JPH07245269A - Plasma treatment device and method - Google Patents

Plasma treatment device and method

Info

Publication number
JPH07245269A
JPH07245269A JP3487994A JP3487994A JPH07245269A JP H07245269 A JPH07245269 A JP H07245269A JP 3487994 A JP3487994 A JP 3487994A JP 3487994 A JP3487994 A JP 3487994A JP H07245269 A JPH07245269 A JP H07245269A
Authority
JP
Japan
Prior art keywords
cathode electrode
plasma
plasma processing
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3487994A
Other languages
Japanese (ja)
Inventor
Satoshi Takagi
智 高木
Atsushi Yamagami
敦士 山上
Nobuyuki Okamura
信行 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3487994A priority Critical patent/JPH07245269A/en
Publication of JPH07245269A publication Critical patent/JPH07245269A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a plasma treatment device and method which can uniformly perform plasma treatment of a relatively large-area substrate at a high treatment rate which was not attained by a conventional plasma process. CONSTITUTION:In a plasma treatment device where a cathode electrode 2 and an opposing electrode opposing the cathode electrode are provided in a reaction container whose pressure can be reduced, plasma is generated between the cathode electrode and the opposing electrode by applying a high-frequency power whose frequency is equal to and more than 30MHz and is equal to and less than 300MHz to the cathode electrode with capacitance coupling via a matching circuit 8, and plasma treatment is performed onto a substrate to be treated which is laid out on the opposing electrode, soft magnetic material 12 is laid out at one part of a high-frequency transmission path between the cathode electrode and/or the matching circuit and the cathode electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプラズマ処理装置及び処
理方法に係わり、特に半導体デバイスとしての電子写真
用感光体デバイス、画像入力用ラインセンサー、撮像デ
バイス、光起電力デバイス等に有用な結晶質または非単
結晶質の機能性堆積膜を好適に形成し得るプラズマCV
D装置及び成膜方法、或いは半導体デバイスや光学素子
としての絶縁膜、金属配線等を好適に形成し得るスパッ
タ装置及び成膜方法、或いは半導体デバイス等のエッチ
ング装置及び方法等のプラズマ処理装置及び処理方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus and a processing method, and more particularly to a crystalline material useful as a photoconductor device for electrophotography as a semiconductor device, a line sensor for image input, an imaging device, a photovoltaic device and the like. Alternatively, a plasma CV capable of suitably forming a non-single crystalline functional deposited film
D apparatus and film forming method, sputtering apparatus and film forming method capable of suitably forming an insulating film, a metal wiring, etc. as a semiconductor device or an optical element, or plasma processing apparatus and processing such as an etching apparatus and method for a semiconductor device Regarding the method.

【0002】[0002]

【従来の技術】半導体等の製造に使用されているプラズ
マ処理にはそれぞれの用途に応じて様々な方法がある。
例えば、プラズマCVD法を用いた酸化膜、窒化膜及び
アモルファスシリコン系の半導体膜等の成膜、スパッタ
リング法を用いた金属配線膜等の成膜、またはエッチン
グによる微細加工技術等、様々にプラズマの特徴を活用
した装置、方法が使用されている。更に、近年、膜質及
び処理能力向上に対する要望も強くなっており様々な工
夫も検討されている。特に高周波電力を用いたプラズマ
プロセスは、放電の安定性や酸化膜、窒化膜の絶縁性の
材料にも適用できる等の利点から幅広く使用されてい
る。
2. Description of the Related Art There are various methods for plasma processing used in the manufacture of semiconductors and the like according to their respective applications.
For example, various kinds of plasma such as an oxide film, a nitride film and an amorphous silicon-based semiconductor film formed by plasma CVD method, a metal wiring film formed by sputtering method, or a fine processing technique by etching are used. Devices and methods that utilize the characteristics are used. Further, in recent years, there has been a strong demand for improvement in film quality and processing capacity, and various devices have been studied. In particular, plasma processes using high-frequency power are widely used because of advantages such as stability of discharge and application to insulating materials such as oxide films and nitride films.

【0003】従来、プラズマCVD等のプラズマプロセ
スに用いられる放電用高周波電源の発振周波数は13.
56MHzが一般的である。堆積膜形成に一般的に用い
られているプラズマCVD装置の一例を図5に示す。図
5は、円筒状の電子写真用感光体用のアモルファスシリ
コン膜(以下a−Si膜と記す)の成膜装置であり、こ
れを用いてa−Si膜の成膜方法を説明する。
Conventionally, the oscillating frequency of a high frequency power source for discharge used in plasma processes such as plasma CVD is 13.
56 MHz is common. FIG. 5 shows an example of a plasma CVD apparatus generally used for forming a deposited film. FIG. 5 shows a film forming apparatus for forming an amorphous silicon film (hereinafter referred to as an a-Si film) for a cylindrical electrophotographic photosensitive member, and a film forming method for an a-Si film will be described using the film forming apparatus.

【0004】減圧可能な反応容器1内に、絶縁材料11
により反応容器1とは電気的に絶縁された円筒状のカソ
ード電極2及び対向電極としての円筒状の被成膜基体3
が配置されている。被成膜基体3は、モータMにより駆
動される回転機構を有する基体ホルダー4に保持され、
内部の加熱ヒータ5により、その内側より所定の温度に
加熱される。高周波電源7は整合回路8を介してカソー
ド電極2に接続されている。9は真空排気手段、10は
ガス供給手段である。
Insulating material 11 is placed in reaction vessel 1 capable of depressurizing.
A cylindrical cathode electrode 2 electrically insulated from the reaction vessel 1 by the above, and a cylindrical film-forming substrate 3 as a counter electrode.
Are arranged. The film formation substrate 3 is held by a substrate holder 4 having a rotation mechanism driven by a motor M,
It is heated to a predetermined temperature from the inside by the heater 5 inside. The high frequency power supply 7 is connected to the cathode electrode 2 via a matching circuit 8. Reference numeral 9 is a vacuum exhaust means, and 10 is a gas supply means.

【0005】反応容器1内を真空排気手段9によって高
真空まで排気した後、ガス供給手段10によってSiH
4,Si26,CH4,C26などの原料ガス及びB26
などのドーピングガスを導入し、数10mTorrから
数Torrの圧力に維持する。高周波電源7より13.
56MHzの高周波電力をカソード電極2に供給して、
カソード電極2と被成膜基体3との間にプラズマを発生
させ原料ガスを分解することにより、加熱ヒータ5によ
り200℃〜350℃程度に加熱された被成膜基体3上
にa−Si膜を堆積する。
After the inside of the reaction vessel 1 has been evacuated to a high vacuum by the vacuum evacuation means 9, SiH is supplied by the gas supply means 10.
Source gas such as 4 , Si 2 H 6 , CH 4 , C 2 H 6 and B 2 H 6
A doping gas such as is introduced and the pressure is maintained at several tens of mTorr to several Torr. From high frequency power supply 7.
By supplying high-frequency power of 56 MHz to the cathode electrode 2,
An a-Si film is formed on the film-forming substrate 3 heated by the heater 5 to about 200 ° C. to 350 ° C. by generating plasma between the cathode electrode 2 and the film-forming substrate 3 to decompose the raw material gas. Deposit.

【0006】以上の成膜方法で電子写真用感光体の性能
を満足するa−Si膜を得るための堆積速度は最大でも
6(μm/時間)程度であり、それ以上堆積速度を上げ
ると感光体としての特性を得ることができなくなる。ま
た、電子写真用感光体としてa−Si膜を用いる場合、
帯電能を得るために少なくとも20〜30μm程度の膜
厚が必要であることから、電子写真用感光体の製造には
長時間を要することになる。
The deposition rate for obtaining an a-Si film satisfying the performance of the electrophotographic photoreceptor by the above film forming method is about 6 (μm / hour) at the maximum. It becomes impossible to obtain the physical characteristics of the body. When an a-Si film is used as the electrophotographic photoreceptor,
Since a film thickness of at least about 20 to 30 μm is required to obtain the charging ability, it takes a long time to manufacture the electrophotographic photoreceptor.

【0007】ところで、近年、平行平板型のプラズマC
VD装置を用い、13.56MHz以上の高周波電源を
用いたプラズマCVD法に関する報告(Plasma Chemist
ry and Plasma Processing,Vol7,No 3,(1987)p267-27
3)がなされ、放電周波数を従来の13.56MHzよ
り高くすることで、堆積膜の性能を落とさずに堆積速度
を向上させることができる可能性が示され、注目されて
いる。また、この放電周波数を高くする試みはスパッタ
リング等でも検討されている。
By the way, in recent years, parallel plate type plasma C
Report on plasma CVD method using VD equipment and high frequency power supply of 13.56MHz or more (Plasma Chemist
ry and Plasma Processing, Vol7, No 3, (1987) p267-27
3) has been performed, and it has been noted that increasing the discharge frequency higher than the conventional 13.56 MHz can improve the deposition rate without deteriorating the performance of the deposited film, and is drawing attention. Attempts to increase the discharge frequency have also been studied in sputtering and the like.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは、上述し
たような従来のプラズマCVD法及び装置を用い、良質
膜の堆積速度向上を目的として、13.56MHzより
高い周波数の高周波電力を用いて検討を行った。
DISCLOSURE OF THE INVENTION The present inventors have used the conventional plasma CVD method and apparatus as described above, and have used a high frequency power having a frequency higher than 13.56 MHz for the purpose of improving the deposition rate of a good quality film. I examined it.

【0009】その結果、周波数を上げることで確かに目
的通り良質膜を従来より高い堆積速度で作製することが
できたが、新たな問題が発生した。即ち、放電周波数を
上げることでプラズマが遍在化して堆積速度に不均一が
生じ、その結果、電子写真用感光体のような比較的大面
積の被加工体においては、実用上問題となる膜厚ムラ
(例えば電子写真用感光体の場合±20%以上の膜厚ム
ラ)が発生した。
As a result, by increasing the frequency, it was possible to produce a good quality film at a higher deposition rate than the conventional one, but a new problem occurred. That is, by increasing the discharge frequency, the plasma becomes ubiquitous and the deposition rate becomes non-uniform, and as a result, in a relatively large-area workpiece such as an electrophotographic photoreceptor, a film that becomes a practical problem. Thickness unevenness (for example, film thickness unevenness of ± 20% or more in the case of electrophotographic photoreceptor) occurred.

【0010】このような膜厚ムラは、電子写真用感光体
のみならず、画像入力用ラインセンサー、撮像デバイ
ス、光起電力デバイス等に用いられる結晶質または非単
結晶質の機能性堆積膜を形成する場合にも大きな問題と
なる。またドライエッチング、スパッタリング等の他の
プラズマプロセスにおいても、放電周波数を上げた場合
に同様の処理ムラが生じ、実用上大きな問題となってい
る。
Such film thickness unevenness is caused not only by the electrophotographic photoconductor but also by the crystalline or non-single crystalline functional deposited film used in the image input line sensor, the imaging device, the photovoltaic device and the like. It is also a big problem when forming. Also in other plasma processes such as dry etching and sputtering, similar process unevenness occurs when the discharge frequency is increased, which is a serious problem in practical use.

【0011】本発明の目的は、上述のような従来の問題
点を克服し、従来のプラズマプロセスでは達成できなか
った高い処理速度で、比較的大面積の基体を均一にプラ
ズマ処理することが可能なプラズマ処理装置及び処理方
法を提供することにある。
An object of the present invention is to overcome the above-mentioned conventional problems and to uniformly perform plasma processing on a relatively large-area substrate at a high processing speed which cannot be achieved by the conventional plasma processing. Another object of the present invention is to provide a different plasma processing apparatus and processing method.

【0012】[0012]

【課題を解決するための手段】本発明のプラズマ装置
は、減圧可能な反応容器内に、カソード電極と該カソー
ド電極に対向する対向電極とを設け、前記カソード電極
に30MHz以上300MHz以下の高周波電力を整合
回路を介して容量結合にて印加して前記カソード電極と
対向電極間にプラズマを発生させ、前記対向電極上に配
置した被処理基体上にプラズマ処理を行うプラズマ処理
装置であって、前記カソード電極及び/又は前記整合回
路と前記カソード電極間の高周波伝送経路の一部に軟磁
性材料を配したことを特徴とする。
In a plasma apparatus of the present invention, a cathode electrode and a counter electrode facing the cathode electrode are provided in a depressurizable reaction vessel, and the cathode electrode has a high frequency power of 30 MHz or more and 300 MHz or less. A plasma processing apparatus which applies plasma by capacitive coupling via a matching circuit to generate plasma between the cathode electrode and the counter electrode, and performs plasma processing on a substrate to be processed arranged on the counter electrode, A soft magnetic material is arranged in a part of a high frequency transmission path between the cathode electrode and / or the matching circuit and the cathode electrode.

【0013】本発明のプラズマ処理方法は、減圧可能な
反応容器内で、高周波電力を整合回路を介して容量結合
にて印加するカソード電極と対向する電極間にプラズマ
を発生させ、電極上に配置した被処理基体上にプラズマ
処理を行うプラズマ処理方法において、カソード電極及
び/又は整合回路とカソード電極間の高周波伝送経路の
一部に軟磁性材料を配し、前記高周波電力の周波数を3
0MHz以上300MHz以下とすることを特徴とす
る。
According to the plasma processing method of the present invention, plasma is generated between electrodes facing a cathode electrode to which high-frequency power is capacitively applied through a matching circuit in a reaction vessel capable of depressurizing, and the plasma is placed on the electrodes. In the plasma processing method of performing plasma processing on the substrate to be processed, a soft magnetic material is disposed in a part of the high frequency transmission path between the cathode electrode and / or the matching circuit and the cathode electrode, and the frequency of the high frequency power is set to 3
It is characterized by being set to 0 MHz or more and 300 MHz or less.

【0014】前記カソード電極は円筒状であること、さ
らには前記被処理基体は円筒状であることを特徴とす
る。
The cathode electrode has a cylindrical shape, and the substrate to be treated has a cylindrical shape.

【0015】また、前記カソード電極と前記被処理基体
が互いに対向する平板であることを特徴とする。
The cathode electrode and the substrate to be treated are flat plates facing each other.

【0016】[0016]

【作用】本発明者らは、従来のプラズマ処理装置及び処
理方法における前述の問題点を鋭意検討した結果、従来
より高い放電周波数においては、装置の寸法が高周波の
波長の1/10以上となると定在波の影響が出始め、そ
の結果として処理ムラが発生することが分かった。
The inventors of the present invention have made earnest studies on the above-mentioned problems in the conventional plasma processing apparatus and processing method. As a result, at a higher discharge frequency than the conventional one, the size of the apparatus becomes 1/10 or more of the high frequency wavelength. It was found that the effect of standing waves began to appear, resulting in uneven processing.

【0017】この問題を解決し、プラズマの均一化及び
それに基づくプラズマ処理の均一化を達成するために行
った実験及び得られた知見を以下に述べる。
Experiments carried out to solve this problem and achieve uniform plasma and uniform plasma processing based thereon will be described below.

【0018】図5に示した装置を用い、高周波電源7よ
り出力された高周波電力を整合回路8を通してカソード
電極2上に印加、伝搬させ、該カソード電極と対向する
被処理基体3との間の高周波電界によりプラズマを生起
させることにより、前記被処理基体上にプラズマ処理を
行った。この際、被処理基体である電子写真用感光体は
通常直径100mm前後のものであり、このためカソー
ドの直径dは200〜300mm程度となる。カソード
電極外周の1点から高周波を導入する場合、カソード電
極の外周の反対側までの距離は、1.57dであり、例
えばd=250mmとすると約390mm程度になる。
例えば高周波の周波数を従来の13.56MHzから1
00MHzにするとその波長λは大気中で約22mから
3mとなる。つまり、100MHzにおいては、カソー
ド電極外周上の1点から導入された高周波は、カソード
電極外周表面を伝播して反対側まで達するが、その距離
がλ/10以上となり定在波の影響によりカソード電極
外周上で電界分布が生じてくるようになる。この高周波
電場の影響が、更にカソード電極表面を伝わり、カソー
ド電極内周の電界ムラを起こし、周方向に放電のむらが
生じた。
Using the apparatus shown in FIG. 5, the high frequency power output from the high frequency power supply 7 is applied and propagated on the cathode electrode 2 through the matching circuit 8, and the cathode electrode and the substrate 3 to be processed are opposed to each other. Plasma treatment was performed on the substrate to be treated by generating plasma with a high frequency electric field. At this time, the electrophotographic photosensitive member, which is the substrate to be treated, usually has a diameter of about 100 mm, and therefore the diameter d of the cathode is about 200 to 300 mm. When a high frequency wave is introduced from one point on the outer circumference of the cathode electrode, the distance to the opposite side of the outer circumference of the cathode electrode is 1.57d, which is about 390 mm when d = 250 mm.
For example, the frequency of high frequency is changed from the conventional 13.56 MHz to 1
At 00 MHz, the wavelength λ becomes about 22 m to 3 m in the atmosphere. That is, at 100 MHz, a high frequency wave introduced from one point on the outer circumference of the cathode electrode propagates on the outer circumference surface of the cathode electrode and reaches the opposite side, but the distance becomes λ / 10 or more and the influence of the standing wave causes the cathode electrode to move. An electric field distribution is generated on the outer circumference. The influence of this high-frequency electric field is further transmitted to the surface of the cathode electrode, causing unevenness of the electric field on the inner circumference of the cathode electrode, and uneven discharge occurs in the circumferential direction.

【0019】以上のように、13.56MHz及びその
近傍の放電周波数では問題にはならないが、放電周波数
をより高くすることで放電ムラが顕著になることが分か
った。
As described above, it has been found that the discharge frequency becomes higher at 13.56 MHz and its vicinity, but the discharge unevenness becomes remarkable by increasing the discharge frequency.

【0020】これらの問題がどの周波数から顕著となる
かを計測するため、図5のプラズマCVD装置を用い1
3.56MHz〜300MHzで放電を行い、各々のプ
ラズマ密度ムラを測定した。ここでプラズマ密度ムラと
はプラズマ密度の最大値と最小値の差をプラズマ密度の
平均値にて割った値と定義する。この結果、プラズマ密
度ムラは30MHz近傍で±10%以上となり、放電周
波数によるカソード電極上の高周波電圧のムラが顕著に
なることが示された。
In order to measure from which frequency these problems become remarkable, the plasma CVD apparatus shown in FIG.
Discharge was performed at 3.56 MHz to 300 MHz, and each plasma density unevenness was measured. Here, the plasma density unevenness is defined as a value obtained by dividing the difference between the maximum value and the minimum value of the plasma density by the average value of the plasma density. As a result, it was shown that the plasma density unevenness was ± 10% or more in the vicinity of 30 MHz, and the unevenness of the high frequency voltage on the cathode electrode due to the discharge frequency became remarkable.

【0021】一方、300MHzを越えると高周波の整
合回路の設計が困難になり、また伝送損失も大きくなり
実用的ではなくなることが分かった。
On the other hand, it has been found that if the frequency exceeds 300 MHz, it becomes difficult to design a high-frequency matching circuit and the transmission loss increases, which is not practical.

【0022】また、被処理基体に入射するイオンのエネ
ルギーの幅を計測したところ、13.56MHzで約3
0eV、30MHzで約15eV、100MHz以上で
約10eVとなった。被処理基体への入射イオンエネル
ギーを利用するプロセスにおいては、このエネルギー幅
を小さくすることは制御性の向上を達成することができ
るという観点から重要であり、30MHz以上の周波数
を用いるのが好ましい。従って、この周波数範囲でプラ
ズマ周波数密度のムラをなくすことは極めて重要とな
る。
When the width of the energy of the ions incident on the substrate to be processed was measured, it was about 3 at 13.56 MHz.
It was about 15 eV at 0 eV and 30 MHz, and about 10 eV at 100 MHz and above. In the process of utilizing the ion energy incident on the substrate to be processed, it is important to reduce the energy width from the viewpoint that the controllability can be improved, and it is preferable to use a frequency of 30 MHz or higher. Therefore, it is extremely important to eliminate the unevenness of the plasma frequency density in this frequency range.

【0023】そこで30MHz〜300MHzでのこれ
らカソード電極上の高周波電圧ムラによる不均一化を解
決する手段として、本発明者等は以下の知見を得た。
Therefore, the inventors of the present invention have obtained the following knowledge as means for solving the non-uniformity due to the high frequency voltage unevenness on the cathode electrode at 30 MHz to 300 MHz.

【0024】カソード電極上の高周波電圧ムラの原因と
なる高周波の定在波をプラズマの強度ムラに反映させな
いためには、プラズマと接するカソード電極表面に定在
波が生じないようにすることが必要である。
In order to prevent the high-frequency standing wave that causes the high-frequency voltage unevenness on the cathode electrode from being reflected in the plasma intensity unevenness, it is necessary to prevent the standing wave from occurring on the surface of the cathode electrode in contact with the plasma. Is.

【0025】図5の装置において、プラズマに高周波電
力を供給するためには、高周波電源から供給された高周
波電力を整合回路によりプラズマのインピーダンスに整
合するようにインピーダンス調整し、カソード電極の裏
面に導入する。更に高周波はカソード電極の裏面からカ
ソード電極の表皮を伝わってプラズマと接するカソード
電極表面に伝わりプラズマに高周波電力が供給されるこ
とになる。ここで、カソード電極表面で高周波電力のム
ラが生じないようにするためには、(a)カソード電極
裏面で定在波をおこさせない、(b)カソード電極裏面
で生じている定在波の強度に応じて、カソード表面に伝
播する高周波を調整する、ことが有効である。
In the apparatus of FIG. 5, in order to supply the high frequency power to the plasma, the high frequency power supplied from the high frequency power source is impedance-adjusted by a matching circuit so as to match the impedance of the plasma, and is introduced to the back surface of the cathode electrode. To do. Further, the high frequency is transmitted from the back surface of the cathode electrode to the surface of the cathode electrode in contact with the plasma through the skin of the cathode electrode, and the high frequency power is supplied to the plasma. Here, in order to prevent the high frequency power from being uneven on the surface of the cathode electrode, (a) the standing wave is not generated on the back surface of the cathode electrode, and (b) the strength of the standing wave generated on the back surface of the cathode electrode. It is effective to adjust the high frequency propagating to the cathode surface according to the above.

【0026】30〜300MHzという従来よりも高い
周波数において、上記(a),(b)を簡便に且つ効果
的に行うには、カソード裏面及び/又はカソードまでの
高周波伝送路の一部に高い透磁率を持つ軟磁性材料を用
いれば良いとが分かった。ここで、高周波伝送路とは、
例えば整合回路とカソード間を接続する銅などの良導体
からなるロッド、板もしくは線材からなるものであり、
その一部に軟磁性材料を用いることにより容易にインピ
ーダンスを変えることができる。
In order to easily and effectively carry out the above (a) and (b) at a higher frequency of 30 to 300 MHz, which is higher than the conventional frequency, a high permeability is provided in the back surface of the cathode and / or a part of the high frequency transmission path to the cathode. It was found that a soft magnetic material having magnetic susceptibility should be used. Here, the high frequency transmission line is
For example, a rod, plate or wire made of a good conductor such as copper that connects the matching circuit and the cathode,
The impedance can be easily changed by using a soft magnetic material for a part thereof.

【0027】透磁率の大きな磁性材料は、高周波磁場を
その内部に入り込まないように作用し、その結果表皮効
果が大きくなり、非磁性材料と比較して高周波が侵入で
きる表皮の厚さが極めて小さくなるため、高周波に対す
るインピーダンスが大きくなり、高周波の伝送を妨げ
る。しかも、高周波は金属表面のみを伝送し、金属内部
まで浸透しないため、金属表面のみに磁性材料を用いれ
ば良く、カソード裏面及び/又はカソードまでの高周波
伝送路の一部の表面に磁性材をコートするか貼り付ける
だけで十分であり、そのパターンも任意に調整できる。
しかし、磁性材料として永久磁石を用いた場合、その磁
場によってプラズマが偏在することがあるため注意が必
要であり、軟磁性材料が最も好ましい。
The magnetic material having a large magnetic permeability acts so as not to allow a high frequency magnetic field to enter the inside thereof, and as a result, the skin effect becomes large, and the skin thickness to which high frequency can penetrate is extremely small as compared with the non-magnetic material. As a result, the impedance with respect to the high frequency increases, which hinders the transmission of the high frequency. Moreover, since high frequencies transmit only on the metal surface and do not penetrate inside the metal, it suffices to use a magnetic material only on the metal surface. The back surface of the cathode and / or a part of the surface of the high frequency transmission path to the cathode is coated with the magnetic material. It is enough to do or paste, and the pattern can be adjusted arbitrarily.
However, when a permanent magnet is used as the magnetic material, care must be taken because plasma may be unevenly distributed due to the magnetic field, and the soft magnetic material is most preferable.

【0028】このような磁性材料を用いて高周波絶縁部
を作り、インピーダンスを任意に変えることができる。
従って、そのパターンによって、(1)高周波の反射面
をλ/10より十分短い距離に多く作って、定在波を起
こさせなくする、(2)カソード裏面の定在波をその場
所での高周波電圧に応じて、カソード表面に伝送する高
周波の割合を変える、ことが可能となる。
The high-frequency insulating portion can be formed by using such a magnetic material, and the impedance can be arbitrarily changed.
Therefore, depending on the pattern, (1) a large number of high-frequency reflecting surfaces are formed at a distance sufficiently shorter than λ / 10 to prevent standing waves from being generated. (2) Standing waves on the back surface of the cathode are generated at high frequencies. It is possible to change the ratio of the high frequency wave transmitted to the cathode surface according to the voltage.

【0029】以上述べたようにして、30〜300MH
zの高周波においても均一なプラズマが得られ、大面積
のプラズマ処理を高速、均一に行うことが可能となる。
As described above, 30 to 300 MH
Uniform plasma can be obtained even at a high frequency of z, and a large-area plasma treatment can be performed at high speed and uniformly.

【0030】以上は、プラズマCVDについて説明した
が、本発明はプラズマCVDに限定されるものではな
く、スパッタリング、エッチング等他のプラズマ処理プ
ロセスにも好適に適用されることは言うまでもない。
Although the plasma CVD has been described above, it is needless to say that the present invention is not limited to the plasma CVD and can be suitably applied to other plasma processing processes such as sputtering and etching.

【0031】[0031]

【実施例】以下、具体的な実施例を挙げて本発明を更に
詳しく説明するが、本発明はこれら実施例に限定される
ものではない。
The present invention will be described in more detail below with reference to specific examples, but the present invention is not limited to these examples.

【0032】(実施例1)図1に示す本発明の円筒同軸
型プラズマCVD装置を用いて、放電周波数100MH
zとして、表1の成膜条件でa−Si膜を被成膜基体3
上に形成した。
(Embodiment 1) A discharge frequency of 100 MHz was obtained by using the cylindrical coaxial plasma CVD apparatus of the present invention shown in FIG.
z is an a-Si film under the film forming conditions shown in Table 1
Formed on.

【0033】カソード2外周部に図2に示すパターンで
パーマロイシート12を張り付けた。軟磁性材料として
パーマロイを用いたが、これに限らず軟磁性材料であれ
ば何でも良い。成膜条件が異なる場合はそれに応じて軟
磁性材のパターンも変更を加える必要がある場合があ
り、また全く異なるパターンでも同様の効果が得られる
場合もあるので図2のパターンに限るものではない。
A permalloy sheet 12 was attached to the outer periphery of the cathode 2 in the pattern shown in FIG. Although permalloy is used as the soft magnetic material, the soft magnetic material is not limited to this and any soft magnetic material may be used. If the film forming conditions are different, it may be necessary to change the pattern of the soft magnetic material accordingly, and the same effect may be obtained even if the pattern is completely different. Therefore, the pattern is not limited to the pattern of FIG. .

【0034】図2のパターンで成膜した時の周方向の膜
厚ムラを測定した。また、比較のため、軟磁性材を用い
ない場合及びカソード外周を総て軟磁性材を張り付けた
場合についても、表1の成膜条件で成膜を行い、周方向
の膜厚ムラを測定した。
The film thickness unevenness in the circumferential direction when the film was formed in the pattern of FIG. 2 was measured. For comparison, when the soft magnetic material was not used and when the soft magnetic material was adhered to the entire circumference of the cathode, film formation was performed under the film forming conditions shown in Table 1 and the film thickness unevenness in the circumferential direction was measured. .

【0035】その結果、膜厚ムラは、軟磁性材をカソー
ド外周の一部に張り付けた場合で約±5%、軟磁性材を
用いない場合で約±30%となった。カソード外周の総
てに軟磁性材を張り付けた場合は、カソードのリアクタ
ンスが大きすぎてプラズマを生起できず、成膜不可能で
あった。
As a result, the film thickness unevenness was about ± 5% when the soft magnetic material was attached to a part of the outer circumference of the cathode, and about ± 30% when the soft magnetic material was not used. When the soft magnetic material was attached to the entire outer circumference of the cathode, the reactance of the cathode was too large to generate plasma, and film formation was impossible.

【0036】それぞれの膜について、同じ膜厚の状態で
部分的にa−Si膜の膜質を測定したところ、膜質は電
子写真用感光体デバイスや画像入力用ラインセンサー等
の実用に十分耐え得るものであった。
For each film, the film quality of the a-Si film was partially measured under the condition of the same film thickness, and it was found that the film quality was sufficient for practical use such as electrophotographic photosensitive device and image input line sensor. Met.

【0037】以上のように、カソード電極の外周の一部
に軟磁性材を用いることにより高周波での複素インピー
ダンスを大きくでき、高周波の線路を軟磁性材のない部
分に限定して制御できるように装置を構成することによ
り放電周波数が高くなることによる膜厚ムラの問題を解
決することができる。更に、放電周波数による装置の最
適化を軟磁性材の形状、配置等で達成することが可能で
ある。
As described above, by using the soft magnetic material in a part of the outer circumference of the cathode electrode, the complex impedance at high frequency can be increased, and the high frequency line can be controlled only in the portion without the soft magnetic material. By configuring the device, it is possible to solve the problem of film thickness unevenness due to a higher discharge frequency. Further, the optimization of the device depending on the discharge frequency can be achieved by the shape and arrangement of the soft magnetic material.

【0038】[0038]

【表1】 (実施例2)図3に示す本発明の平行平板型プラズマC
VD装置を用いて、放電周波数100MHzとして、表
2の成膜条件でa−Si膜を被成膜基体上に形成した。
[Table 1] (Embodiment 2) Parallel plate type plasma C of the present invention shown in FIG.
Using a VD apparatus, an a-Si film was formed on the film formation base under the film formation conditions shown in Table 2 at a discharge frequency of 100 MHz.

【0039】本実施例では、基体の形状が角型でカソー
ド電極も角型平板なものを用いた。角型のカソードを用
いた場合、角型の辺と角では高周波をカソード電極に導
入する位置からの距離が異なり、膜厚分布が生じ易い。
角型カソード電極の裏面に図4に示すパターンのパーマ
ロイシート12を張り付けた。軟磁性材料としてパーマ
ロイを用いたが軟磁性材料であれば何でも良い。成膜条
件が異なる場合はそれに応じて軟磁性材のパターンも修
正を加える必要がある場合があり、また全く異なるパタ
ーンでも同様の効果が得られる場合もあるので図4のパ
ターンに限るものではない。
In the present embodiment, a substrate having a square shape and a cathode electrode having a square plate shape were used. When a rectangular cathode is used, the distance from the position where the high frequency is introduced into the cathode electrode is different between the sides of the square and the corner, and the film thickness distribution is likely to occur.
A permalloy sheet 12 having a pattern shown in FIG. 4 was attached to the back surface of the rectangular cathode electrode. Although permalloy is used as the soft magnetic material, any soft magnetic material may be used. When the film forming conditions are different, it may be necessary to modify the pattern of the soft magnetic material accordingly, and the same effect may be obtained even if the pattern is completely different. Therefore, the pattern is not limited to the pattern of FIG. .

【0040】図4のパターンで成膜した時の膜厚ムラを
測定した。また同様の成膜条件で軟磁性材を用いない場
合と、カソード外周を総て軟磁性材を張り付けた場合で
周方向の膜厚ムラの比較実験を行った。その結果、膜厚
ムラは、軟磁性材をカソード外周の一部に張り付けた場
合で約±10%、軟磁性材を用いない場合で約±30%
となった。カソード外周の総てに軟磁性材を張り付けた
場合は、カソードのリアクタンスが大きすぎてプラズマ
を生起できず、成膜は不可能であった。
The film thickness unevenness when the film was formed in the pattern of FIG. 4 was measured. Further, under the same film forming conditions, a comparative experiment was performed on the unevenness of the film thickness in the circumferential direction between the case where the soft magnetic material was not used and the case where the soft magnetic material was entirely attached to the outer circumference of the cathode. As a result, the film thickness unevenness is about ± 10% when the soft magnetic material is attached to a part of the outer circumference of the cathode, and about ± 30% when the soft magnetic material is not used.
Became. When the soft magnetic material was attached to the entire outer circumference of the cathode, the reactance of the cathode was too large to generate plasma and film formation was impossible.

【0041】それぞれの膜について同じ膜厚の状態で部
分的にa−Si膜の膜質を測定したところ、膜質は電子
写真用感光体デバイスや画像入力用ラインセンサー等の
実用に十分耐え得るものであった。
When the film quality of the a-Si film was partially measured in the same film thickness condition for each film, the film quality was sufficient for practical use such as electrophotographic photosensitive device and image input line sensor. there were.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明により、即ち、30MHz以上、
300MHz以下の高周波を使用し、カソード電極及び
/又は整合回路とカソード電極間の高周波伝送経路の一
部に軟磁性材料を配することにより、均質な高周波放電
が達成され、大面積基板への処理を均一に且つ高速に処
理することが可能となる。
According to the present invention, that is, 30 MHz or more,
By using a high frequency of 300 MHz or less and arranging a soft magnetic material in a part of the high frequency transmission path between the cathode electrode and / or the matching circuit and the cathode electrode, a uniform high frequency discharge is achieved, and a large area substrate is processed. Can be processed uniformly and at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒カソード電極を有するプラズマC
VD装置の一例を示す構成模式図である。
FIG. 1 is a plasma C having a cylindrical cathode electrode of the present invention.
It is a structural schematic diagram which shows an example of a VD apparatus.

【図2】本発明のプラズマCVD装置で用いたカソード
電極の一例を示す模式図である。
FIG. 2 is a schematic diagram showing an example of a cathode electrode used in the plasma CVD apparatus of the present invention.

【図3】本発明の平板カソード電極を有するプラズマC
VD装置の一例を示す構成模式である
FIG. 3 is a plasma C having a flat cathode electrode according to the present invention.
3 is a schematic configuration diagram showing an example of a VD device.

【図4】本発明のプラズマCVD装置で用いたカソード
電極の一例を示す模式図である。
FIG. 4 is a schematic diagram showing an example of a cathode electrode used in the plasma CVD apparatus of the present invention.

【図5】従来のプラズマCVD装置を示す構成模式図で
ある。
FIG. 5 is a schematic configuration diagram showing a conventional plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1 反応容器、 2 カソード電極、 3 被成膜基体、 4 基体ホルダー、 5 加熱ヒータ、 6 アースシールド、 7 高周波電源、 8 整合回路、 9 真空排気手段、 10 ガス供給手段、 11 絶縁材料、 12 軟磁性材料。 DESCRIPTION OF SYMBOLS 1 reaction container, 2 cathode electrode, 3 substrate for film formation, 4 substrate holder, 5 heater, 6 earth shield, 7 high frequency power supply, 8 matching circuit, 9 vacuum evacuation means, 10 gas supply means, 11 insulating material, 12 soft Magnetic material.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 減圧可能な反応容器内に、カソード電極
と該カソード電極に対向する対向電極とを設け、前記カ
ソード電極に30MHz以上300MHz以下の高周波
電力を整合回路を介して容量結合にて印加して前記カソ
ード電極と対向電極間にプラズマを発生させ、前記対向
電極上に配置した被処理基体上にプラズマ処理を行うプ
ラズマ処理装置であって、前記カソード電極及び/又は
前記整合回路と前記カソード電極間の高周波伝送経路の
一部に軟磁性材料を配したことを特徴とするプラズマ処
理装置。
1. A cathode electrode and a counter electrode facing the cathode electrode are provided in a depressurizable reaction vessel, and high frequency power of 30 MHz or more and 300 MHz or less is applied to the cathode electrode by capacitive coupling through a matching circuit. A plasma processing apparatus for generating plasma between the cathode electrode and a counter electrode to perform plasma processing on a substrate to be processed arranged on the counter electrode, wherein the cathode electrode and / or the matching circuit and the cathode are provided. A plasma processing apparatus characterized in that a soft magnetic material is arranged in a part of a high-frequency transmission path between electrodes.
【請求項2】 前記カソード電極は円筒状であることを
特徴とする請求項1に記載のプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein the cathode electrode has a cylindrical shape.
【請求項3】 前記被処理基体は円筒状であることを特
徴とする請求項1または2に記載のプラズマ処理装置。
3. The plasma processing apparatus according to claim 1, wherein the substrate to be processed has a cylindrical shape.
【請求項4】 前記カソード電極と前記被処理基体が互
いに対向する平板であることを特徴とする請求項1に記
載のプラズマ処理装置。
4. The plasma processing apparatus according to claim 1, wherein the cathode electrode and the substrate to be processed are flat plates facing each other.
【請求項5】 減圧可能な反応容器内で、高周波電力を
整合回路を介して容量結合にて印加するカソード電極と
対向する電極間にプラズマを発生させ、電極上に配置し
た被処理基体上にプラズマ処理を行うプラズマ処理方法
において、カソード電極及び/又は整合回路とカソード
電極間の高周波伝送経路の一部に軟磁性材料を配し、前
記高周波電力の周波数を30MHz以上300MHz以
下とすることを特徴とするプラズマ処理方法。
5. A plasma is generated between electrodes facing a cathode electrode to which high-frequency power is applied by capacitive coupling through a matching circuit in a depressurizable reaction container, and a plasma is generated on a substrate to be processed arranged on the electrodes. In a plasma processing method for performing plasma processing, a soft magnetic material is arranged in a part of a high frequency transmission path between a cathode electrode and / or a matching circuit and the cathode electrode, and a frequency of the high frequency power is 30 MHz or more and 300 MHz or less. And a plasma processing method.
【請求項6】 前記カソード電極は円筒状であることを
特徴とする請求項5に記載のプラズマ処理方法。
6. The plasma processing method according to claim 5, wherein the cathode electrode has a cylindrical shape.
【請求項7】 前記被処理基体は円筒状であることを特
徴とする請求項5または6に記載のプラズマ処理方法。
7. The plasma processing method according to claim 5, wherein the substrate to be processed has a cylindrical shape.
【請求項8】 前記カソード電極と前記被処理基体が互
いに対向する平板であることを特徴とする請求項5に記
載のプラズマ処理方法。
8. The plasma processing method according to claim 5, wherein the cathode electrode and the substrate to be processed are flat plates facing each other.
JP3487994A 1994-03-04 1994-03-04 Plasma treatment device and method Pending JPH07245269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3487994A JPH07245269A (en) 1994-03-04 1994-03-04 Plasma treatment device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3487994A JPH07245269A (en) 1994-03-04 1994-03-04 Plasma treatment device and method

Publications (1)

Publication Number Publication Date
JPH07245269A true JPH07245269A (en) 1995-09-19

Family

ID=12426435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3487994A Pending JPH07245269A (en) 1994-03-04 1994-03-04 Plasma treatment device and method

Country Status (1)

Country Link
JP (1) JPH07245269A (en)

Similar Documents

Publication Publication Date Title
JP3236111B2 (en) Plasma processing apparatus and processing method
USRE39064E1 (en) Electronic device manufacturing apparatus and method for manufacturing electronic device
JP3437376B2 (en) Plasma processing apparatus and processing method
JP3174981B2 (en) Helicon wave plasma processing equipment
JP3224011B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
US5970907A (en) Plasma processing apparatus
JPH03170666A (en) Plasma treating apparatus and method therefor
JP3983557B2 (en) Inductively coupled plasma processing equipment
EP0678894B1 (en) Plasma processing apparatus
JP2000268994A (en) Method for treating surface utilizing high frequency glow discharge
JP3228679B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
JPH07245269A (en) Plasma treatment device and method
US5718769A (en) Plasma processing apparatus
JP3485013B2 (en) Plasma processing method and apparatus
JP3793034B2 (en) Plasma CVD equipment
JPH08339963A (en) Plasma treatment device and treatment method
JP3387616B2 (en) Plasma processing equipment
JP4282047B2 (en) Plasma processing apparatus and semiconductor device manufacturing method
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JP2001335944A (en) System and method for plasma treatment
JP2000232070A (en) High-frequency plasma cvd method
JPH05291149A (en) Plasma cvd device
JPH07273047A (en) Method and system for plasma cvd using ultrashort wave
JP2000164521A (en) Apparatus and method for plasma treatment
JPS642191B2 (en)