductive polymer compound powder such as polyaniline, polypyrrole, polyacetylene, and polyacene.

【0007】金属微粒子等の固体微粒子をベース材に含
浸させるには、例えば、分散剤を使用して金属微粒子を
分散させた溶液や高導電性高分子ポリアニリン等をN−
メチル−2−ピロリドン等の溶媒に溶解した溶液を作
り、その溶液をベース材に含浸させればよい。含浸にあ
たっては、単に浸漬するだけでも効果は出るが、好まし
くは、ベース材を真空中に置いて含浸すべき溶液を滴下
して溶液を吸収させ、ついで1〜10kg/cm2 の圧
力をかけて溶液を十分に浸透させた後、常圧に戻して溶
媒を除去して乾燥する。
In order to impregnate the base material with solid fine particles such as metal fine particles, for example, a solution in which the metal fine particles are dispersed using a dispersant, a highly conductive polymer polyaniline or the like is added to the N-
A base material may be impregnated with a solution prepared by dissolving it in a solvent such as methyl-2-pyrrolidone. In the impregnation, the effect is obtained by simply immersing, but preferably, the base material is placed in a vacuum, the solution to be impregnated is dropped to absorb the solution, and then a pressure of 1 to 10 kg / cm 2 is applied. After sufficiently permeating the solution, the pressure is returned to normal pressure to remove the solvent, and the solution is dried.

【0008】ところで、上記導電性材料を電磁波シール
ド材として利用する場合には、電磁波の遮断性能が良好
であることはもちろん、種々の形状に加工することが容
易で軽量なものが望ましい。これらの条件を満たすに
は、特に、請求項2記載の通り、前記ベース材が、連続
気泡を有する合成樹脂発泡体からなるとよい。
By the way, when the conductive material is used as an electromagnetic wave shielding material, it is desirable that the material has good electromagnetic wave shielding performance and is easy to be processed into various shapes and is lightweight. In order to satisfy these conditions, it is particularly preferable that the base material is made of a synthetic resin foam having open cells as described in claim 2.

【0009】この導電性材料によれば、ベース材は軽量
で、所望の形状に加工しやすい上に、ベース材の連続気
泡に導電性物質が含浸しているので、導電性物質が全体
的に連続した状態になり、電磁波を良好に遮断すること
ができる。合成樹脂発泡体としては、先にも示した通
り、ポリウレタン,ポリエチレン,ポリプロピレン,合
成ゴム,天然ゴム,シリコンラバー等のフォームが挙げ
られる。これらの中でも、シリコンラバーフォームは、
耐熱性と弾性回復力が良好であるという特徴があるの
で、ガスケット等として利用するには特に望ましい。ま
た、ポリエチレンフォームは薄くしても強靱なので、シ
ート状に成形して利用するには好適である。
According to this conductive material, the base material is light in weight and can be easily processed into a desired shape. Moreover, since the conductive material is impregnated into the open cells of the base material, the conductive material is entirely dispersed. It becomes a continuous state and can block electromagnetic waves satisfactorily. Examples of the synthetic resin foam include foams such as polyurethane, polyethylene, polypropylene, synthetic rubber, natural rubber, and silicone rubber, as described above. Among these, silicone rubber foam is
It is particularly desirable for use as a gasket or the like because it has the characteristics of good heat resistance and elastic recovery. Moreover, since polyethylene foam is tough even if it is thin, it is suitable to be used after being molded into a sheet shape.

【0010】ところで、ウレタンフォーム,ラバーフォ
ーム等の合成樹脂発泡体は、無数の気泡を含んでいるこ
とにより、クッション性、断熱性、防音性、吸湿性等を
備えている、あるいは軽量であるといった長所がある。
しかし、本発明においては、合成樹脂発泡体の気泡に導
電性物質を含浸させるため、気泡に導電性物質が完全に
詰まってしまうと、上述の種々の長所が損なわれる場合
も考えられる。
By the way, synthetic resin foams such as urethane foam and rubber foam have cushioning properties, heat insulating properties, soundproofing properties, moisture absorbing properties, etc., or are lightweight because they contain numerous bubbles. There are advantages.
However, in the present invention, since the bubbles of the synthetic resin foam are impregnated with the conductive substance, if the bubbles are completely clogged with the conductive substance, various advantages described above may be impaired.

【0011】そこで、請求項3に記載の通り、前記ベー
ス材が、独立気泡をも有する合成樹脂発泡体からなると
よい。この請求項3記載の導電性材料によれば、独立気
泡には導電性物質が含浸せず、ベース材のクッション
性、断熱性、防音性が損なわれない。また、気泡が残っ
ているので軽量でもある。したがって、軽量で、緩衝
材、防音材、断熱材等としての機能をも兼ね備えた電磁
波シールド材として利用でき、その応用範囲が広がる。
なお、独立気泡と連続気泡との両方を有する合成樹脂発
泡体は、例えば、発泡の条件を変えることによって独立
/連続の比率を変化させたり、2種の発泡材を使用する
ことによって製造することができる。
Therefore, as described in claim 3, it is preferable that the base material is made of a synthetic resin foam which also has closed cells. According to the conductive material of the third aspect, the closed cells are not impregnated with the conductive substance, and the cushioning property, heat insulating property and soundproofing property of the base material are not impaired. It is also lightweight because it contains air bubbles. Therefore, it can be used as an electromagnetic wave shielding material which is lightweight and also has a function as a cushioning material, a soundproofing material, a heat insulating material, etc., and its application range is expanded.
A synthetic resin foam having both closed cells and open cells may be manufactured by changing the closed / open ratio by changing the foaming conditions or by using two types of foam materials. You can

【0012】更に、請求項4記載の通り、前記ベース材
の表層に前記導電性物質からなる導電層が形成されてい
るとよい。この請求項4記載の導電性材料によれば、ベ
ース材の表層において導電性物質が導電層を形成してい
るので、より電磁波を遮断する性能が向上する。ここ
で、導電層とは、ベース材の表面を覆う導電性物質によ
る薄い被膜であっても、ベース材の表層部に導電性物質
を吸着させて形成した厚みのある層であっても良い。被
膜を形成するには、例えば、ポリアニリンをN−メチル
−2−ピロリドンに溶解した希薄溶液を作り、この溶液
にて表面をコーティングする方法にて形成できる。ま
た、表層部分に連通する気泡を有する発泡体にてベース
材の表層を構成して導電性物質を吸着させると、厚みの
ある導電層を形成することもできる。
Further, as described in claim 4, it is preferable that a conductive layer made of the conductive material is formed on a surface layer of the base material. According to the conductive material of the fourth aspect, since the conductive material forms the conductive layer in the surface layer of the base material, the performance of blocking electromagnetic waves is further improved. Here, the conductive layer may be a thin film made of a conductive material that covers the surface of the base material or a thick layer formed by adsorbing the conductive material on the surface layer of the base material. The film can be formed by, for example, preparing a dilute solution of polyaniline in N-methyl-2-pyrrolidone and coating the surface with this solution. Further, a thick conductive layer can be formed by forming a surface layer of the base material with a foamed material having bubbles communicating with the surface layer portion and adsorbing a conductive substance.

【0013】以上説明した導電性材料は、請求項5記載
の通り、前記ベース材をタンク内に収容して密封し、次
に、該タンク内を減圧して低圧状態にすると共に、前記
導電性物質を含有する処理液を当該タンク内に供給して
前記ベース材を浸漬し、次に、該タンク内を加圧して高
圧状態にして前記導電性物質を前記ベース材に含浸させ
る方法にて製造できる。
According to a fifth aspect of the present invention, the conductive material described above accommodates and seals the base material in a tank, and then depressurizes the inside of the tank to a low pressure state. Manufactured by a method in which a treatment liquid containing a substance is supplied into the tank to immerse the base material, and then the inside of the tank is pressurized to a high pressure state to impregnate the base material with the conductive material. it can.

【0014】ここで、低圧状態は、導電性物質が含浸す
べきベース材の隙間や気泡に含まれる気体成分(通常は
空気)が十分に抜ける程度の圧力で、真空状態に近いほ
ど望ましい。また、高圧状態は、約1〜10kg/cm
2 程度の圧力がかかればよい。
Here, the low-pressure state is a pressure at which the gas component (usually air) contained in the gaps and bubbles of the base material to be impregnated with the conductive substance sufficiently escapes, and the closer to the vacuum state, the more desirable. Moreover, the high pressure state is about 1 to 10 kg / cm.
A pressure of about 2 should be applied.

【0015】この請求項5記載の導電性材料の製造方法
によれば、導電性物質が容易には含浸しないような微細
な隙間や気泡しかないベース材であっても、隙間や気泡
から予め気体成分を抜いておき、その上で処理液に高圧
をかけて含浸させるので、導電性物質が十分に深層まで
浸透する。
According to the method for producing a conductive material according to the fifth aspect, even if the base material has only minute gaps or bubbles that are not easily impregnated with the conductive substance, gas is preliminarily discharged from the gaps or bubbles. Since the components are removed and the treatment liquid is impregnated thereon by applying high pressure, the conductive substance penetrates sufficiently deeply.

【0016】[0016]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。まず、第1実施例について説明する。電磁波シー
ルド材1は、図1に示すように、シリコンラバーフォー
ムからなる板状のベース材3と、ベース材3に含有され
た無数の気泡の内部に入り込んだ導電性微粒子5とから
構成される。ベース材3が有する無数の気泡は、近隣の
気泡が互いに連通するいわゆる連続気泡である。また、
導電性微粒子5は、粒子の平均直径が約0.8μmのニ
ッケルコートした銅の微粒子である。この導電性微粒子
5は、ベース材3の連続する気泡の内部において互いに
接触した状態で充填され、電磁波シールド材1全体が導
電性を示す。ここで、連続気泡を有するシリコンラバー
フォームは、シリコンガムに発泡材と過酸化物系の加硫
剤とを加え、よく練った後でプレス成型(170℃数
分)を行い、更に200℃で4時間二次加硫を行うこと
によって製造してある。
Embodiments of the present invention will now be described with reference to the drawings. First, the first embodiment will be described. As shown in FIG. 1, the electromagnetic wave shielding material 1 is composed of a plate-shaped base material 3 made of silicon rubber foam, and conductive fine particles 5 that have entered the innumerable bubbles contained in the base material 3. . The countless bubbles that the base material 3 has are so-called continuous bubbles in which neighboring bubbles communicate with each other. Also,
The conductive fine particles 5 are nickel-coated copper fine particles having an average diameter of about 0.8 μm. The conductive fine particles 5 are filled inside the continuous bubbles of the base material 3 in a state of being in contact with each other, and the electromagnetic wave shielding material 1 as a whole exhibits conductivity. Here, the silicone rubber foam having open cells is obtained by adding a foaming material and a peroxide-based vulcanizing agent to silicon gum, kneading them well, and then press-molding (170 ° C several minutes), and further at 200 ° C. It is manufactured by carrying out secondary vulcanization for 4 hours.

【0017】以上説明した電磁波シールド材1によれ
ば、導電性微粒子5はベース材3の気泡に入り込んでい
るだけで、ベース材3自体の強度は低下していないの
で、細いネック部ができるような形状にカットして使用
しても十分な強度が維持される。特に、ベース材3に、
耐熱性,耐寒性に優れ、弾性回復がきわめて良好なシリ
コンラバーフォームを用いているので、コンピュータや
プリンタ等のOA機器をはじめ、ノイズを発生する機器
の筐体の隙間に細い形状に加工して装着するのには好適
である。
According to the electromagnetic wave shielding material 1 described above, since the conductive fine particles 5 are only entrapped in the bubbles of the base material 3 and the strength of the base material 3 itself is not lowered, a thin neck portion can be formed. Sufficient strength is maintained even when used after being cut into various shapes. Especially for the base material 3,
Silicone rubber foam, which has excellent heat and cold resistance and extremely good elastic recovery, is used, so it can be processed into a thin shape in the gap of the case of OA equipment such as computers and printers, and equipment that generates noise. Suitable for mounting.

【0018】次に、上述の電磁波シールド材1を製造す
るのに用いる加圧含浸装置10について説明する。加圧
含浸装置10は、図2に示すように、導電性微粒子5を
分散させた処理液Lを大量に蓄える処理液タンク11
と、処理液タンク11内の処理液Lを撹拌する撹拌機1
2と、処理液タンク11から供給された処理液Lを一定
量だけ蓄えることができる補助タンク13と、補助タン
ク13内の処理液Lを撹拌する撹拌機14と、内部にベ
ース材3が置かれて、補助タンク13から処理液Lが供
給される処理タンク15と、処理タンク15内に残った
処理液Lを回収するための回収タンク17と、処理タン
ク15の内部を高圧状態にするための加圧ポンプ19
と、補助タンク13及び処理タンク15の内部を低圧状
態(真空状態)にするための減圧ポンプ21と、各タン
ク11,13,15,17、及び各ポンプ19,21を
結ぶ配管23と、配管23の各所に設けられたバルブ2
5a〜25hとを備えてなる。なお、この加圧含浸装置
10で用いられる処理液Lは、最も一般的には、水に界
面活性剤を添加した溶媒を使用すれば良く、この中に上
記導電性微粒子5を分散させてある。
Next, the pressure impregnation apparatus 10 used for manufacturing the above-mentioned electromagnetic wave shielding material 1 will be described. As shown in FIG. 2, the pressure impregnation device 10 includes a treatment liquid tank 11 that stores a large amount of the treatment liquid L in which the conductive fine particles 5 are dispersed.
And a stirrer 1 for stirring the processing liquid L in the processing liquid tank 11.
2, an auxiliary tank 13 that can store a certain amount of the processing liquid L supplied from the processing liquid tank 11, an agitator 14 that agitates the processing liquid L in the auxiliary tank 13, and a base material 3 placed inside. The processing tank 15 is supplied with the processing solution L from the auxiliary tank 13, the recovery tank 17 for recovering the processing solution L remaining in the processing tank 15, and the inside of the processing tank 15 are in a high pressure state. Pressurizing pump 19
And a decompression pump 21 for bringing the insides of the auxiliary tank 13 and the processing tank 15 into a low pressure state (vacuum state), the tanks 11, 13, 15, 17 and the pipe 23 connecting the pumps 19 and 21, Valves 2 provided at various places in 23
5a to 25h. It should be noted that the treatment liquid L used in the pressure impregnation apparatus 10 is most generally a solvent in which a surfactant is added to water, and the conductive fine particles 5 are dispersed therein. .

【0019】次に、加圧含浸装置10による電磁波シー
ルド材1を製造する手順について説明する。まず初め
に、バルブ25dを開いて補助タンク13内を軽く減圧
する。そして、バルブ25dを閉じた上でバルブ25
h,ついでバルブ25gを開き、処理液タンク11内の
処理液Lを補助タンク13へと導く。そして、必要な量
の処理液Lが補助タンク13内に供給されたら、バルブ
25g,ついでバルブ25hを閉じた上でバルブ25f
を開き、補助タンク13内を大気圧に戻す。
Next, a procedure for manufacturing the electromagnetic wave shielding material 1 by the pressure impregnation device 10 will be described. First, the valve 25d is opened to lightly decompress the inside of the auxiliary tank 13. Then, after closing the valve 25d, the valve 25
h, and then the valve 25g is opened to introduce the processing liquid L in the processing liquid tank 11 to the auxiliary tank 13. Then, when the necessary amount of the processing liquid L is supplied into the auxiliary tank 13, the valve 25g and then the valve 25h are closed and the valve 25f is closed.
To open the inside of the auxiliary tank 13 to atmospheric pressure.

【0020】次に、バルブ25bを開いて処理タンク1
5内を減圧する。このとき、処理タンク15内の空気と
共に、ベース材3の気泡に入り込んでいる空気も抜けて
ゆく。そして、処理タンク15内が十分に低圧状態にな
ったら、バルブ25bを閉じた上でバルブ25aを徐々
に開く。この結果、補助タンク13内の処理液Lが処理
タンク15へ少しずつ導かれ、処理液Lがベース材3の
上に滴下する。ベース材3が処理液Lに十分に浸漬した
ら、バルブ25aを閉じて処理液Lの滴下を止め、この
状態のまましばらく放置する。この間に、処理液Lはベ
ース材3に徐々に含浸する。
Next, the valve 25b is opened to open the processing tank 1.
The inside of 5 is decompressed. At this time, along with the air in the processing tank 15, the air that has entered the bubbles of the base material 3 also escapes. When the inside of the processing tank 15 is sufficiently low in pressure, the valve 25b is closed and then the valve 25a is gradually opened. As a result, the treatment liquid L in the auxiliary tank 13 is gradually introduced into the treatment tank 15, and the treatment liquid L is dripped on the base material 3. When the base material 3 is sufficiently immersed in the treatment liquid L, the valve 25a is closed to stop the dropping of the treatment liquid L, and the state is left for a while in this state. During this time, the treatment liquid L gradually impregnates the base material 3.

【0021】次に、バルブ25cを開いて処理タンク1
5内を加圧する。この加圧により、処理液Lは更にベー
ス材3の深層へと含浸する。そして、処理タンク15内
が十分に高圧状態になったら、バルブ25cを閉じて1
5〜60分放置する。しかるのち、バルブ25eを徐々
に開く。この結果、処理タンク15内に残っていた処理
液Lが回収タンク17へ放出される。
Next, the valve 25c is opened to open the processing tank 1.
The inside of 5 is pressurized. By this pressurization, the treatment liquid L is further impregnated into the deep layer of the base material 3. Then, when the pressure inside the processing tank 15 becomes sufficiently high, the valve 25c is closed to
Leave for 5-60 minutes. Then, the valve 25e is gradually opened. As a result, the processing liquid L remaining in the processing tank 15 is discharged to the recovery tank 17.

【0022】そして、最後にバルブ25eを閉じ、処理
タンク15からベース材3を取り出して乾燥させる。こ
のベース材3の有する連続気泡には、処理液Lとして含
浸した導電性微粒子5が入り込んでいるので、溶媒成分
が乾燥するとベース材3の気泡内部には導電性微粒子5
だけが充填された状態になる。この結果、このベース材
3は導電性を示し、電磁波シールド材1として使用でき
る。
Finally, the valve 25e is closed and the base material 3 is taken out from the processing tank 15 and dried. Since the conductive fine particles 5 impregnated as the treatment liquid L are contained in the open cells of the base material 3, when the solvent component is dried, the conductive fine particles 5 are contained inside the bubbles of the base material 3.
Only will be filled. As a result, the base material 3 exhibits conductivity and can be used as the electromagnetic wave shield material 1.

【0023】このように、この加圧含浸装置10を用い
れば、導電性微粒子5が十分に含浸し、良好な電磁波遮
蔽性能を有する電磁波シールド材1を製造することがで
きる。次に、第2実施例について説明する。
As described above, the use of the pressure impregnation device 10 makes it possible to manufacture the electromagnetic wave shielding material 1 which is sufficiently impregnated with the conductive fine particles 5 and has a good electromagnetic wave shielding performance. Next, a second embodiment will be described.

【0024】電磁波シールド材31は、図3に示すよう
に、連続気泡を有するポリエチレンフォームからなるシ
ート状のベース材33と、ベース材33に含有された無
数の気泡の内部に入り込んだカーボン粉末35とから構
成される。カーボン粉末35が、ベース材33の連続す
る気泡の内部において互いに接触した状態で充填されて
いるので、電磁波シールド材31全体が導電性を示す。
The electromagnetic wave shielding material 31, as shown in FIG. 3, is a sheet-shaped base material 33 made of polyethylene foam having open cells, and carbon powder 35 which has entered into the innumerable bubbles contained in the base material 33. Composed of and. Since the carbon powder 35 is filled inside the continuous bubbles of the base material 33 in a state of being in contact with each other, the electromagnetic wave shielding material 31 as a whole exhibits conductivity.

【0025】このように構成した電磁波シールド材31
は、ベース材33が強靱なので、例えば、静電障害を防
止するためのテーブルマット、あるいはこれを打ち抜い
て電磁波シールド用のパッキンとして通信機器等に使う
のに好適である。次に第3実施例について説明する。
The electromagnetic wave shielding material 31 thus constructed
Since the base material 33 is tough, it is suitable for use in a communication device or the like, for example, as a table mat for preventing electrostatic damage, or as a packing for EMI shielding by punching out the table mat. Next, a third embodiment will be described.

【0026】電磁波シールド材41は、図4に示すよう
に、連続気泡層Aと独立気泡層Bとの2層を有するベー
ス材43と、ベース材43の連続気泡層側のほぼ全部の
気泡、及びベース材43の表層部の気泡に含浸・充填さ
れたポリアニリン微粒子45とから構成されている。こ
のベース材43は、2色成型機を使用して連続気泡の発
泡体と独立気泡の発泡体とを押出成型し、明確な境界の
無い2層の発泡体としたもので、全体では約50%の独
立気泡と約50%の連続気泡とを有している。
As shown in FIG. 4, the electromagnetic wave shielding material 41 includes a base material 43 having two layers of an open cell layer A and a closed cell layer B, and almost all air bubbles on the open cell layer side of the base material 43. And polyaniline fine particles 45 impregnated / filled with bubbles in the surface layer of the base material 43. The base material 43 is a two-layered foam body having no clear boundaries by extrusion-molding an open-cell foam body and a closed-cell foam body using a two-color molding machine. % Closed cells and about 50% open cells.

【0027】上記加圧含浸装置10の内部に、このベー
ス材43を置いて処理を行うと、ポリアニリン微粒子4
5はベース材43の表面に連通する気泡にのみ含浸・充
填され、ベース材43の独立気泡は気泡47としてその
まま残される。したがって、ベース材43のクッション
性、断熱性、防音性等が損なわれず、軽量にもなる。
When the base material 43 is placed inside the pressure impregnation apparatus 10 for processing, polyaniline fine particles 4 are obtained.
5 is impregnated and filled only in the bubbles communicating with the surface of the base material 43, and the independent bubbles of the base material 43 are left as they are as the bubbles 47. Therefore, the cushioning property, the heat insulating property, the soundproofing property, and the like of the base material 43 are not impaired, and the base material 43 is also lightweight.

【0028】この電磁波シールド材41の場合、完全に
連続気泡となっているベース材を用いるのに比べると、
内部に充填されるポリアニリン微粒子の量が減るが、ベ
ース材43の表層の気泡には、独立気泡層Bにおいても
ポリアニリン微粒子45が吸着され、表層全体に導電層
を形成しているので電磁波は良好に遮蔽される。なお、
この表層のポリアニリン微粒子45は、加圧含浸装置1
0において処理液としてポリアニリン微粒子をN−メチ
ル−2−ピロリドンに溶解した溶液をベース材43に含
浸させる際に、同時にベース材43全体の表層に吸着さ
れる。更に電磁波シールド材41を加圧含浸装置10か
ら取り出して、更にコーティングだけを行う行程を追加
すれば、より一層効果が高い。
In the case of this electromagnetic wave shielding material 41, compared with the case of using a base material which is completely continuous cells,
Although the amount of polyaniline fine particles filled inside is reduced, the polyaniline fine particles 45 are also adsorbed in the closed cell layer B in the bubbles on the surface layer of the base material 43, and a conductive layer is formed on the entire surface layer, so that electromagnetic waves are good. To be shielded by. In addition,
The polyaniline fine particles 45 on the surface layer are the pressure impregnation apparatus 1
When the base material 43 is impregnated with a solution of polyaniline fine particles dissolved in N-methyl-2-pyrrolidone as a treatment liquid at 0, it is simultaneously adsorbed on the entire surface layer of the base material 43. Further, if the electromagnetic wave shielding material 41 is taken out from the pressure impregnation device 10 and a step of only coating is added, the effect is further enhanced.

【0029】以上本発明の実施例を説明したが、本発明
はこれに限定されず、本発明の要旨を逸脱しない範囲内
の種々なる態様を採用することができる。例えば、実施
例では、導電性物質だけをベース材の隙間に含浸・充填
したが、導電性物質に加えて、他の特性を有する微粒子
を併せて含浸・充填するようにしてもよい。より具体的
には、例えば、加熱しやすい電子部品を覆う電磁波シー
ルド材を構成する場合には、遠赤外線を放射するセラミ
ックス粉末や、黒鉛等を含浸・充填すると良い。ここ
で、遠赤外線を放射するセラミックス粉末としては、例
えばアルミナ,ジルコニア,チタニア等を用いることが
できるが、遠赤外線の放射率が高く、しかも低熱膨張性
で耐熱性のあるセラミックスとして、コージライト(2
MgO・2Al23・5SiO2 ),β−スポジューメ
ン(LiO2 ・Al23・4SiO2 ),チタン酸アル
ミニウム(Al23・Ti23)等も好適に用いられ
る。更に、全赤外域で放射率の高いセラミックスとし
て、遷移元素酸化物系セラミックス(一例として、Mn
2 :60%,Fe23:80%,CuO:10%,C
oO:10%)を用いることもできる。このようなセラ
ミックス粉末を含浸・充填すると、電子部品等で発生し
た熱エネルギーが遠赤外線となって放射されるので、電
子部品等の加熱を未然に防ぎ、電子部品の劣化や誤動作
等を防止することができる。なお、ベース材に導電性物
質を含浸・充填せず、上記セラミックス粉末だけを含浸
・充填させても、放熱材としては利用できる。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various embodiments can be adopted without departing from the scope of the present invention. For example, in the embodiment, only the conductive substance is impregnated / filled in the gap of the base material, but in addition to the conductive substance, fine particles having other characteristics may be impregnated / filled together. More specifically, for example, in the case of forming an electromagnetic wave shielding material that covers an electronic component that is easy to heat, it is preferable to impregnate and fill with a ceramic powder that radiates far infrared rays, graphite, or the like. Here, as the ceramic powder that radiates far infrared rays, for example, alumina, zirconia, titania and the like can be used. However, as the far infrared ray emissivity, ceramics having low thermal expansion and heat resistance, cordierite ( Two
MgO · 2Al 2 O 3 · 5SiO 2), β- spodumene (LiO 2 · Al 2 O 3 · 4SiO 2), aluminum titanate (Al 2 O 3 · Ti 2 O 3) or the like is also preferably used. Furthermore, as a ceramic having a high emissivity in the all infrared region, a transition element oxide-based ceramic (for example, Mn
O 2 : 60%, Fe 2 O 3 : 80%, CuO: 10%, C
oO: 10%) can also be used. When such ceramic powder is impregnated / filled, the thermal energy generated in the electronic components is radiated as far infrared rays, which prevents the electronic components from being heated and prevents the electronic components from deteriorating or malfunctioning. be able to. In addition, even if the base material is not impregnated and filled with a conductive substance but only the ceramic powder is impregnated and filled, it can be used as a heat dissipation material.

【0030】[0030]

【発明の効果】以上の如く本発明の導電性材料によれ
ば、ベース材の隙間に導電性物質が含浸・充填されてい
るので、全体的に導電性を示し、良好に電磁波を遮断す
ることができる。
As described above, according to the conductive material of the present invention, since the conductive material is impregnated and filled in the gaps of the base material, it exhibits conductivity as a whole and excellently blocks electromagnetic waves. You can

【0031】また、導電性物質はベース材の隙間に充填
されているだけで、ベース材自体の強度は低下しない。
したがって、薄いシート状にしたり細いネック部を設け
たりしても破損しにくくなり、所望の形状に加工でき
る。特に、請求項2記載の導電性材料によれば、種々の
形状に加工することが容易で、加工コストがかからな
い。
Further, the conductive material is only filled in the gaps of the base material, and the strength of the base material itself does not decrease.
Therefore, even if formed into a thin sheet or provided with a thin neck portion, it is less likely to be damaged and can be processed into a desired shape. In particular, according to the conductive material of the second aspect, it is easy to process into various shapes and the processing cost is low.

【0032】また、請求項3記載の導電性材料によれ
ば、軽量で、緩衝材、防音材、断熱材等としての機能を
も兼ね備えた電磁波シールド材として利用でき、きわめ
て応用範囲が広い。更に、請求項4記載の導電性材料に
よれば、電磁波を遮断する性能がより向上する。
Further, according to the conductive material of the third aspect, it can be used as an electromagnetic wave shielding material which is lightweight and also has a function as a cushioning material, a soundproofing material, a heat insulating material, etc., and has a very wide range of applications. Furthermore, according to the conductive material of claim 4, the performance of blocking electromagnetic waves is further improved.

【0033】加えて、請求項5記載の導電性材料の製造
方法によれば、微細な隙間や気泡であっても導電性物質
が十分に深層まで浸透し、良好な電磁波遮蔽性能を示す
導電性材料が得られる。
In addition, according to the method for producing a conductive material according to the fifth aspect, the conductive material sufficiently penetrates into a deep layer even if it is a fine gap or a bubble, and exhibits a good electromagnetic wave shielding performance. The material is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1実施例としての導電性材料を示す断面図
である。
FIG. 1 is a cross-sectional view showing a conductive material as a first embodiment.

【図2】 各実施例の導電性材料を製造するのに用いる
加圧含浸装置の構成図である。
FIG. 2 is a configuration diagram of a pressure impregnation device used to manufacture the conductive material of each example.

【図3】 第2実施例としての導電性材料を示す断面図
である。
FIG. 3 is a cross-sectional view showing a conductive material as a second embodiment.

【図4】 第3実施例としての導電性材料を示す断面図
である。
FIG. 4 is a cross-sectional view showing a conductive material as a third embodiment.

【符号の説明】[Explanation of symbols]

1・・・電磁波シールド材、3・・・ベース材、5・・
・導電性微粒子、10・・・加圧含浸装置、11・・・
タンク、11・・・処理液タンク、13・・・補助タン
ク、15・・・処理タンク、17,19・・・回収タン
ク、19・・・ポンプ、19・・・加圧ポンプ、21・
・・減圧ポンプ、23・・・配管、25a〜25h・・
・バルブ、31・・・電磁波シールド材、33・・・ベ
ース材、35・・・カーボン粉末、41・・・電磁波シ
ールド材、43・・・ベース材、45・・・ポリアニリ
ン微粒子、47・・・気泡。
1 ... Electromagnetic wave shield material, 3 ... Base material, 5 ...
・ Conductive particles, 10 ... Pressure impregnation device, 11 ...
Tank, 11 ... Treatment liquid tank, 13 ... Auxiliary tank, 15 ... Treatment tank, 17, 19 ... Recovery tank, 19 ... Pump, 19 ... Pressurizing pump, 21 ...
..Decompression pump, 23 ... Piping, 25a to 25h ...
・ Valve, 31 ... Electromagnetic wave shield material, 33 ... Base material, 35 ... Carbon powder, 41 ... Electromagnetic wave shield material, 43 ... Base material, 45 ... Polyaniline fine particles, 47 ...・ Bubbles.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電子機器への電磁波の侵入又は電子機器
からの電磁波の漏出等を防止する電磁波シールド材とし
て用いる導電性材料であって、 流体が含浸し得る無数の隙間を有するベース材に導電性
物質を含浸させてなる導電性材料。
1. A conductive material used as an electromagnetic wave shield material for preventing electromagnetic waves from penetrating into an electronic device or leaking an electromagnetic wave from an electronic device, which is electrically conductive to a base material having innumerable gaps that can be impregnated with a fluid. Conductive material impregnated with a conductive substance.
【請求項2】 請求項1記載の導電性材料において、 前記ベース材が、連続気泡を有する合成樹脂発泡体から
なることを特徴とする導電性材料。
2. The conductive material according to claim 1, wherein the base material is a synthetic resin foam having open cells.
【請求項3】 請求項2記載の導電性材料において、 前記ベース材が、独立気泡をも有する合成樹脂発泡体か
らなることを特徴とする導電性材料。
3. The conductive material according to claim 2, wherein the base material is made of a synthetic resin foam that also has closed cells.
【請求項4】 請求項1〜請求項3のいずれかに記載の
導電性材料において、 前記ベース材の表層に前記導電性物質からなる導電層が
形成されていることを特徴とする導電性材料。
4. The conductive material according to claim 1, wherein a conductive layer made of the conductive material is formed on a surface layer of the base material. .
【請求項5】 請求項1〜請求項4のいずれかに記載の
導電性材料の製造方法であって、 前記ベース材をタンク内に収容して密封し、 次に、該タンク内を減圧して低圧状態にすると共に、前
記導電性物質を含有する処理液を当該タンク内に供給し
て前記ベース材を浸漬し、 次に、該タンク内を加圧して高圧状態にして前記導電性
物質を前記ベース材に含浸させることを特徴とする導電
性材料の製造方法。
5. The method for producing a conductive material according to claim 1, wherein the base material is housed in a tank and sealed, and then the pressure in the tank is reduced. And a low-pressure state, a treatment liquid containing the conductive substance is supplied into the tank to immerse the base material, and then the inside of the tank is pressurized to a high-pressure state to remove the conductive substance. A method for producing a conductive material, which comprises impregnating the base material.
JP03728294A 1994-03-08 1994-03-08 Conductive material and method of manufacturing the same Expired - Fee Related JP3571364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03728294A JP3571364B2 (en) 1994-03-08 1994-03-08 Conductive material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03728294A JP3571364B2 (en) 1994-03-08 1994-03-08 Conductive material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07249890A true JPH07249890A (en) 1995-09-26
JP3571364B2 JP3571364B2 (en) 2004-09-29

Family

ID=12493351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03728294A Expired - Fee Related JP3571364B2 (en) 1994-03-08 1994-03-08 Conductive material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3571364B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306665B2 (en) * 1996-08-05 2002-07-24 セーレン株式会社 Conductive material and method of manufacturing the same
JP2002258010A (en) * 2001-02-28 2002-09-11 Minoru Miwa Visual field selective film and method of producing the same
KR100730198B1 (en) * 2006-01-27 2007-06-19 삼성에스디아이 주식회사 Silicon protective material and display apparatus applying the same
KR100850007B1 (en) * 2007-08-31 2008-08-01 이재욱 Composition for shielding electromagnetic wave, method of manufacturing the composition, and camera houseing for shielding electromagnetic wave
JP2010205890A (en) * 2009-03-03 2010-09-16 Achilles Corp Gasket for shielding electromagnetic waves, and method for manufacturing gasket for shielding electromagnetic waves

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306665B2 (en) * 1996-08-05 2002-07-24 セーレン株式会社 Conductive material and method of manufacturing the same
JP2002258010A (en) * 2001-02-28 2002-09-11 Minoru Miwa Visual field selective film and method of producing the same
KR100730198B1 (en) * 2006-01-27 2007-06-19 삼성에스디아이 주식회사 Silicon protective material and display apparatus applying the same
KR100850007B1 (en) * 2007-08-31 2008-08-01 이재욱 Composition for shielding electromagnetic wave, method of manufacturing the composition, and camera houseing for shielding electromagnetic wave
JP2010205890A (en) * 2009-03-03 2010-09-16 Achilles Corp Gasket for shielding electromagnetic waves, and method for manufacturing gasket for shielding electromagnetic waves

Also Published As

Publication number Publication date
JP3571364B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
US20190070757A1 (en) Elastomeric gasket having a foam metal skeletal member
CA2002152C (en) Foam in place conductive polyurethane foam
US4824871A (en) Electrically conductive polymer composite and method of making same
EP1382045B1 (en) Polymeric foam gaskets and seals
KR100477019B1 (en) High polymer microcellular foam conductive gaskets and method for preparing thereof
JPS60500393A (en) Method for integrally bonding a thermally conductive gasket for radiation shielding to a surface and article formed thereby
EP0257657B1 (en) Substrate for high-frequency circuit and process for making the same
JPH07249890A (en) Conductive material and its manufacture
CN107027254B (en) Compressible gasket, method of manufacturing the same, and electronic product including the same
EP0140664B1 (en) Radio wave shielding materials and a method of producing the same
KR100478830B1 (en) Conductive high polymer microcellular foam gaskets and method for preparing thereof
KR101381127B1 (en) Conductive Polymer foam elastic member
US6231794B1 (en) Process for making a low density foam filled reticulated absorber by means of vacuum
Asai et al. Fabrication of an insulated metal substrate (IMS), having an insulating layer with a high dielectric constant
CN100521899C (en) Backing board for electromagnetic wave interference/radio wave interference screen and producing method thereof
KR20100027730A (en) A conductive cushion sheet and manufacturing method the same
KR101562521B1 (en) Thin electro-conductive gasket having an excellent restoring force
CN106317847B (en) Conductive foam, conductive foam body and preparation method and application thereof
JP2001085888A (en) Conductive complex and manufacturing method thereof
JP6726796B1 (en) Radio wave absorber containing carbon fiber and method of manufacturing the same
US4387122A (en) Method for the manufacture of material absorbing ultra-high frequency waves
KR100358500B1 (en) Preparation method of electro magnetic wave absorption rtv silicone foaming structure and electro magnetic wave absorption rtv silicone foaming composition
JPH02120598A (en) Insulating body
JP2720921B2 (en) Manufacturing method of heat insulator
JP2745016B2 (en) Manufacturing method of radio wave absorbing substrate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100702

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees