JPH0724570B2 - Algae culture method - Google Patents

Algae culture method

Info

Publication number
JPH0724570B2
JPH0724570B2 JP2330534A JP33053490A JPH0724570B2 JP H0724570 B2 JPH0724570 B2 JP H0724570B2 JP 2330534 A JP2330534 A JP 2330534A JP 33053490 A JP33053490 A JP 33053490A JP H0724570 B2 JPH0724570 B2 JP H0724570B2
Authority
JP
Japan
Prior art keywords
culture
culture tank
tank
pipe
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2330534A
Other languages
Japanese (ja)
Other versions
JPH04200381A (en
Inventor
紳一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2330534A priority Critical patent/JPH0724570B2/en
Publication of JPH04200381A publication Critical patent/JPH04200381A/en
Publication of JPH0724570B2 publication Critical patent/JPH0724570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/24Heat exchange systems, e.g. heat jackets or outer envelopes inside the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • C12M29/22Oxygen discharge
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、クロレラ、スピルリナ等の微細藻類を無菌的
に培養するための方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for aseptically culturing microalgae such as Chlorella and Spirulina.

〔従来の技術〕[Conventional technology]

クロレラ、スピルリナ等、医薬品、食品、飼料等に利用
可能な微細藻類の人工培養は早くから検討され、そのた
めの培養装置も多数提案されている。その主なものは次
のとおりである。
Artificial culture of microalgae, such as chlorella and spirulina, which can be used for medicines, foods, feeds, etc., has been studied from an early stage, and many culture devices for that purpose have been proposed. The main ones are as follows.

解放式池培養法 開放式循環培養法 開放式流路型培養法 ガラス扁平瓶培養法 縦型円筒培養法 これらのうち、大量培養が可能な開放式のものは他の藻
類の混入や雑菌汚染が生じ易く、収穫される藻類の品質
や収量が安定しないという欠点がある。また、太陽光を
利用する培養法では、受光面を広げるためには水平方向
に培養装置を広げなければならないが、受光面を培養装
置の設置面積以上に広くすることはできないから、大規
模培養を行うためには広大な敷地を必要とする。ガラス
扁平瓶を用いる培養法は無菌培養が可能であるが、大量
培養ができない。
Open pond culture method Open circulation culture method Open flow channel culture method Glass flat bottle culture method Vertical cylindrical culture method Among these, the open type that allows large-scale culture is contaminated with other algae and contamination by various bacteria. It has the drawback that it tends to occur and the quality and yield of the harvested algae are not stable. Further, in the culturing method using sunlight, in order to expand the light-receiving surface, the culture device must be expanded horizontally, but since the light-receiving surface cannot be made larger than the installation area of the culture device, large-scale culture is possible. To do that requires a vast site. Aseptic culture is possible with the culture method using a glass flat bottle, but mass culture is not possible.

縦型円筒培養法は、ガラス、アクリル樹脂等、光透過性
材料でできた円筒状培養槽に空気を吹込み光を照射しな
がら培養するので、大量培養が可能であり、また異種藻
類や雑菌で汚染されにくいという特長がある。しかしな
がら、培養中の藻類の沈殿や培養槽内面への藻体付着を
防ぐために激しい通気攪拌が必要である。ところが通気
量を多くすると、培養槽上部の気相部分の槽壁に藻類が
付着蓄積し、放置すれば収量低下を招くから、頻繁な清
掃が必要である。さらに、通気は著量の水分蒸発と発泡
の原因となる。発泡は、スピルリナ、ポルフィリディウ
ムのように藻体外に多糖類を放出するものの培養におい
ては特に顕著であり、泡と一緒に藻体が培養槽外に排出
され、収量低下と汚染の原因となる。
In the vertical cylindrical culture method, a cylindrical culture tank made of a light-transmitting material such as glass or acrylic resin is blown with air to perform culture while irradiating light, so that large-scale culture is possible, and heterogeneous algae and other bacteria are also available. It has the feature that it is not easily contaminated with. However, vigorous agitation is required to prevent precipitation of algae during culture and adhesion of alga bodies to the inner surface of the culture tank. However, if the amount of aeration is increased, algae adhere to and accumulate on the tank wall in the gas phase portion above the culture tank, and if left unattended, the yield will decrease, so frequent cleaning is necessary. In addition, aeration causes significant water evaporation and foaming. Effervescence is particularly prominent in the culture of substances that release polysaccharides outside the algal cells, such as Spirulina and porphyridium, and the algal cells are discharged out of the culture tank along with the bubbles, causing a decrease in yield and contamination. .

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

そこで本発明は、縦型円筒培養法の上述の問題点を解決
し、通気量が少なくて済み、大量培養も可能な藻類培養
方法を提供することを目的とするものである。
Therefore, an object of the present invention is to solve the above-mentioned problems of the vertical cylindrical culture method, to provide an algae culture method that requires a small amount of aeration and is capable of large-scale culture.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために成功した本発明は、透明材料
からなる円筒状の培養槽を垂直に配置し、培養槽底部か
ら槽内に通気する手段および培養槽周囲から培養槽内を
照明する手段を付設してなる回分式培養装置により微細
藻類を培養するに当たり、培養槽よりも小径の筒体から
なる還流管を培養槽に並べて垂直に配置し、還流管頂部
に気液分離室を設けて培養槽頂部と気液分離室をパイプ
で連通させ、かつ培養槽底部と還流管底部をパイプで連
通させ、培養槽全体を培養液で満たした状態で上記通気
手段により培養槽底部から槽内に通気して炭酸ガス供給
と槽内攪拌を行いつつ培養を続けることを特徴とする。
The present invention succeeded in achieving the above-mentioned object is that a cylindrical culture tank made of a transparent material is vertically arranged, a means for aerating the inside of the culture tank from the bottom of the culture tank and a means for illuminating the inside of the culture tank from around the culture tank. When culturing microalgae with a batch-type culturing apparatus additionally provided, a reflux tube consisting of a cylindrical body having a diameter smaller than that of the culture tank is arranged vertically in the culture tank, and a gas-liquid separation chamber is provided at the top of the reflux tube. The top of the culture tank and the gas-liquid separation chamber are connected by a pipe, and the bottom of the culture tank and the bottom of the reflux pipe are connected by a pipe. It is characterized in that the culture is continued while supplying carbon dioxide gas and stirring in the tank by aeration.

〔作用〕[Action]

本発明の培養法に使用する装置は、従来の縦型円筒培養
法に使用するものと同様の通気手段および照明手段を付
設した透明円筒状培養槽に、培養槽よりも小径の筒体か
らなる還流管を培養槽に並べて垂直に配置し、該還流管
の頂部に気液分離室を設けて培養槽頂部と気液分離室を
パイプで連通させ、かつ培養槽底部と還流管底部をパイ
プで連通させておく。そしてこの装置を、通気攪拌状態
において培養槽全体が培養液で満たされるようにし、培
養槽上部に気相が残っていない状態にして使用する。こ
の状態で周囲から光を照射し培養を開始すると、槽底部
から吹き込まれた空気の泡は培養液中を上昇し、培養槽
頂部からパイプを通って気液分離室に入る。このとき、
培養槽が培養液で満たされているため、エアリフト効果
によって培養液も少しずつパイプを通って気液分離室に
送られる。
The apparatus used in the culture method of the present invention is a transparent cylindrical culture tank provided with a ventilation means and a lighting means similar to those used in the conventional vertical cylindrical culture method, and comprises a tubular body having a diameter smaller than that of the culture tank. The reflux tube is arranged vertically in line with the culture tank, a gas-liquid separation chamber is provided at the top of the reflux tube to connect the culture tank top and the gas-liquid separation chamber with a pipe, and the culture tank bottom and the reflux tube bottom are connected with a pipe. Keep in communication. Then, this apparatus is used in a state where aeration and stirring are performed so that the entire culture tank is filled with the culture solution and no gas phase remains in the upper portion of the culture tank. When the culture is started by irradiating light from the surroundings in this state, air bubbles blown from the bottom of the tank rise in the culture solution and enter the gas-liquid separation chamber from the top of the culture tank through the pipe. At this time,
Since the culture tank is filled with the culture solution, the culture solution is gradually sent to the gas-liquid separation chamber through the pipe due to the airlift effect.

気液分離室は、上は排気管により大気に通じており、下
は還流管に通じている。ここに入った培養液は、自重に
より還流管を下方に流れ、パイプを通って培養槽底部に
戻る。気泡はその過程で培養液から分離され、気液分離
室の上部に集まり、破泡後、気体だけが排気管を通って
大気中に放出される。気液分離室は気泡破壊に十分な空
間を有するものとするが、培養液の発泡がそれほど顕著
でない場合、気液分離室としては特別の材料による
“室”を設けず還流管の頂部をそれに利用することもで
きる。
The upper part of the gas-liquid separation chamber communicates with the atmosphere through an exhaust pipe, and the lower part communicates with the reflux pipe. The culture solution that has entered here flows downward in the reflux pipe due to its own weight, and returns to the bottom of the culture tank through the pipe. Bubbles are separated from the culture medium in the process, gather in the upper part of the gas-liquid separation chamber, and after the bubbles are broken, only gas is released into the atmosphere through the exhaust pipe. The gas-liquid separation chamber shall have sufficient space for bubble destruction, but when the foaming of the culture solution is not so remarkable, a "chamber" made of a special material is not provided as the gas-liquid separation chamber and the top of the reflux pipe is used for it. It can also be used.

培養液は上述のようにして培養槽と気液分離室との間を
循環するが、汚れた周辺大気とは接触しないから、清浄
な環境下での安定した藻類増殖を可能にする。
Although the culture solution circulates between the culture tank and the gas-liquid separation chamber as described above, it does not come into contact with the contaminated ambient air, which enables stable algae growth in a clean environment.

〔実施例〕〔Example〕

図示した培養装置において、培養槽1は直立させたアク
リル樹脂製円筒の両端を閉鎖してなる閉鎖構造の槽の底
板2に通気用の散気板3を取り付け、温度調節用の通水
管4を槽内適用箇所に固定してなるものである。
In the culture apparatus shown in the figure, the culture tank 1 has a bottom plate 2 of a closed structure in which both ends of an upright acrylic resin cylinder are closed, and a diffuser plate 3 for ventilation is attached to the bottom plate 2 of the tank, and a water passage pipe 4 for temperature control is attached. It is fixed to the applicable location in the tank.

散気板3は多孔質セラミックスからなり、パイプ5で給
気装置6に接続されている。給気装置6は、空気圧送用
コンプレッサー7、炭酸ガス供給用の炭酸ガスボンベ
8、通気量調節のための流量調節装置9、通気清浄化用
のエアフィルター10等からなり、炭酸ガス濃度を一定の
水準に高めた空気を散気板3に一定流量で供給すること
ができる。
The air diffuser plate 3 is made of porous ceramics and is connected to the air supply device 6 by a pipe 5. The air supply device 6 is composed of a compressor 7 for air pressure feeding, a carbon dioxide gas cylinder 8 for supplying carbon dioxide gas, a flow rate control device 9 for adjusting the air flow rate, an air filter 10 for cleaning the air flow, etc., and has a constant carbon dioxide gas concentration. It is possible to supply the air having a raised level to the diffuser plate 3 at a constant flow rate.

通水管4は、温度調節可能な給水装置11に接続されてお
り、給水装置11から一定温度の冷水または温水の供給を
受けて培養液を冷却または加温し、培養液温度を好適値
に保つ。
The water pipe 4 is connected to a temperature-adjustable water supply device 11, receives cold water or hot water of a constant temperature from the water supply device 11 to cool or warm the culture solution, and keeps the culture solution temperature at a suitable value. .

培養槽1のすぐ側には培養槽1と平行な配置で直立する
還流管12があり、該還流管12は、培養槽1の頂部天板13
よりも高い位置において、天板13との間をパイプ14でつ
ながれている。また、還流管12と培養槽1底部との間
は、パイプ15により連結されている。
Immediately next to the culture tank 1, there is a reflux tube 12 which stands upright in parallel with the culture tank 1. The reflux tube 12 is a top plate 13 of the culture tank 1.
At a position higher than that, a pipe 14 is connected to the top plate 13. A pipe 15 is connected between the reflux tube 12 and the bottom of the culture tank 1.

パイプ14は、還流管12との連結部16に還流管12とほぼ同
径の太い管17が用いられていて、この部分および管取り
付け部における還流管12が、気液分離室18を構成してい
る。
In the pipe 14, a thick pipe 17 having almost the same diameter as that of the reflux pipe 12 is used in a connecting portion 16 with the reflux pipe 12, and the reflux pipe 12 in this portion and the pipe mounting portion constitutes a gas-liquid separation chamber 18. ing.

還流管12を構成している管は気液分離室18よりも上の部
分においては排気管19になっており、先端付近が水平方
向に曲げられて浮遊塵埃が侵入しにくいようになってい
る。
The pipe constituting the reflux pipe 12 is an exhaust pipe 19 above the gas-liquid separation chamber 18, and the vicinity of the tip is bent horizontally to prevent suspended dust from entering. .

培養槽1の周囲には蛍光灯(図示してない)がほぼ等間
隔で配置されており、光透過性の培養槽1の中の培養液
を照明することができる。
Fluorescent lamps (not shown) are arranged around the culture tank 1 at substantially equal intervals so that the culture solution in the light-transmissive culture tank 1 can be illuminated.

次に、この培養装置を使用したクロレラ(クロレラ・ピ
レノイドーサ)の培養実験を説明する。培養条件は下記
のとおりとした。
Next, a culture experiment of chlorella (Chlorella pyrenoidosa) using this culture device will be described. The culture conditions were as follows.

培養液温度:27℃ 照度:20klux(培養槽内壁面における測定値) 初期藻体濃度:0.4g/ 通気量:8.8/min/培養液100 吹込み空気の炭酸ガス濃度:5% 培養液(MC培地)組成: KNO3 125mg MgSO4・7H2O 125mg KH2PO4 125mg Fe混液 0.1ml A5金属混液 0.1ml 蒸留水 99.8ml pH 7.2 Fe混液 FeSO4・7H2O 1g 蒸留水 500ml H2SO4 2滴 A5金属混液 H3BO3 286mg MnSO4・7H2O 250mg ZnSO4・H2O 22.2mg CuSO4・H2O 7.9mg Na2MOO4 2.1mg 蒸留水 100ml 上記培養液を培養槽1全体に満たして培養を開始する
と、散気板3からの空気吹込みにより生じた気泡ととも
に培養液が少しずつ頂部連結パイプ14を経由して気液分
離室18に送られ、ここで気液が分離され、空気は排気管
19から大気中に放出され、培養液は還流管12を下降して
パイプ15に入り、培養槽1に還流された。培養槽1内は
上昇する気泡によりよく攪拌され、壁面で増殖したり沈
殿したりするクロレラ細胞はほとんど認められなかっ
た。
Culture solution temperature: 27 ℃ Illuminance: 20klux (measured value on the inner wall of the culture tank) Initial algal cell concentration: 0.4g / Aeration rate: 8.8 / min / Culture solution 100 Carbon dioxide concentration in the blown air: 5% Culture solution (MC Medium) Composition: KNO 3 125mg MgSO 4・ 7H 2 O 125mg KH 2 PO 4 125mg Fe mixed solution 0.1ml A 5 metal mixed solution 0.1ml Distilled water 99.8ml pH 7.2 Fe mixed solution FeSO 4 / 7H 2 O 1g Distilled water 500ml H 2 SO 4 2 drops A 5 Metal mixture H 3 BO 3 286mg MnSO 4・ 7H 2 O 250mg ZnSO 4・ H2O 22.2mg CuSO 4・ H 2 O 7.9mg Na 2 M O O 4 2.1mg Distilled water 100ml When the whole 1 is filled and the culture is started, the culture solution is gradually sent to the gas-liquid separation chamber 18 via the top connecting pipe 14 together with the air bubbles generated by the air blowing from the diffuser plate 3, and the gas-liquid separation chamber 18 is supplied there. Is separated, the air is exhaust pipe
The culture solution was released into the atmosphere from 19, and the culture solution descended through the reflux pipe 12 into the pipe 15 and was refluxed to the culture tank 1. The inside of the culture tank 1 was well stirred by the rising bubbles, and almost no chlorella cells proliferating or settling on the wall surface were observed.

2日に一度、培養液を採取して分析しながら、10日間培
養を続けた。
Culture was continued for 10 days while collecting and analyzing the culture solution once every two days.

比較例として、気液分離室と還流管を持たず培養槽内培
養液の液面上で気泡破壊を生じさせるほかは同様の構造
の培養槽を用い、同様の実験を行なった。なお、照明条
件は同一にしたが通気量は4倍量にし、通気量を増やす
ため培養液量は90%量に制限された。
As a comparative example, the same experiment was performed using a culture tank having the same structure except that the gas-liquid separation chamber and the reflux tube were not provided and bubble destruction was caused on the liquid surface of the culture solution in the culture tank. The lighting conditions were the same, but the aeration rate was set to 4 times, and the culture volume was limited to 90% in order to increase the aeration rate.

比較例による培養においては、実施例よりも激しい通気
攪拌を行なったにもかかわらず、培養槽の培養液液面よ
り上の部分に付着して増殖する藻体と沈殿する藻体が認
められた。
In the culture according to the comparative example, algal cells that adhered and proliferated and precipitated in the part above the liquid surface of the culture liquid in the culture tank were observed, even though vigorous agitation was performed than in the examples. .

実験結果を表1および表2に示す。The experimental results are shown in Tables 1 and 2.

表2 藻体濃度の変化(g/) 培養日数 本実施例 比較例 0 0.4 0.4 2 1.3 1.2 4 2.4 2.1 6 3.4 2.8 8 4.3 3.5 10 5.2 4.0 〔発明の効果〕 上述のように、培養槽内を培養液で満たして通気攪拌
し、培養槽とは別の気液分離室で気泡破壊を生じさせる
ようにした本発明によれば、通気量を減らして通気攪拌
を弱くしても培養槽槽壁に固着する藻体の蓄積がなく、
培養槽の実質的容量も増えて、きわめて効率のよい培養
を行うことができる。また、通気量をそれほど多くする
必要がないから、泡立ち易い藻類の培養においても破泡
に苦労することはない。
Table 2 Changes in algal cell concentration (g /) Number of days of culture Comparative example 0 0.4 0.4 2 1.3 1.2 4 2.4 2.1 6 3.4 2.8 8 4.3 3.5 10 5.2 4.0 [Effect of the invention] According to the present invention, which is filled with a culture solution and aerated and stirred so as to cause bubble destruction in a gas-liquid separation chamber different from the culture tank, the culture tank wall is reduced even if the aeration amount is reduced to weaken the aeration and stirring. There is no accumulation of algal cells that stick to the
The substantial capacity of the culture tank is also increased, and extremely efficient culture can be performed. Further, since it is not necessary to increase the amount of aeration so much, there is no difficulty in breaking bubbles even when culturing algae that easily foams.

実施例の結果に基づき培養槽設置単位面積当たりの藻体
生産能力を計算すると34.1g/m2/日になり、これは、現
在東南アジアで行われている開放式円形培養槽の平均的
な藻体生産能力すなわち約15g/m2/日の2倍以上であ
り、本発明培養方法の有利なことがわかる。
When the algal cell production capacity per unit area of the culture tank was calculated based on the results of the examples, it was 34.1 g / m 2 / day, which is the average alga of the open-type circular culture tank currently being conducted in Southeast Asia. The body production capacity, ie, about 15 g / m 2 / day or more, is twice or more, which shows that the culture method of the present invention is advantageous.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明実施例に使用した培養装置の概略を示す斜
視図である。 1:培養槽、3:散気板 6:給気装置、12:還流管 18:気液分離室、19:排気管
The drawings are perspective views showing the outline of the culture apparatus used in the examples of the present invention. 1: Culture tank, 3: Air diffuser 6: Air supply device, 12: Reflux pipe 18: Gas-liquid separation chamber, 19: Exhaust pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透明材料からなる円筒状の培養槽を垂直に
配置し、培養槽底部から槽内に通気する手段および培養
槽周囲から培養槽内を照明する手段を付設してなる回分
式培養装置により微細藻類を培養するに当たり、培養槽
よりも小径の筒体からなる還流管を培養槽に並べて垂直
に配置し、還流管頂部に気液分離室を設けて培養槽頂部
と気液分離室をパイプで連通させ、かつ培養槽底部と還
流管底部をパイプで連通させ、培養槽全体を培養液で満
たした状態で上記通気手段により培養槽底部から槽内に
通して炭酸ガス供給と槽内攪拌を行いつつ培養を続ける
ことを特徴とする藻類培養方法。
1. A batch-type culture in which a cylindrical culture tank made of a transparent material is vertically arranged, and a means for aerating the bottom of the culture tank into the tank and a means for illuminating the inside of the culture tank from around the culture tank are additionally provided. When culturing microalgae with the device, a reflux tube consisting of a cylinder with a diameter smaller than that of the culture tank is arranged vertically in the culture tank, and a gas-liquid separation chamber is provided at the top of the reflux tube to establish the top of the culture tank and the gas-liquid separation chamber. With the pipe, and the bottom of the culture vessel and the bottom of the reflux tube are communicated with the pipe, and while the entire culture vessel is filled with the culture solution, the carbon dioxide gas is supplied from the bottom of the culture vessel to the inside of the vessel by the aeration means. A method for cultivating algae, which comprises continuing culturing while stirring.
JP2330534A 1990-11-30 1990-11-30 Algae culture method Expired - Lifetime JPH0724570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2330534A JPH0724570B2 (en) 1990-11-30 1990-11-30 Algae culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2330534A JPH0724570B2 (en) 1990-11-30 1990-11-30 Algae culture method

Publications (2)

Publication Number Publication Date
JPH04200381A JPH04200381A (en) 1992-07-21
JPH0724570B2 true JPH0724570B2 (en) 1995-03-22

Family

ID=18233712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2330534A Expired - Lifetime JPH0724570B2 (en) 1990-11-30 1990-11-30 Algae culture method

Country Status (1)

Country Link
JP (1) JPH0724570B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010077869A (en) * 2000-02-07 2001-08-20 최상진 bioreactor
DE102004019234B3 (en) * 2004-04-16 2005-11-24 Sartorius Ag Bioreactor for the cultivation of microorganisms
JP5440784B2 (en) * 2010-01-18 2014-03-12 株式会社Ihi Bioreactor and operating method thereof
JP6065216B2 (en) * 2013-04-15 2017-01-25 清水建設株式会社 Air supply system and microorganism culture apparatus equipped with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118883A (en) * 1975-04-10 1976-10-19 Sanraku Inc Process for cultivation microorganisms aerobically and its apparatus
JPS5320480A (en) * 1976-08-06 1978-02-24 Nakajima Sakao Photosynthesis utilizing culture medium particle

Also Published As

Publication number Publication date
JPH04200381A (en) 1992-07-21

Similar Documents

Publication Publication Date Title
JP3462508B2 (en) Microalgae culture equipment
TW200302274A (en) Cell-cultivating device
EP1127482A3 (en) Apparatus for culturing plantlets and process for culturing plantlets by using said apparatus
JPS6023834B2 (en) fermentation vessel
IL104385A (en) Method and apparatus for growing biomass particles
JPH0724570B2 (en) Algae culture method
JPH07155167A (en) Culture device for fine alga
JPH05137563A (en) Culture system for algae
KR100252382B1 (en) Bioreactor of ballon type aeration for cell culture
JP3035384U (en) Incubator
CN214665068U (en) Full-automatic air purification device based on microalgae plant system
JPH0655126B2 (en) Circulating culture device
JPH10150974A (en) Apparatus for culturing photosynthetic microorganism and culturing method
JPH04504374A (en) Method and apparatus for biologically treating wastewater with microorganisms
CN1320097C (en) Culturing system of built-in light biological reactor of plant tissue cutter
JPH0634699B2 (en) Animal cell culture method and device
JPH0787955A (en) Method for immobilizing co2 by photosynthesis and device therefor
RU2732225C1 (en) Method for cultivation of phototrophic microorganisms
JPH0785712B2 (en) Algae culture device
JPH06233639A (en) Liquid culture process for scale of lily or the like and culture device therefor
JPH0543900U (en) Raceway type algae culture device
JPS63164879A (en) Bubble-tower perfusion culture and apparatus therefor
RU1784043C (en) Laboratory fermenter
JP4389500B2 (en) Bioreactor
CN2729076Y (en) Multifunction automatic adjustable micro-algal cell culturing reactor