JPH07245199A - Superconducting accelerator - Google Patents

Superconducting accelerator

Info

Publication number
JPH07245199A
JPH07245199A JP3583794A JP3583794A JPH07245199A JP H07245199 A JPH07245199 A JP H07245199A JP 3583794 A JP3583794 A JP 3583794A JP 3583794 A JP3583794 A JP 3583794A JP H07245199 A JPH07245199 A JP H07245199A
Authority
JP
Japan
Prior art keywords
superconducting
cavity
niobium
vessel
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3583794A
Other languages
Japanese (ja)
Other versions
JP3416249B2 (en
Inventor
Koichi Okubo
光一 大久保
Toshiyuki Yamanaka
敏行 山中
Masanori Matsuoka
雅則 松岡
Katsuya Senniyuu
克也 仙入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP03583794A priority Critical patent/JP3416249B2/en
Publication of JPH07245199A publication Critical patent/JPH07245199A/en
Application granted granted Critical
Publication of JP3416249B2 publication Critical patent/JP3416249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To enhance the reliance upon the leak-tightness of the joint part at the time of cooling or through heat cycles and provide a sufficient endurance against the high temp. annealing of the joint part by welding a superconducting acceleration cavity made of niobium to an ultra-low temp. vessel made of titanium into a single piece structure. CONSTITUTION:A superconducting acceleration cavity 1 made of niobium accelerating a charged particle beam 2 is embodied in a 10-gang (5-gang X2) structure, and a boss-equipped ring 3 made of niobium is welded to each end of the cavity. The part of cavity furnished with the ring 3 undergoes an edge preparation, and an ultra-low temp. vessel 4 made of titanium is joined rigidly by means of electron beam welding. The vessel 4 is equipped with a port 5 for injection of liquid He and a port 6 for exhaust of He gas. An input coupler 7 as a port to feed in microwaves for acceleration of the beam 2 is welded to the edge prepared part of the vessel 4 through the ring 3. The area around the cavity 1 is filled with liquid He.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、荷電粒子ビーム加速
器システムに使用される超伝導機器としての超電導加速
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting accelerator as a superconducting device used in a charged particle beam accelerator system.

【0002】[0002]

【従来の技術】従来、超電導加速空洞と極低温容器を一
体化した超電導加速器としては、例えば図2あるいは図
3に示すものが知られている。 (1) 図2の超電導加速器は、超電導加速空洞21と極低温
容器22をフランジ/インジウム組立で一体化を計ったも
のである。前記超電導加速空洞21はニオブ製であり、5
連×2=10連構造の空洞を示す。前記超電導加速空洞
21は、ステンレス製の極低温容器22の内部に納められて
いる。ここで、極低温容器22には液体ヘリウム23を浸
し、超電導加速空洞21を極低温にし、超電導状態に保っ
ている。前記超電導加速空洞21と極低温容器22の接合部
には、図4に示す如くインジウム材24をガスケットして
気密性を保っている。なお、図中の符番25は真空容器で
ある。
2. Description of the Related Art Conventionally, as a superconducting accelerator in which a superconducting accelerating cavity and a cryogenic container are integrated, for example, one shown in FIG. 2 or 3 is known. (1) In the superconducting accelerator shown in FIG. 2, the superconducting accelerating cavity 21 and the cryogenic container 22 are integrated by a flange / indium assembly. The superconducting acceleration cavity 21 is made of niobium, and
A cavity having a structure of 2 × 10 stations is shown. The superconducting acceleration cavity
21 is housed inside a cryogenic container 22 made of stainless steel. Here, liquid helium 23 is immersed in the cryogenic container 22 to bring the superconducting acceleration cavity 21 to a cryogenic temperature and keep it in the superconducting state. At the joint between the superconducting acceleration cavity 21 and the cryogenic container 22, an indium material 24 is gasketed as shown in FIG. 4 to keep airtightness. Note that reference numeral 25 in the figure is a vacuum container.

【0003】超電導加速空洞21は、図6に示す如くその
内面及びその内面の表層のニオブ純度が超電導加速空洞
21の性能,即ち荷電粒子ビーム26(図では、例として電
子ビームを示す)を加速する電界27の強さを左右する。
つまり、高いニオブ純度をもつ超電導加速空洞21は高い
加速電界27を得る。ニオブ材に含まれる元素のうち、特
に超電導加速空洞21の性能を低下させるものは水素であ
る。よって、超電導加速空洞21は、その製造段階や長時
間(一般には1年から2年)荷電粒子ビームを加速した
後には、脱水素を行う目的で焼鈍を行っている。この
時、より効率的に脱水素を行うため、チタン製容器に水
素を吸着させ、超電導加速空洞21の内面及びその内面の
表層の純度を上げている。近年、この焼鈍温度を130
0℃まで上げると、超電導加速空洞の性能即ち加速電界
27がより高く得られることが判明している。
As shown in FIG. 6, the superconducting accelerating cavity 21 has a superconducting accelerating cavity in which the niobium purity of the inner surface and the surface layer of the inner surface is superconducting.
It affects the performance of 21, that is, the strength of the electric field 27 that accelerates the charged particle beam 26 (an electron beam is shown as an example in the figure).
That is, the superconducting acceleration cavity 21 having a high niobium purity obtains a high acceleration electric field 27. Among the elements contained in the niobium material, hydrogen is the element that particularly deteriorates the performance of the superconducting acceleration cavity 21. Therefore, the superconducting accelerating cavity 21 is annealed for the purpose of dehydrogenation after the charged particle beam is accelerated in the manufacturing stage or for a long time (generally 1 to 2 years). At this time, in order to perform dehydrogenation more efficiently, hydrogen is adsorbed in the titanium container to increase the purity of the inner surface of the superconducting acceleration cavity 21 and the surface layer of the inner surface. In recent years, this annealing temperature has been increased to 130
When the temperature is raised to 0 ℃, the performance of superconducting accelerating cavity, that is, accelerating electric field
It turns out that 27 gets higher.

【0004】(2) 図3の超電導加速器は、図5に示す如
く超電導加速空洞21と極低温容器22をロー材31で組立一
体化を計ったものである。但し、図2と同部材は同符号
を付して説明を省略する。この超電導加速器は、ニオブ
製の超電導加速空洞21(図3では4連構造)がステンレ
ス製の極低温容器22の内部に納められ、ニオブ製の超電
導加速空洞21とステンレス製の極低温容器22の間をロー
材31により異種金属接合を行い、気密性を保っている。
前記極低温容器22の外側は断熱のために真空容器25で覆
われて、極低温容器22の中には液体ヘリウム23を浸し、
超伝導加速空洞21を極低温にし、超伝導状態を保ってい
る。
(2) As shown in FIG. 5, the superconducting accelerator shown in FIG. 3 is obtained by assembling and integrating a superconducting accelerating cavity 21 and a cryogenic container 22 with a brazing material 31. However, the same members as those in FIG. 2 are denoted by the same reference numerals and the description thereof will be omitted. In this superconducting accelerator, a superconducting acceleration cavity 21 made of niobium (four continuous structure in FIG. 3) is housed inside a cryogenic container 22 made of stainless steel, and a superconducting acceleration cavity 21 made of niobium and a cryogenic container 22 made of stainless steel are contained. The brazing material 31 is used to join the dissimilar metals to maintain airtightness.
The outside of the cryogenic container 22 is covered with a vacuum container 25 for heat insulation, liquid helium 23 is immersed in the cryogenic container 22,
The superconducting accelerating cavity 21 is kept at a cryogenic temperature to maintain the superconducting state.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来技
術によれば、以下に述べる問題点を有する。 (1) 図2の場合、接続部がフランジとインジウム材24で
気密性を確保しているため、容器の冷却時発生するステ
ンレス製極低温容器22の熱歪による変形や熱サイクルで
気密性が損なわれ、極低温容器22内部の液体ヘリウム23
が真空容器25へリークし、真空断熱が保たれない不具合
が多々発生し、その度毎に装置の分解,再組立をし、復
旧をはかっている。
However, the conventional technique has the following problems. (1) In the case of FIG. 2, since the connecting portion secures the airtightness by the flange and the indium material 24, the airtightness is maintained by the deformation due to the thermal strain of the stainless cryogenic container 22 generated during the cooling of the container and the heat cycle. Liquid helium 23 inside cryogenic container 22 damaged
Leaks to the vacuum container 25, and many problems occur that the vacuum heat insulation cannot be maintained, and the equipment is disassembled and reassembled each time to restore the equipment.

【0006】(2) 図3や図5のように、超伝導加速空洞
21とステンレス製極低温容器22の接合は、ニオブ材とス
テンレス材の溶接接合が不可能であるため、ロー材31に
よって接合している場合、その界面の接合力の不足より
冷却時の熱歪による変型や熱サイクルでロー材31に割れ
が生じ、極低温容器22の気密性が損なわれる。また、ニ
オブ材とステンレス材の異種金属を接合するロー材31
(一般には、金系,パラジウム系,銅系が用いられる)
では、融点が1000℃前後であり、超伝導加速空洞21
性能向上のための高温(1300℃)における焼鈍が、
ロー材による一体組み立てを行った後には、行えないた
め、一度性能劣化した超伝導加速空洞21の性能回復を計
ることが困難である。
(2) As shown in FIGS. 3 and 5, the superconducting acceleration cavity
Since it is impossible to weld the niobium material and the stainless steel material to the stainless cryogenic container 22 by welding, when the brazing material 31 is used, the thermal strain during cooling may be caused by insufficient bonding force at the interface. Due to the deformation and heat cycle caused by the cracks in the brazing material 31, the airtightness of the cryogenic container 22 is impaired. Also, a brazing material 31 for joining dissimilar metals such as niobium and stainless steel
(Generally, gold-based, palladium-based, and copper-based are used.)
Then, the melting point is around 1000 ° C., and the superconducting acceleration cavity 21
Annealing at high temperature (1300 ° C) to improve performance
Since it cannot be performed after the integral assembly with the brazing material, it is difficult to measure the performance of the superconducting acceleration cavity 21 whose performance has once deteriorated.

【0007】この発明はこうした事情を考慮してなされ
たもので、ニオブ製の超電導加速空洞とチタン製の極低
温容器とを溶接により一体的に接合した構成にすること
により、冷却時や熱サイクルによる接合部のリークタイ
トの信頼性を向上させるとともに、接合部が高温焼鈍に
も十分耐えうる超伝導加速器を提供することを目的とす
る。
The present invention has been made in consideration of such circumstances, and a superconducting accelerating cavity made of niobium and a cryogenic container made of titanium are integrally joined by welding, so that cooling or thermal cycling can be achieved. It is an object of the present invention to provide a superconducting accelerator in which the reliability of leaktightness of a joint due to the above is improved and the joint can sufficiently withstand high temperature annealing.

【0008】[0008]

【課題を解決するための手段】この発明は、荷電粒子ビ
ームを加速するニオブ製の超電導加速空洞と、この超電
導加速空洞を極低温に冷却し、液体ヘリウムを超電導加
速空洞の外周に満たして超電導状態を保つチタン製の極
低温容器とを具備し、前記超電導加速空洞と極低温容器
とが溶接により一体的に接合されていることを特徴とす
る超電導加速器である。
The present invention is directed to a superconducting acceleration cavity made of niobium for accelerating a charged particle beam, a superconducting acceleration cavity cooled to a cryogenic temperature, and liquid helium filling the outer periphery of the superconducting acceleration cavity. A superconducting accelerator, comprising: a cryogenic container made of titanium for maintaining a state, wherein the superconducting accelerating cavity and the cryogenic container are integrally joined by welding.

【0009】[0009]

【作用】この発明においては、ニオブ製の超電導加速空
洞とチタン製の極低温容器を溶接接合することにより、
フランジ結合やロー材結合に比較して冷却時や熱サイク
ルによる接合部のリールタイトの信頼性が向上する。ま
た、ニオブ材の融点:2467℃,チタンの融点167
0℃と、どちらも高融点材料であるので、その接合部は
1300℃の高温焼鈍にも十分耐え得る。
In the present invention, the superconducting accelerating cavity made of niobium and the cryogenic container made of titanium are welded and joined,
Compared to flanged joints and brazing material joints, the reliability of Lertite at the joint during cooling and thermal cycle is improved. Further, the melting point of niobium material: 2467 ° C., the melting point of titanium is 167.
Since both of them are high melting point materials at 0 ° C., their joints can sufficiently withstand high temperature annealing at 1300 ° C.

【0010】[0010]

【実施例】以下、この発明の一実施例を図1(A),
(B)を参照して説明する。ここで、図1(A)は全体
図、図1(B)は図1(A)の要部Xの拡大図である。
図中の符番1は、荷電粒子ビーム2を加速するニオブ製
の超電導加速空洞である。この超伝導加速空洞1は5連
×2=10連構造であり、両端にニオブ製の突起付リン
グ3が溶接により接合されている。前記超電導加速空洞
1には、前記突起付リング3の部分を開先にしてチタン
製の極低温容器4が電子ビーム溶接により一体に接合さ
れている。この極低温容器4には、液体ヘリウム(LH
e)注入用ポート5、Heガス排出用ポート6が夫々設
けられている。前記極低温容器の開先部には、荷電粒子
ビーム2を加速するためのマイクロ波を投入するポート
であるインプットカプラ7が、前記突起付リング3を介
して溶接により接合されている。また、図示しないが、
上述した一体構造物は真空容器等を用いて断熱されてい
る。なお、図中の符番8は、超伝導加速空洞1の外周に
満たされた液体ヘリウム(LHe)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to (B). Here, FIG. 1 (A) is an overall view, and FIG. 1 (B) is an enlarged view of a main part X of FIG. 1 (A).
Reference numeral 1 in the figure is a niobium superconducting acceleration cavity for accelerating the charged particle beam 2. This superconducting accelerating cavity 1 has a structure of 5 stations × 2 = 10 stations, and niobium-made protrusion rings 3 are joined to both ends by welding. A cryogenic container 4 made of titanium is integrally joined to the superconducting accelerating cavity 1 by electron beam welding, with the portion of the ring with protrusion 3 being a groove. In this cryogenic container 4, liquid helium (LH
e) An injection port 5 and a He gas discharge port 6 are provided respectively. An input coupler 7, which is a port for inputting a microwave for accelerating the charged particle beam 2, is joined to the groove portion of the cryogenic container by welding via the ring with protrusions 3. Also, although not shown,
The above-mentioned integrated structure is thermally insulated using a vacuum container or the like. Note that reference numeral 8 in the figure is liquid helium (LHe) filled in the outer periphery of the superconducting acceleration cavity 1.

【0011】上述したように、上記実施例に係る超伝導
加速器は、ニオブ製の超電導加速空洞1とチタン製の極
低温容器4とが溶接により一体的に接合された構成にな
ってるため、装置組立時の部品点数が低減され、組み立
て工数を低減できる。また、接合部のリークタイトの信
頼性を向上でき、冷却時及び熱サイクルによるLHe8
の漏洩を避けることができ、復旧に要する再組立の工数
を低減できる。
As described above, the superconducting accelerator according to the above-mentioned embodiment has a structure in which the superconducting accelerating cavity 1 made of niobium and the cryogenic container 4 made of titanium are integrally joined by welding. The number of parts during assembly is reduced, and the number of assembly steps can be reduced. In addition, the reliability of leaktightness at the joint can be improved, and LHe8 during cooling and thermal cycling can be improved.
Can be avoided, and the number of reassembly steps required for restoration can be reduced.

【0012】更に、高温焼鈍が行えるため、高い超伝導
加速空洞1の性能が維持できると共に、極低温容器4そ
のものが焼鈍時の水素吸着剤としても使用でき、真空焼
鈍炉に新たにチタン容器を用意する必要がなくなり、焼
鈍設備としてのコスト低減が計れる。
Furthermore, since high-temperature annealing can be performed, the high performance of the superconducting accelerating cavity 1 can be maintained, and the cryogenic container 4 itself can be used as a hydrogen adsorbent during annealing, and a new titanium container can be added to the vacuum annealing furnace. There is no need to prepare it, and the cost of annealing equipment can be reduced.

【0013】[0013]

【発明の効果】以上詳述したようにこの発明によれば、
ニオブ製の超電導加速空洞とチタン製の極低温容器とを
溶接により一体的に接合した構成にすることにより、冷
却時や熱サイクルによる接合部のリークタイトの信頼性
を向上させるとともに、接合部が高温焼鈍にも十分耐え
られ、もって真空焼鈍炉に新たにチタン容器を用意する
必要がなくなり、焼鈍設備としてのコスト低減をなしえ
る超伝導加速器を提供できる。
As described above in detail, according to the present invention,
The superconducting acceleration cavity made of niobium and the cryogenic container made of titanium are integrally joined by welding to improve the reliability of leaktightness of the joint due to cooling and thermal cycles, and It is possible to provide a superconducting accelerator that can withstand high-temperature annealing sufficiently and therefore does not need to newly prepare a titanium container in a vacuum annealing furnace and can reduce the cost of annealing equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る超伝導加速器の説明
図であり、図1(A)は全体図、図1(B)は図1
(A)の要部の拡大図。
FIG. 1 is an explanatory view of a superconducting accelerator according to an embodiment of the present invention, FIG. 1 (A) is an overall view, and FIG. 1 (B) is FIG.
The enlarged view of the principal part of (A).

【図2】従来の超伝導加速器の説明図であり、超電導加
速空洞と極低温容器をフランジ/インジウム組立で一体
化を計ったもの。
FIG. 2 is an explanatory view of a conventional superconducting accelerator, in which a superconducting accelerating cavity and a cryogenic container are integrated by a flange / indium assembly.

【図3】従来のその他の超伝導加速器の説明図であり、
超電導加速空洞と極低温容器をロー材で組立一体化を計
ったもの。
FIG. 3 is an explanatory view of another conventional superconducting accelerator,
A superconducting accelerating cavity and a cryogenic container are assembled and integrated with a brazing material.

【図4】図2の要部Xの拡大図。FIG. 4 is an enlarged view of a main part X of FIG.

【図5】図3の要部Xの拡大図。5 is an enlarged view of a main part X of FIG.

【図6】超伝導加速空洞の荷電粒子ビームの加速原理を
示す図。
FIG. 6 is a diagram showing a principle of accelerating a charged particle beam in a superconducting acceleration cavity.

【符号の説明】[Explanation of symbols]

1…超伝導加速空洞、 2…荷電粒子ビーム、 3
…突起付リング、4…極低温容器、 5…LHe
注入用ポート、6…He排出用ポート、7…インプット
カプラ、 8…液体ヘリウム。
1 ... Superconducting acceleration cavity, 2 ... Charged particle beam, 3
… Rings with protrusions, 4… Cryogenic containers, 5… LHe
Injection port, 6 ... He discharge port, 7 ... Input coupler, 8 ... Liquid helium.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仙入 克也 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuya Seniri 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries Ltd. Kobe Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子ビームを加速するニオブ製の超
電導加速空洞と、この超電導加速空洞を極低温に冷却
し、液体ヘリウムを超電導加速空洞の外周に満たして超
電導状態を保つチタン製の極低温容器とを具備し、 前記超電導加速空洞と極低温容器とが溶接により一体的
に接合されていることを特徴とする超電導加速器。
1. A superconducting acceleration cavity made of niobium for accelerating a charged particle beam, and a cryogenic cryogenic titanium for keeping the superconducting state by cooling the superconducting acceleration cavity to a cryogenic temperature and filling the outer periphery of the superconducting acceleration cavity with liquid helium. A superconducting accelerator, comprising: a container, wherein the superconducting accelerating cavity and the cryogenic container are integrally joined by welding.
JP03583794A 1994-03-07 1994-03-07 Superconducting accelerator Expired - Lifetime JP3416249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03583794A JP3416249B2 (en) 1994-03-07 1994-03-07 Superconducting accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03583794A JP3416249B2 (en) 1994-03-07 1994-03-07 Superconducting accelerator

Publications (2)

Publication Number Publication Date
JPH07245199A true JPH07245199A (en) 1995-09-19
JP3416249B2 JP3416249B2 (en) 2003-06-16

Family

ID=12453095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03583794A Expired - Lifetime JP3416249B2 (en) 1994-03-07 1994-03-07 Superconducting accelerator

Country Status (1)

Country Link
JP (1) JP3416249B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142348A1 (en) * 2010-05-12 2011-11-17 三菱重工業株式会社 Superconducting acceleration cavity and method of manufacturing superconducting acceleration cavity
CN104703379A (en) * 2013-12-05 2015-06-10 三菱重工业株式会社 Superconducting accelerating cavity and electropolishing method for superconducting accelerating cavity
CN107941261A (en) * 2017-12-05 2018-04-20 中国科学院高能物理研究所 A kind of sensor device low-temperature test platform

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142348A1 (en) * 2010-05-12 2011-11-17 三菱重工業株式会社 Superconducting acceleration cavity and method of manufacturing superconducting acceleration cavity
CN102823333A (en) * 2010-05-12 2012-12-12 三菱重工业株式会社 Superconducting acceleration cavity and method of manufacturing superconducting acceleration cavity
US20130012394A1 (en) * 2010-05-12 2013-01-10 Mitsubishi Heavy Industries, Ltd. Superconducting accelerator cavity and method of manufacturing superconducting accelerator cavity
US8630689B2 (en) 2010-05-12 2014-01-14 Mitsubishi Heavy Industries, Ltd. Superconducting accelerator cavity and method of manufacturing superconducting accelerator cavity
CN104703379A (en) * 2013-12-05 2015-06-10 三菱重工业株式会社 Superconducting accelerating cavity and electropolishing method for superconducting accelerating cavity
US9674936B2 (en) 2013-12-05 2017-06-06 Mitsubishi Heavy Industries Mechatronics Systems, Ltd Superconducting accelerating cavity and electropolishing method for superconducting accelerating cavity
CN107941261A (en) * 2017-12-05 2018-04-20 中国科学院高能物理研究所 A kind of sensor device low-temperature test platform

Also Published As

Publication number Publication date
JP3416249B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP2004169702A (en) Rocket engine combustion chamber having a number of conformal throat supports
JPH1012270A (en) Sodium-sulfur battery and manufacture thereof
US10852051B2 (en) Method of forming a heat switch
JPH0542089B2 (en)
JPH07245199A (en) Superconducting accelerator
JPH02157403A (en) Joining of turbine wheel made of titanium aluminum alloy
JPH097796A (en) Superconducting accelerating cavity
JPS62243701A (en) Joining method for different materials
JPH0685345B2 (en) How to connect superconducting body
JPS61222964A (en) Manufacture of ceramics/metal joint
JPH0218879A (en) Harmetic terminal
JP2945466B2 (en) Airtight joint structure between ceramic tube and metal
JPH0326993A (en) Vacuum vessel for nuclear fusion device
JP3727787B2 (en) Superconducting accelerator
RU2106942C1 (en) Process of soldering of telescopic structures
JPH02215416A (en) Manufacture of metallic thermos bottle
JPH0736805B2 (en) Manufacturing method of metal thermos
JPH07245200A (en) Superconducting accelerator
JPH08326992A (en) Flexible heat insulating double tube
JPH06163140A (en) Connecting method for superconductor
JPH07111197A (en) Connection structure for vacuum chamber in particle accelerator
JPH01132021A (en) Vacuum valve for vacuum circuit shutdown
JPH04178592A (en) Piping/duct structure for nuclear fusion reactor
JPH07153511A (en) Airtight insulation terminal
JPH02290234A (en) Copper-made vacuum container

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

EXPY Cancellation because of completion of term