JPH07247803A - Manufacture of turbine blade - Google Patents

Manufacture of turbine blade

Info

Publication number
JPH07247803A
JPH07247803A JP4213294A JP4213294A JPH07247803A JP H07247803 A JPH07247803 A JP H07247803A JP 4213294 A JP4213294 A JP 4213294A JP 4213294 A JP4213294 A JP 4213294A JP H07247803 A JPH07247803 A JP H07247803A
Authority
JP
Japan
Prior art keywords
turbine blade
single crystal
treatment
grain boundaries
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4213294A
Other languages
Japanese (ja)
Inventor
Hiroki Yamamoto
浩喜 山本
Masaru Yamamoto
山本  優
Kiyoshi Imai
潔 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4213294A priority Critical patent/JPH07247803A/en
Publication of JPH07247803A publication Critical patent/JPH07247803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide such a single crystal turbine blade as being free from high temperature strength reduction even if it is under existence of crystal grain boundary, being healthy, having hight reliability and improved productivity. CONSTITUTION:After a single crystal turbine blade raw material is manufactured by means of precision cast, either one kind of C, B, Zr, and Hf for reinforcing grain boundary or a plurality of elements thereof is/are allowed to invade from the surface of a turbine blade by means of dispersion treatment and ion filling, and those elements are dispersed through dispersion treatment at a high temperature, or they are stuck on the surface by means of a physical evaporation method or an ion plating method, and after that, they are allowed to invade and to be dispersed by means of dispersion treatment. It is thus possible to reinforce crystal grain boundary and sub-boundary which are formed at the time of precision casting, or crystal grain boundary which is generated by means of heating treatment after that.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航空機エンジンやガス
タ―ビンに使用される信頼性の高い単結晶タ―ビンブレ
―ドの生産性に優れたタ―ビンブレ―ドの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a highly reliable single crystal turbine blade used in aircraft engines and gas turbines, which is excellent in productivity.

【0002】[0002]

【従来の技術】航空機エンジンやガスタ―ビンは高効率
化や高出力化のためにタ―ビン入口温度が高温化の傾向
にあり、これに伴い、それに使用される動翼にはより高
温での遠心力に耐える必要から、クリ―プ破断強度を初
めとする高温強度が、従来製造法によるNi基合金の普
通鋳造タ―ビンブレ―ドよりも優れるNi基合金の一方
向凝固合金や単結晶合金からなる動翼が使われるように
なってきた。特に、単結晶動翼は結晶粒界が全く無いこ
とから、結晶粒界の強化する炭素やほう素、ジルコニュ
ウムなどの微量元素を含まないために、溶体化温度を融
点の直下まで上昇でき、完全な溶体化処理ができるの
で、高温強度がより一層高められて、より高温のタ―ビ
ンブレ―ドには最適である。
2. Description of the Related Art Aircraft engines and gas turbines tend to have a higher turbine inlet temperature due to higher efficiency and higher power output. Unidirectionally solidified alloys and single crystals of Ni-based alloys, which have higher high-temperature strength such as creep rupture strength than ordinary casting turbine blades of Ni-based alloys manufactured by conventional manufacturing methods Alloy blades have come into use. In particular, since the single crystal blade has no crystal grain boundaries at all, it does not contain trace elements such as carbon, boron, and zirconium that strengthen the crystal grain boundaries, so the solution temperature can be raised to just below the melting point, and Since it can be subjected to various solution treatments, the high temperature strength is further enhanced, and it is optimal for higher temperature turbine blades.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、単結晶
タ―ビンブレ―ドは、上記のように結晶粒界を強化する
微量元素を含まないために、結晶粒界が存在すると、そ
の結晶粒界は極端に弱いので、期待されるような優れた
高温強度が得られない。単結晶タ―ビンブレ―ドで結晶
粒界を形成する例としては、精密鋳造で方向凝固により
単結晶タ―ビンブレ―ドを製造する際に出易い異結晶の
成長による結晶粒界の形成や方向凝固時に成長するデン
ドライトのわずかな結晶成長方位のずれによる亜粒界
(低傾角粒界)などの結晶粒界や、タ―ビンブレ―ドの
精密鋳造後の高温の熱処理時に、タ―ビンブレ―ドのコ
―ナ―部や断面積が急激に変化するような応力集中部に
発生する再結晶と呼ばれる新結晶粒の形成が代表的であ
る。このため、単結晶タ―ビンブレ―ドを製造する際に
は上記のような結晶粒界の形成を完全に抑制しなければ
ならないために、精密鋳造ならびに方向凝固プロセスを
厳密に制御する必要があり、多大なコストがかかる。こ
のような厳密な制御を実施しても、実際には上記のよう
な結晶粒界の形成は完全には防止することは困難であ
り、結晶粒界あるいは亜粒界を含む単結晶タ―ビンブレ
―ド鋳造品は廃棄されなければならない。このため、製
品の歩留りは従来方法の普通鋳造によるタ―ビンブレ―
ドに比べて著しく悪くなり、コストの大幅な上昇と、単
結晶タ―ビンブレ―ドの信頼性を著しく損ねている。
However, since the single crystal turbin blade does not contain a trace element that strengthens the grain boundary as described above, if the grain boundary exists, the grain boundary is changed. Since it is extremely weak, the expected high temperature strength cannot be obtained. An example of forming a grain boundary with a single crystal turbine blade is the formation and direction of a grain boundary due to the growth of a different crystal that tends to occur when a single crystal turbine blade is manufactured by directional solidification in precision casting. The grain boundaries such as sub-grain boundaries (low-angle grain boundaries) due to a slight shift in the crystal growth direction of the dendrites that grow during solidification, and the high temperature heat treatment after precision casting of the turbine blades, the turbine blades The typical example is the formation of new crystal grains called recrystallization that occur in the corners and stress concentration areas where the cross-sectional area changes rapidly. Therefore, it is necessary to strictly control the precision casting and the directional solidification process in order to completely suppress the formation of the grain boundaries as described above when manufacturing the single crystal turbine blade. It costs a lot of money. Even if such strict control is carried out, it is actually difficult to completely prevent the formation of the above-mentioned crystal grain boundaries, and the single crystal turbin blur containing crystal grain boundaries or sub-grain boundaries is actually difficult to prevent. -Do castings must be discarded. For this reason, the product yield is increased by the conventional turbine
It is significantly worse than that of the single crystal, significantly increasing the cost, and significantly impairing the reliability of the single crystal turbine blade.

【0004】本発明の目的は、単結晶タ―ビンブレ―ド
が結晶粒界の存在下でも高温強度の低下が無く、健全
で、信頼性が高く、生産性に優れた単結晶タ―ビンブレ
―ドの製造方法を提供することにある。
The object of the present invention is to obtain a single crystal turbine blade which is sound, reliable and excellent in productivity without deterioration of high temperature strength even in the presence of grain boundaries. It is to provide a manufacturing method of a cord.

【0005】[0005]

【課題を解決するための手段】本発明のタ―ビンブレ―
ドの製造方法は、単結晶よりなるタ―ビンブレ―ドにお
いて、精密鋳造にて単結晶タ―ビンブレ―ド素材を製造
した後、タ―ビンブレ―ドの表面から結晶粒界を強化す
る炭素C,ほう素B,ジルコニュウムZr,およびハフ
ニュウムHfのいずれか1種、または複数の元素を拡散
処理やイオン注入などの方法により侵入させ、これらの
元素を高温の拡散処理にて分散させるか、または物理的
蒸着法やイオンプレ―ティング法などで表面に付着した
後、拡散処理により侵入、分散させることにより、精密
鋳造時に形成した結晶粒界、亜粒界あるいはその後の熱
処理により生じた結晶粒界を強化することを特徴とす
る。
A means for solving the problems of the present invention
The manufacturing method of the carbon C is a single crystal turbine blade, in which a single crystal turbine blade material is manufactured by precision casting and then carbon grain boundaries are strengthened from the surface of the turbine blade. , Boron B, zirconium Zr, and hafnium Hf, or a plurality of elements are infiltrated by a method such as diffusion treatment or ion implantation, and these elements are dispersed by high-temperature diffusion treatment, or physically. After adhering to the surface by dynamic vapor deposition or ion plating, it is infiltrated and dispersed by diffusion treatment to strengthen the crystal grain boundaries, sub-grain boundaries formed during precision casting, or crystal grain boundaries generated by subsequent heat treatment. It is characterized by doing.

【0006】単結晶タ―ビンブレ―ドとしては、金属間
化合物Ni3 (Al,Ti)のγ′相の微細析出により
強化されたNi基合金、あるいはCo基合金よりなるこ
とを特徴とする。
The single crystal turbine blade is characterized by being made of a Ni-base alloy or a Co-base alloy strengthened by fine precipitation of the γ'phase of the intermetallic compound Ni 3 (Al, Ti).

【0007】そして、炭素C,ほう素B,ジルコニュウ
ムZr,およびハフニュウムHfの各元素を、タ―ビン
ブレ―ドの表面から侵入、または付着させる方法とし
て、パック拡散法や溶融塩拡散法、気相合成法CVD,
CVIなどの高温処理、イオン注入法などの高エネルギ
―注入法、物理的蒸着法PVD、イオンプレ―ティング
法、メッキ法などの1種類、または複数の組み合わせに
よることを特徴とする。
As a method of invading or adhering each element of carbon C, boron B, zirconium Zr, and hafnium Hf from the surface of the turbine blade, pack diffusion method, molten salt diffusion method, vapor phase diffusion method Synthetic CVD,
It is characterized by high temperature treatment such as CVI, high energy implantation method such as ion implantation method, physical vapor deposition method PVD, ion plating method, plating method and the like, or a combination thereof.

【0008】さらに、炭素C,ほう素B,ジルコニュム
Zr,およびハフニュウムHfを単結晶タ―ビンブレ―
ドの表面に侵入させた後、1000℃から1150℃の間の温度
で拡散処理を行うことを特徴とする。
In addition, carbon C, boron B, zirconium Zr, and hafnium Hf are single-crystal turbine alloys.
After infiltrating the surface of the substrate, the diffusion treatment is performed at a temperature between 1000 ° C and 1150 ° C.

【0009】このようにして製作された単結晶タ―ビン
ブレ―ドの結晶粒界を含む当該部において、 0.01 〜
0.08 重量%までの炭素Cと、 0.005〜 0.05 重量%の
ほう素B、 0.01 〜 0.08 重量%のジルコニュウムZ
r、 0.01 〜 0.5重量%のハフニュウムHfを含有する
ことを特徴とする。
In the portion including the crystal grain boundaries of the single crystal turbine blade manufactured as described above, 0.01 to
Carbon C up to 0.08% by weight, 0.005 to 0.05% by weight boron B, 0.01 to 0.08% by weight zirconium Z
r, 0.01 to 0.5% by weight of hafnium Hf.

【0010】[0010]

【作用】これにより、単結晶タ―ビンブレ―ドの製造中
に結晶粒界を形成しても、高温強度の低下が無く、健全
で、信頼性が高く、生産性に優れた単結晶タ―ビンブレ
―ドの製造方法を提供することができる。
[Effect] As a result, even if a grain boundary is formed during the production of a single crystal turbine blade, the high temperature strength does not decrease, and the single crystal turbine is sound, reliable and excellent in productivity. A method for manufacturing a bottle blade can be provided.

【0011】[0011]

【実施例】本発明の製造方法および拡散熱処理と、その
結果として形成される結晶粒界強化のための構成元素の
添加量は、単結晶タ―ビンブレ―ドの生産性と高温強度
に着目して選択した。
EXAMPLES The manufacturing method and diffusion heat treatment of the present invention, and the addition amount of the constituent elements for strengthening the grain boundaries formed as a result of the production method and the high temperature strength of the single crystal turbine blade are focused on. Selected.

【0012】単結晶タ―ビンブレ―ドの製造過程におい
て形成される可能性のある結晶粒界あるいは亜粒界は方
向凝固による精密鋳造中、およびその後の溶体化処理と
呼ばれる高温の熱処理時である。溶体化処理は、侵入さ
せた炭素やホウ素、ジルコニュウム、ハフニュウムの各
元素を結晶粒界に均一に拡散する処理と兼用できる場合
がある。従って、ホウ素、ジルコニュウム、ハフニュウ
ムの粒界強化の元素を侵入させるのは方向凝固による精
密鋳造後が最適である。しかしながら、各元素を結晶粒
界に均一に拡散させるための処理が溶体化処理温度より
も低い方が好適の場合には溶体化処理の後に各元素を侵
入させる処理を行っても良い。
Grain boundaries or sub-grain boundaries that may be formed in the process of producing a single crystal turbine blade are during precision casting by directional solidification and subsequent high temperature heat treatment called solution treatment. . The solution treatment may be combined with the treatment of uniformly diffusing the invaded elements of carbon, boron, zirconium, and hafnium to the crystal grain boundaries. Therefore, it is optimal to infiltrate the grain boundary strengthening elements such as boron, zirconium, and hafnium after precision casting by directional solidification. However, when the treatment for uniformly diffusing each element into the crystal grain boundaries is preferably lower than the solution heat treatment temperature, the treatment for invading each element may be performed after the solution heat treatment.

【0013】炭素やホウ素、ジルコニュウム、ハフニュ
ウムの各元素を単結晶タ―ビンブレ―ドの表面より侵入
させる方法は、粉末パック法と呼ばれるパック拡散法や
拡散させる元素の塩による溶融塩拡散法、あるいは気相
合成法CVD,CVIなどの拡散処理を同時に行う高温
処理法が、その後の各元素の拡散処理と兼用できるので
好適である。各元素に対する侵入方法は必ずしも同一方
法が可能ではないので、各元素に最適な処理法を組み合
わせて、所要の結晶粒界強化元素を侵入、拡散する。ま
た、イオン注入法などの高エネルギ―注入法は各元素を
単独、または重複してタ―ビンブレ―ド表面に侵入させ
ることができる。この場合には、所要の元素添加量が注
入により得られれれば、後の拡散熱処理を省略すること
ができる。さらに、まず単結晶タ―ビンブレ―ドの表面
に物理的蒸着法PVDやメッキ法により各元素を付着さ
せた後、拡散熱処理により表面より所要の深さまで各元
素を拡散、侵入させることもできる。各元素をタ―ビン
ブレ―ド表面から侵入させる方法としては、必要な各元
素を複数侵入させる場合には、必ずしも同一の方法であ
る必要はなく、各元素を最も効果的に、短時間の処理で
実施できる方法を組み合わせて行うことができる。ここ
では種々の方法のうち代表的な処理方法について述べた
が、ここに述べていない類似の方法も、単結晶タ―ビン
ブレ―ドの基材の高温強度を損ねない限り、勿論適用可
能である。
The method of infiltrating each element of carbon, boron, zirconium, and hafnium from the surface of the single crystal turbine blade is a pack diffusion method called a powder pack method or a molten salt diffusion method using a salt of an element to be diffused, or A high temperature treatment method in which a diffusion treatment such as vapor phase synthesis method CVD or CVI is simultaneously performed is preferable because it can also be used as a diffusion treatment for each element thereafter. Since it is not always possible to use the same method for invading each element, a required crystal grain boundary strengthening element is invaded and diffused by combining an optimal treatment method for each element. In addition, a high energy implantation method such as an ion implantation method can inject each element into the surface of the turbine blade alone or in duplicate. In this case, if the required amount of added elements can be obtained by implantation, the subsequent diffusion heat treatment can be omitted. Furthermore, first, each element can be deposited on the surface of the single crystal turbine blade by physical vapor deposition PVD or plating, and then each element can be diffused and penetrated to a required depth from the surface by diffusion heat treatment. The method of invading each element from the surface of the turbine blade does not necessarily have to be the same method when injecting a plurality of necessary elements, and each element is most effectively treated in a short time. Can be performed in combination with the methods that can be performed in. Although typical processing methods among various methods have been described here, similar methods not described here are of course applicable as long as they do not impair the high temperature strength of the base material of the single crystal turbine blade. .

【0014】当該領域での各元素の含有量はその効果と
有害性から以下の通りである。炭素Cは結晶粒界に存在
すること、および炭化物を析出して、粒界割れ抵抗を増
すために必要で、最低限 0.01 重量%はなければならな
いが、 0.08 重量%を越えると、結晶粒界ばかりでな
く、結晶内部にも炭化物を析出し、長時間使用中に凝集
・粗大化して、クリ―プ破断寿命や疲労寿命を低下する
ので、この範囲とする。
The content of each element in the region is as follows from its effect and harmfulness. Carbon C exists in the grain boundaries and is necessary to precipitate carbides to increase the intergranular cracking resistance. It must be at least 0.01% by weight, but if it exceeds 0.08% by weight, the grain boundaries are increased. Not only this, but also carbide precipitates inside the crystal, and it aggregates and coarsens during long-term use, reducing the creep rupture life and fatigue life.

【0015】ホウ素Bは結晶粒界に存在して、粒界の結
合力を高める元素で、この効果を生じるには 0.005重量
%は必要である。しかし、多量に含有すると、ホウ化物
を形成して、疲労寿命に悪影響を及ぼすので、 0.05 重
量%以下にすべきである。
Boron B is an element which exists in the grain boundaries and enhances the bonding force of the grain boundaries, and 0.005% by weight is necessary for producing this effect. However, if contained in a large amount, boride is formed and the fatigue life is adversely affected. Therefore, the content should be 0.05% by weight or less.

【0016】ジルコニュウムZrは結晶粒界に存在し
て、粒界を強化する。このためには、0.01 重量%は必
要であるが、過剰に含有すると、ジルコニュウム炭化物
のような化合物を形成して、延性を低下するとともに、
クリ―プ破断寿命も短くするので、 0.08 重量%が限度
である。
Zirconium Zr exists in the crystal grain boundaries and strengthens the grain boundaries. For this purpose, 0.01% by weight is necessary, but when contained in excess, it forms a compound such as zirconium carbide, which reduces ductility and
The creep rupture life is also shortened, so 0.08% by weight is the limit.

【0017】ハフニュウムHfも同様に結晶粒界を強化
するに必要な元素であるが、炭素が存在する場合には、
ハフニュウム炭化物として有効には作用しなくなるの
で、 0.01 〜 0.5重量%が最適である。
Hafnium Hf is also an element necessary for strengthening the crystal grain boundaries, but when carbon is present,
Since it does not act effectively as a hafnium carbide, 0.01 to 0.5% by weight is optimal.

【0018】以上の結晶粒界を強化するための各元素を
有効に作用させるには、必要があれば、タ―ビンブレ―
ドに各元素を侵入させた後、結晶粒界が存在している当
該領域に十分な深さで分散するように、高温で保持する
拡散のための熱処理を施すことができる。この場合、拡
散のための処理温度は、当該領域の深さと工業的な処理
時間とから決定するが、同時にタ―ビンブレ―ドの基材
の高温強度を損なうことがあってはならない。このため
には、拡散処理の温度は1000〜1150℃の範囲が最適であ
る。
In order to make the above-mentioned respective elements for strengthening the crystal grain boundaries effectively act, it is necessary to use a turbine bin
After each element is infiltrated into the oxide, a heat treatment for diffusion can be performed while holding at a high temperature so that the element is dispersed at a sufficient depth in the region where the grain boundary exists. In this case, the treatment temperature for diffusion is determined from the depth of the region and the industrial treatment time, but at the same time, the high temperature strength of the turbine blade substrate should not be impaired. For this purpose, the temperature of the diffusion treatment is optimally in the range of 1000 to 1150 ° C.

【0019】タ―ビンブレ―ドを製造する際に、結晶粒
界が形成されることで高温強度が著しく悪影響を受ける
のは、Ni基合金の単結晶タ―ビンブレ―ドであるが、
これと類似の悪影響は一方向凝固柱状晶よりなるタ―ビ
ンブレ―ドでも生じる。すなわち、一方向凝固柱状晶タ
―ビンブレ―ドは応力が作用する方向と垂直方向の結晶
粒界をなくすように、翼の長手方向に沿って柱状晶を並
列に成長させているが、精密鋳造時やその後の高温の熱
処理時に単結晶タ―ビンブレ―ドと同様に新たな結晶粒
界や亜粒界を形成することが往々にしてある。一方向凝
固柱状晶では元来結晶粒界が存在しているので、本発明
に記載された結晶粒界強化の元素を含有しているが、そ
の量は必ずしも十分ではなく、新たな粒界が応力に対し
て垂直に位置に生じるクリ―プ破断強度を初めとする高
温強度が大幅に低下し、タ―ビンブレ―ドを廃棄しなれ
ばならなくなるのは単結晶の場合と同様である。それ
故、本発明になる製造方法は一方向凝固柱状晶よりなる
タ―ビンブレ―ドに対しても有効である。
It is the Ni-based alloy single crystal turbine blades that the high temperature strength is significantly adversely affected by the formation of grain boundaries during the production of the turbine blades.
A similar adverse effect occurs in a turbine blade made of unidirectionally solidified columnar crystals. That is, unidirectionally solidified columnar turbine blades grow columnar crystals in parallel along the longitudinal direction of the blade so as to eliminate grain boundaries in the direction perpendicular to the direction in which stress acts, but precision casting Often, new grain boundaries and sub-grain boundaries are formed as with single crystal turbine blades during and after high temperature heat treatment. Since the unidirectionally solidified columnar crystal originally has a grain boundary, the grain boundary strengthening element described in the present invention is contained, but the amount is not always sufficient, and a new grain boundary is formed. As in the case of the single crystal, the high temperature strength including the creep rupture strength generated at the position perpendicular to the stress is drastically reduced and the turbine blade must be discarded. Therefore, the manufacturing method according to the present invention is also effective for a turbine blade made of unidirectionally solidified columnar crystals.

【0020】また、単結晶および一方向柱状晶タ―ビン
ブレ―ドとしては、現在主として実用されているのは金
属間化合物Ni3 (Al,Ti)のγ′相の微細析出に
より強化されたNi基合金であるが、Ni基合金と同様
の高温用材料で、静止翼に使用されているCo基合金よ
りなる単結晶および一方向凝固柱状晶タ―ビンブレ―ド
に対しても上記の製造方法は高温強度の確保と生産性の
面から適用できる。
Further, as the single crystal and unidirectional columnar crystal turbine blades, the one which is mainly used at present is Ni strengthened by fine precipitation of the γ ′ phase of the intermetallic compound Ni 3 (Al, Ti). Although it is a base alloy, it is a high temperature material similar to that of a Ni base alloy, and the above manufacturing method is applied to a single crystal and a unidirectionally solidified columnar turbine blade made of a Co base alloy used for a stationary blade. Can be applied in terms of securing high temperature strength and productivity.

【0021】以下、本発明の実施例をもって説明する。
タ―ビンブレ―ド用Ni基単結晶合金からなる単結晶の
材料試験片1を高速凝固法により精密鋳造して製作し
た。ここに用いた単結使用合金の化学組成は表1の様
に、金属間化合物Ni3 (Al,Ti)のγ′相の微細
析出により強化された合金で、炭素、ホウ素、ジルコニ
ュウム、ハフニュウムを含まない代表的なNi基単結晶
合金である。
The embodiments of the present invention will be described below.
A single crystal material test piece 1 made of a Ni-based single crystal alloy for a turbine blade was manufactured by precision casting by a rapid solidification method. The chemical composition of the single-use alloy used here is an alloy reinforced by fine precipitation of the γ ′ phase of the intermetallic compound Ni 3 (Al, Ti) as shown in Table 1, and carbon, boron, zirconium, and hafnium are used. It is a typical Ni-based single crystal alloy that does not contain.

【0022】[0022]

【表1】 [Table 1]

【0023】また、同時に一部に長手方向と横切る形で
結晶粒界を形成した双結晶試験片2を鋳造した。単結晶
試験片には精密鋳造の後、表面にアルミナ粒子によるブ
ラストを施して、その後1315℃で4時間の本単結晶合金
の標準の溶体化処理を施し、表面層に約 100μmの深さ
の再結晶粒を含む試験片3を作製した。このようにして
準備した単結晶合金よりなる双結晶、または再結晶粒を
持つ単結晶合金試験片に、各種の方法で炭素、ホウ素、
ジルコニュウム、ハフニュウムを進入させ、適宜拡散熱
処理を施して、各元素を内部へ拡散させた。ここで、炭
素の侵入、拡散にはパック拡散法による浸炭処理を行
い、ホウ素に対しては溶融塩によるホウ化処理によっ
て、ホウ素を侵入させた。この後ジルコニュウムとハフ
ニュウムは物理的蒸着法PVDにより表面に付着させた
後、拡散熱処理を施して各元素の内部への拡散を助長し
た。拡散処理は、双結晶試験片2−1では1150℃で16時
間の保持により、また再結晶試験片3−1では1050℃
で、4時間の保持にて行った。また、双結晶試験片と再
結晶試験片には上記の他、炭素とホウ素のみを拡散、侵
入させた試験片も準備した。このようにして製造した本
発明になる単結晶合金試験片2−1,2−2と3−1,
3−2を用いて無処理試験片とともにクリ―プ破断試験
を行った。その結果をまとめて表2に示す。
At the same time, a bicrystal test piece 2 having a grain boundary formed in a part across the longitudinal direction was cast. The single crystal test piece was precision cast, blasted with alumina particles on the surface, and then subjected to the standard solution treatment of the single crystal alloy at 1315 ° C for 4 hours to obtain a surface layer with a depth of about 100 μm. A test piece 3 containing recrystallized grains was produced. Twin crystals consisting of single crystal alloy prepared in this way, or single crystal alloy test piece having recrystallized grains, carbon, boron by various methods,
Zirconium and hafnium were introduced, and appropriate diffusion heat treatment was performed to diffuse each element inside. Here, for the invasion and diffusion of carbon, carburizing treatment by the pack diffusion method was performed, and for boron, the boron was infiltrated by the boration treatment with a molten salt. After that, zirconium and hafnium were deposited on the surface by physical vapor deposition PVD and then subjected to a diffusion heat treatment to promote the diffusion of each element into the inside. The diffusion treatment was carried out by holding the bicrystal test piece 2-1 at 1150 ° C for 16 hours, and the recrystallization test piece 3-1 at 1050 ° C.
Therefore, it was held for 4 hours. In addition to the above, a test piece in which only carbon and boron were diffused and penetrated was prepared for the bicrystal test piece and the recrystallized test piece. The single crystal alloy test pieces 2-1 and 2-2 and 3-1 according to the present invention manufactured in this manner
A creep rupture test was conducted together with untreated test pieces using 3-2. The results are summarized in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から明かな様に、単結晶合金に結晶粒
界が含まれると、クリ―プ破断寿命は数分の一から、十
数分の一まで著しく低下する。これに対して、本発明に
なる結晶粒界を含む単結晶試験片2−1,3−1ではそ
の低下は非常に小さく、その効果は明白である。また、
試験片2−2,3−2のように結晶粒界強化元素のすべ
てを含有しない場合でもクリ―プ破断寿命の低下は実用
上問題にならない程度に縮小されており、本発明の製造
法の効果が十分に認められる。
As is clear from Table 2, when the single crystal alloy contains grain boundaries, the creep rupture life is remarkably shortened from several tenths to tenths. On the other hand, in the single crystal test pieces 2-1 and 3-1 including the crystal grain boundaries according to the present invention, the decrease is very small and the effect is clear. Also,
Even when not containing all of the grain boundary strengthening elements like the test pieces 2-2 and 3-2, the decrease in creep rupture life is reduced to such an extent that it does not pose a practical problem. The effect is fully observed.

【0026】次に、単結晶タ―ビンブレ―ドに本発明に
なる製造方法を適用した。図1は、一般的なガスタ―ビ
ンブレ―ドの外観を示したもので、有効部1、プラット
ホ―ム部2、植込部3からなっている。この有効部に上
記と同様のアルミナブラストとその後の溶体化処理によ
り再結晶粒を作った。このタ―ビンブレ―ドに、まず炭
素を浸炭法により炭素を拡散浸透した。その後、溶融塩
法のホウ化処理によりホウ素を所定量拡散させた。引き
続き、ジルコニュウムとハフニュウムをイオンプレ―テ
ィング法により表層にコ―ティングし、1080℃で8時間
の拡散処理を施して、ジルコニュウムとハフニュウムを
内部に拡散するとともに、炭素とホウ素の均一化を行っ
た。このようにして製造したタ―ビンブレ―ド有効部よ
り、図2に示したように、表層を含むように板状の試験
片4を採取した。これを単結晶のままタ―ビンブレ―ド
から切りだした試験片、および再結晶を含むが本製造法
を適用ていない切り出し板試験片とともにクリ―プ破断
試験を行い、表3の様に本発明になる製造法で製造した
タ―ビンブレ―ドでは再結晶粒が存在していても、クリ
―プ破断寿命は、健全な単結晶タ―ビンブレ―ドから切
り出された試験片と同等の寿命を持つことが確認され
た。
Next, the manufacturing method according to the present invention was applied to a single crystal turbine blade. FIG. 1 shows the appearance of a general gas turbine blade, which comprises an effective part 1, a platform part 2, and an implant part 3. Recrystallized grains were formed in this effective portion by the same alumina blast as above and the subsequent solution treatment. First, carbon was diffused and infiltrated into this turbine blade by a carburizing method. Then, a predetermined amount of boron was diffused by a boration treatment using a molten salt method. Subsequently, zirconium and hafnium were coated on the surface layer by an ion plating method and subjected to a diffusion treatment at 1080 ° C. for 8 hours to diffuse the zirconium and hafnium inside and homogenize carbon and boron. As shown in FIG. 2, a plate-shaped test piece 4 including the surface layer was sampled from the effective portion of the turbine blade thus manufactured. A creep rupture test was conducted with a test piece cut out from a turbine blade as a single crystal, and a cut-out plate test piece containing recrystallization but not subject to this production method. Even if recrystallized grains are present in the turbine blade manufactured by the manufacturing method according to the invention, the creep rupture life is equivalent to that of a test piece cut out from a healthy single crystal turbine blade. Was confirmed to have.

【0027】[0027]

【表3】 図1は本発明になるタ―ビンブレ―ドから切り出された
試験片の結晶粒界近傍の元素分布をEPMAにより分析
した結果である。この分析結果からわかるように、元来
本単結晶合金には不可避的不純物の程度しか存在してい
ない炭素やホウ素、あるいはジルコニュウム、ハフニュ
ウムが所定の濃度で侵入、拡散し、結晶粒界を強化して
いることがわかる。
[Table 3] FIG. 1 shows the results of EPMA analysis of the element distribution in the vicinity of the grain boundaries of a test piece cut out from the turbine blade according to the present invention. As can be seen from this analysis result, carbon and boron, which originally existed only in the degree of unavoidable impurities in the single crystal alloy, or zirconium or hafnium penetrated and diffused at a predetermined concentration to strengthen the crystal grain boundary. You can see that

【0028】[0028]

【発明の効果】本発明の製造法は、結晶粒界を含んでい
る場合でも実用上単結晶タ―ビンブレ―ドとして十分な
高温強度を持ち、しかも生産性の良い製造方法を提供で
きる。
The manufacturing method of the present invention can provide a manufacturing method which has a practically sufficient high temperature strength as a single crystal turbine blade even when it contains a grain boundary, and has a good productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により製造されたタ―ビンブレ―ド中の
結晶粒界強化元素の分析結果を示す特性図
FIG. 1 is a characteristic diagram showing analysis results of grain boundary strengthening elements in a turbine blade manufactured according to the present invention.

【図2】タ―ビンブレ―ドの斜視図[Fig. 2] Perspective view of the turbine blade

【符号の説明】[Explanation of symbols]

1 有効部 2 プラットホ―ム 3 植え込み部 4 クリ―プ試験片 1 Effective part 2 Platform 3 Implanted part 4 Creep test piece

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01D 5/14 F02C 7/00 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F01D 5/14 F02C 7/00 D

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単結晶よりなるタ―ビンブレ―ドの製造
方法において、精密鋳造にて単結晶タ―ビンブレ―ド素
材を製造した後、タ―ビンブレ―ドの表面から結晶粒界
を強化する炭素C,ほう素B,ジルコニュウムZr,お
よびハフニュウムHfのいずれか1種、または複数の元
素を拡散処理やイオン注入により侵入させ、これらの元
素を高温の拡散処理にて分散させるか、または物理的蒸
着法やイオンプレ―ティング法などで表面に付着した
後、拡散処理により侵入、分散させることにより、精密
鋳造時に形成した結晶粒界、亜粒界あるいはその後の熱
処理により生じた結晶粒界を強化することを特徴とする
タ―ビンブレ―ドの製造方法。
1. A method for producing a single crystal turbine blade, wherein a single crystal turbine blade material is produced by precision casting, and then grain boundaries are strengthened from the surface of the turbine blade. Any one or more of carbon C, boron B, zirconium Zr, and hafnium Hf is introduced by diffusion treatment or ion implantation, and these elements are dispersed by high-temperature diffusion treatment or physically. After adhering to the surface by the vapor deposition method or ion plating method, it is infiltrated and dispersed by diffusion treatment to strengthen the crystal grain boundaries, sub-grain boundaries formed during precision casting or the crystal grain boundaries generated by the subsequent heat treatment. A method for manufacturing a turbine blade, which is characterized in that
【請求項2】 単結晶よりなるタ―ビンブレ―ドは、金
属間化合物Ni3 (Al,Ti)のγ′相の微細析出に
より強化されたNi基合金よりなることを特徴とする請
求項1に記載のタ―ビンブレ―ドの製造方法。
2. A single crystal Turbin blade is made of a Ni-base alloy strengthened by fine precipitation of a γ'phase of an intermetallic compound Ni 3 (Al, Ti). The method for manufacturing the turbine blade described in 1.
【請求項3】 炭素C,ほう素B,ジルコニュウムZ
r,およびハフニュウムHfの各元素を、タ―ビンブレ
―ドの表面から侵入、または付着させる方法として、パ
ック拡散法や溶融塩拡散法、気相合成法などの高温処
理、イオン注入法などの高エネルギ―注入法、物理的蒸
着法、イオンプレ―ティング法、メッキ法などの1種
類、または複数の組み合わせによることを特徴とする請
求項1に記載のタ―ビンブレ―ドの製造方法。
3. Carbon C, boron B, zirconium Z
As a method for invading or adhering each element of r and hafnium Hf from the surface of the turbine blade, high temperature treatment such as pack diffusion method, molten salt diffusion method, vapor phase synthesis method, high ion treatment method, etc. 2. The method for manufacturing a turbine blade according to claim 1, wherein one type of energy injection method, physical vapor deposition method, ion plating method, plating method, or a combination thereof is used.
【請求項4】 炭素C,ほう素B,ジルコニュムZr,
およびハフニュウムHfを単結晶タ―ビンブレ―ドの表
面から侵入させた後、1000℃から1150℃の間の温度で拡
散処理を行うことを特徴とする請求項1に記載のタ―ビ
ンブレ―ドの製造方法。
4. Carbon C, boron B, zirconium Zr,
The hafnium Hf and the hafnium Hf are infiltrated from the surface of the single crystal turbine blade, and then diffusion treatment is performed at a temperature between 1000 ° C and 1150 ° C. Production method.
【請求項5】 最終的に単結晶よりなるタ―ビンブレ―
ドの結晶粒界を含む当該部において、 0.01 〜 0.08 重
量%までの炭素Cと、 0.005〜 0.05 重量%のほう素
B、 0.01 〜 0.08 重量%のジルコニュウムZr、 0.0
1 〜 0.5重量%のハフニュウムHfを含有することを特
徴とする請求項1に記載のタ―ビンブレ―トの製造方
法。
5. A turbine single crystal finally made of a single crystal.
In the relevant part including the crystal grain boundary of C, 0.01 to 0.08% by weight of carbon C, 0.005 to 0.05% by weight of boron B, 0.01 to 0.08% by weight of zirconium Zr, 0.0
The method for producing a turbine blade according to claim 1, which contains 1 to 0.5% by weight of hafnium Hf.
JP4213294A 1994-03-14 1994-03-14 Manufacture of turbine blade Pending JPH07247803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4213294A JPH07247803A (en) 1994-03-14 1994-03-14 Manufacture of turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4213294A JPH07247803A (en) 1994-03-14 1994-03-14 Manufacture of turbine blade

Publications (1)

Publication Number Publication Date
JPH07247803A true JPH07247803A (en) 1995-09-26

Family

ID=12627419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4213294A Pending JPH07247803A (en) 1994-03-14 1994-03-14 Manufacture of turbine blade

Country Status (1)

Country Link
JP (1) JPH07247803A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293164A (en) * 2002-03-29 2003-10-15 Tocalo Co Ltd Ni-BASED HIGH TEMPERATURE STRENGTH MEMBER AND METHOD FOR PRODUCING THE SAME
JP2005133206A (en) * 2003-10-07 2005-05-26 General Electric Co <Ge> Method for manufacturing coated superalloy stabilized against formation of srz
JP2008524446A (en) * 2004-12-15 2008-07-10 アイオワ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Method of manufacturing high temperature resistant coating containing γ-Ni + γ'-Ni3Al alloy composition modified with platinum metal and reactive element
US8334056B2 (en) 2003-05-16 2012-12-18 Iowa State University Research Foundation, Inc. High-temperature coatings with Pt metal modified γ-Ni + γ′-Ni3Al alloy compositions
US8821654B2 (en) 2008-07-15 2014-09-02 Iowa State University Research Foundation, Inc. Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions for high temperature degradation resistant structural alloys
JP2019524983A (en) * 2016-06-10 2019-09-05 サフラン Method for protecting hafnium-free nickel-based single crystal superalloy parts from corrosion and oxidation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293164A (en) * 2002-03-29 2003-10-15 Tocalo Co Ltd Ni-BASED HIGH TEMPERATURE STRENGTH MEMBER AND METHOD FOR PRODUCING THE SAME
US8334056B2 (en) 2003-05-16 2012-12-18 Iowa State University Research Foundation, Inc. High-temperature coatings with Pt metal modified γ-Ni + γ′-Ni3Al alloy compositions
JP2005133206A (en) * 2003-10-07 2005-05-26 General Electric Co <Ge> Method for manufacturing coated superalloy stabilized against formation of srz
JP2008524446A (en) * 2004-12-15 2008-07-10 アイオワ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Method of manufacturing high temperature resistant coating containing γ-Ni + γ'-Ni3Al alloy composition modified with platinum metal and reactive element
JP4684298B2 (en) * 2004-12-15 2011-05-18 アイオワ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Method of manufacturing high temperature resistant coating containing γ-Ni + γ'-Ni3Al alloy composition modified with platinum metal and reactive element
US8821654B2 (en) 2008-07-15 2014-09-02 Iowa State University Research Foundation, Inc. Pt metal modified γ-Ni+γ′-Ni3Al alloy compositions for high temperature degradation resistant structural alloys
JP2019524983A (en) * 2016-06-10 2019-09-05 サフラン Method for protecting hafnium-free nickel-based single crystal superalloy parts from corrosion and oxidation

Similar Documents

Publication Publication Date Title
EP1444388B1 (en) Mcraly-coating
KR100862346B1 (en) Nickel base superalloys and turbine components fabricated therefrom
US6444057B1 (en) Compositions and single-crystal articles of hafnium-modified and/or zirconium-modified nickel-base superalloys
EP1431405B1 (en) Coated article comprising a nickel base superalloy
JPS62267440A (en) Monocrystal alloy product and its production
EP1295969A1 (en) Method of growing a MCrAIY-coating and an article coated with the MCrAIY-coating
US20120273093A1 (en) Nickel Based Superalloys and Articles
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
EP2420584B1 (en) Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
US20110175025A1 (en) Turbocharger and subassembly for bypass control in the turbine casing therefor
AU2006200325A1 (en) Superalloy compositions, articles, and methods of manufacture
Lynch et al. FATIGUE CRACK GROWTH IN NICKEL‐BASED SUPERALLOYS AT 500‐700° C. II: DIRECT‐AGED ALLOY 718
JP2008520829A (en) Nickel-based superalloy
JP3559670B2 (en) High-strength Ni-base superalloy for directional solidification
WO2023240732A1 (en) High-creep-resistance nickel-based powder metallurgy superalloy and preparation method therefor
CN110423960A (en) A kind of Ni alloy ingot homogenization process of the high cobalt of high tungsten
US6190471B1 (en) Fabrication of superalloy articles having hafnium- or zirconium-enriched protective layer
JPH07247803A (en) Manufacture of turbine blade
JP4222540B2 (en) Nickel-based single crystal superalloy, manufacturing method thereof, and gas turbine high-temperature component
JPH0593235A (en) Gallium-microalloyed nial intermetallic compound having improved ductility
US5882446A (en) Heat treatment process for material bodies made of nickel base superalloys
JPH0211660B2 (en)
CN114934211B (en) Nickel-base superalloy, nickel-base superalloy powder, and nickel-base superalloy component
JP3679973B2 (en) Single crystal Ni-base heat-resistant alloy, turbine blade and gas turbine
EP1038982A1 (en) Single crystal superalloy articles with reduced grain recrystallization