JPH07243862A - Sensor drive circuit - Google Patents
Sensor drive circuitInfo
- Publication number
- JPH07243862A JPH07243862A JP6034524A JP3452494A JPH07243862A JP H07243862 A JPH07243862 A JP H07243862A JP 6034524 A JP6034524 A JP 6034524A JP 3452494 A JP3452494 A JP 3452494A JP H07243862 A JPH07243862 A JP H07243862A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- sensor
- circuit
- temperature
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、定電圧駆動型センサ
の感度温度依存性を補償するセンサ駆動回路に関するも
ので、特にセンサ出力電圧の温度係数の符号や大きさに
制限されず、広い適用範囲をもつ回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor drive circuit for compensating the sensitivity temperature dependence of a constant voltage drive type sensor, and is not particularly limited by the sign or size of the temperature coefficient of the sensor output voltage, and has a wide range of applications. It relates to a circuit having a range.
【0002】[0002]
【従来の技術】従来、例えば、ホール素子を用いて電流
や方位を検出するセンサ、その他の圧力センサ、加速度
センサなどは定電流又は定電圧で駆動されてきた。時に
定電圧駆動は、回路の精度、調整のしやすさなどから広
く用いられてきた。これらのセンサは、一般にその感度
が温度係数を有する。この場合、その温度補償方法とし
て、 (1)定電圧で駆動し、後段の増幅回路で補償する方
法。2. Description of the Related Art Conventionally, for example, a sensor for detecting current or direction using a Hall element, other pressure sensor, acceleration sensor, etc. have been driven by a constant current or a constant voltage. The constant voltage drive has been widely used because of its circuit accuracy and ease of adjustment. These sensors generally have a temperature coefficient in their sensitivity. In this case, as the temperature compensation method, (1) a method of driving with a constant voltage and compensating with an amplifier circuit in the subsequent stage.
【0003】(2)駆動電圧に、センサが持つ温度変動
をキャンセルするような温度係数を持たせて補償する方
法。の二通りの方法によって行なうことができる。しか
しながら(1)の方法は、温度の変化を、増幅度の変化
として補償することとなり、精度や安定度を保つことが
困難であるので主に(2)の方法で行なわれる。そこで
(2)の方法につき詳しく説明する。(2) A method of compensating the driving voltage by giving it a temperature coefficient that cancels the temperature fluctuation of the sensor. It can be performed by two methods. However, the method (1) is mainly performed by the method (2) because the change in temperature is compensated as the change in the amplification degree, and it is difficult to maintain accuracy and stability. Therefore, the method (2) will be described in detail.
【0004】一般にセンサの出力Vo はセンサ駆動電圧
Vs に比例し、温度Tの1次関数として近似できる。即
ち、 V0 =eVs (1+aT) …(1) ここでeは比例定数、aはセンサ自身のもつその出力電
圧の温度係数である。そこでセンサ駆動電圧Vs に−a
なる温度係数を持たせ、入力電圧(電源電圧)Vi の関
数として表わすと Vs =Vi (1−aT) …(2) (2)式を(1)式へ代入して VO =eVi (1−aT)(1+aT) …(3) =eVi (1−a2 T2 ) …(4) ここでa≪1であり、通常1≫a2 T2 が成立するの
で、 Vo ≒eVi …(5) となり、センサ出力電圧Vo は温度の影響をほとんど受
けなくなる。Generally, the output V o of the sensor is proportional to the sensor driving voltage V s and can be approximated as a linear function of the temperature T. That is, V 0 = eV s (1 + aT) (1) where e is a proportional constant and a is a temperature coefficient of the output voltage of the sensor itself. Therefore, the sensor drive voltage V s is -a
When given as a function of the input voltage (power supply voltage) V i , V s = V i (1-aT) (2) Substituting the formula (2) into the formula (1), V O = eV i (1-aT) (1 + aT) (3) = eV i (1-a 2 T 2 ) ... (4) Here, a << 1, and usually 1 >> a 2 T 2 holds, so V Since o≈eV i (5), the sensor output voltage V o is hardly affected by temperature.
【0005】従来知られている方法は図3に示すように
温度係数を持ったセンサ駆動電圧V s を得るために、入
力電圧Vi をシリコントランジスタQのベース−エミッ
タ電圧VBEを増幅した電圧VCEで差し引いて得るもので
ある。 Vs =Vi −VCE …(6) トランジスタQのベース電流は微少なので無視すれば、 VCE=VBE(1+R2 /R1 ) …(7) (7)式を(6)式に代入して Vs =Vi −VBE(1+R2 /R1 ) …(8) (8)式を(1)式に代入して Vo =e{Vi −VBE(1+R1 /R2 )}(1+aT) …(9) VBEは温度に対し1次関数で近似して VBE=bT+c …(10) (10)式を(9)式に代入し、変形すれば、 V0 =e{Vi −c(1+R1 /R2 )−bT(1+R1 /R2 )}(1+ aT) =e{Vi −c(1+R1 /R2 )}〔1−(1+R1 /R2 )bT/ {Vi −c(1+R1 /R2 )}〕(1+aT) …(11) ここで (1+R1 /R2 )b/{Vi −c(1+R1 R2 )}=a …(12) R1 /R2 ={a/(ac+b)}Vi −1 …(12′) が成立するようにR1 /R2 を設定すれば Vo =e{Vi −c(1+R1 /R2 )}(1−a2 T2 ) …(13) a≪1であり、通常1≫a2 T2 が成立するので Vo ≒e{Vi −c(1+R1 /R2 )} …(14) となり、センサ出力電圧Vo の温度の影響を小さくでき
る。A conventionally known method is as shown in FIG.
Sensor drive voltage V with temperature coefficient sTo get
Force voltage ViThe base of silicon transistor Q
Voltage VBEVoltage V amplifiedCEIt ’s what you get by subtracting
is there. Vs= Vi-VCE (6) Since the base current of the transistor Q is very small, VCE= VBE(1 + R2/ R1) (7) Substituting equation (7) into equation (6), Vs= Vi-VBE(1 + R2/ R1) (8) Substituting equation (8) into equation (1) Vo= E {Vi-VBE(1 + R1/ R2)} (1 + aT) (9) VBEIs a linear function of temperatureBE= BT + c (10) By substituting the equation (10) into the equation (9) and transforming it, V0= E {Vi-C (1 + R1/ R2) -BT (1 + R1/ R2)} (1 + aT) = e {Vi-C (1 + R1/ R2)} [1- (1 + R1/ R2) BT / {Vi-C (1 + R1/ R2)}] (1 + aT) (11) where (1 + R1/ R2) B / {Vi-C (1 + R1R2)} = A (12) R1/ R2= {A / (ac + b)} ViR such that -1 (12 ') holds1/ R2If you set Vo= E {Vi-C (1 + R1/ R2)} (1-a2T2) (13) a << 1 and usually 1 >> a2T2Is satisfied, so Vo≒ e {Vi-C (1 + R1/ R2)} (14) and the sensor output voltage VoCan reduce the effect of temperature
It
【0006】[0006]
【発明が解決しようとする課題】ところで、図3の従来
方法は次の問題がある。 VBEをbT+cで表したときのcのばらつき (14)式においてcがばらつくと、出力Vo の感度が
ばらつく。 VBEの温度係数bのばらつき (12′)式によりR1 /R2 を決定するが、bがばら
つくことで(12′)式は粗い近似でしか成立せず、よ
って、(14)式のVo は温度係数bのばらつきによる
誤差を伴う。The conventional method shown in FIG. 3 has the following problems. Dispersion of c when V BE is represented by bT + c When the distribution of c in Eq. (14) varies, the sensitivity of the output V o also varies. Variation in temperature coefficient b of V BE R 1 / R 2 is determined by the equation (12 ′), but since b varies, the equation (12 ′) can be established only by a rough approximation. Therefore, the equation (14) V o is accompanied by an error due to variations in the temperature coefficient b.
【0007】 センサ駆動電圧の変化 (5)式のVo ≒eVi と比較して(14)式はcを含
む項があり、(5)式のVi がずれてしまう。c(1+
R1 /R2 )の項はR1 /R2 によって左右されるので
入力電圧Vi 、従ってセンサ駆動電圧Vs を独立に決定
できない。 補償できる温度係数の限界 (12)式より{a/(ac+b)}Vi <1のときは
右辺は負となり、(12′)式を満足させるR1 /R2
の値は存在せず温度補償できない。Change in Sensor Driving Voltage Compared with V o ≈eV i in formula (5), formula (14) has a term including c, and V i in formula (5) deviates. c (1+
The R 1 / R 2 ) term is dependent on R 1 / R 2 and therefore the input voltage V i and thus the sensor drive voltage V s cannot be independently determined. Limit of temperature coefficient that can be compensated From the expression (12), when {a / (ac + b)} V i <1, the right side becomes negative, and R 1 / R 2 which satisfies the expression (12 ′) is satisfied.
The value of does not exist and the temperature cannot be compensated.
【0008】 センサの温度係数a>0の場合は補償
できない。 VBEの温度係数bは負の値を持つので、(12)式から
判るように、温度係数aが正のセンサの補償はできな
い。 駆動電圧Vs に温度係数を持たせて補償する方法は、
、項のようにトランジスタのVBEの温度特性のばら
つきによって補償の精度が低下すること、項のよう
に、センサ駆動電圧Vs を任意に設定できないこと、
項のように、センサの温度係数aが正の場合には補償で
きず、また項のようにaが負であっても補償できない
場合があるなど、この補償方法を適用できる範囲が狭い
ことなどの欠点がある。If the temperature coefficient a> 0 of the sensor cannot be compensated. Since the temperature coefficient b of V BE has a negative value, it is not possible to compensate a sensor having a positive temperature coefficient a, as can be seen from the equation (12). The method of compensating the driving voltage V s by giving it a temperature coefficient is as follows.
, The compensation accuracy is deteriorated due to the variation in the temperature characteristics of the V BE of the transistor as in the item, and the sensor drive voltage V s cannot be arbitrarily set as in the item.
As in the item above, if the temperature coefficient a of the sensor is positive, it cannot be compensated, and in some cases, even if a is negative, it cannot be compensated. For example, the applicable range of this compensation method is narrow. There is a drawback of.
【0009】この発明の目的は、これら従来の欠点を解
決して、補償精度が高く、センサ駆動電圧を任意に設定
することができ、かつセンサの任意の温度特性に対し広
く適用できる温度補償機能を備えた駆動回路を提供しよ
うとするものである。The object of the present invention is to solve these conventional drawbacks, to provide a high compensation accuracy, to set the sensor drive voltage arbitrarily, and to apply it to a wide range of temperature characteristics of the sensor. It is intended to provide a drive circuit having
【0010】[0010]
(1)請求項1のセンサ駆動回路は、センサ温度tに依
存しない一定電圧Vrを発生する第1電圧発生回路と、
センサ温度tに対応した電圧Vt を発生する第2電圧発
生回路と、前記第1電圧発生回路の出力電圧Vr に所定
の第1の定数βを乗算する第1乗算回路と、前記第2電
圧発生回路の出力電圧Vt に所定の第2の定数γを乗算
する第2乗算回路と、前記第1乗算回路の出力βVr か
ら前記第2乗算回路の出力γVt を減算し、その差値β
Vr −γVt をセンサ駆動電圧として出力する減算回路
とを具備する。(1) The sensor drive circuit according to claim 1 includes a first voltage generation circuit that generates a constant voltage V r that does not depend on the sensor temperature t,
A second voltage generating circuit for generating a voltage V t corresponding to the sensor temperature t; a first multiplying circuit for multiplying an output voltage V r of the first voltage generating circuit by a predetermined first constant β; subtracting the second multiplication circuit for multiplying a predetermined second constant γ in the output voltage V t of the voltage generating circuit, the output .gamma.V t of the second multiplier circuit from the output .beta.v r of the first multiplier circuit, the difference Value β
And a subtraction circuit that outputs V r −γV t as a sensor drive voltage.
【0011】そして、前記第1乗算回路の出力βVr と
前記第2乗算回路の出力γVt との間に、 γVt =βVr ×a(t−t0 ) a:センサ自身のもつセンサ出力の温度係数 t0 :基準温度 の関係が付与される。Then, between the output βV r of the first multiplication circuit and the output γV t of the second multiplication circuit, γV t = βV r × a (t−t 0 ) a: the sensor output of the sensor itself. Temperature coefficient t 0 : reference temperature is given.
【0012】(2)請求項2のセンサ駆動回路は、セン
サ温度tに依存しない一定電圧Vrを発生する第1電圧
発生回路と、その第1電圧発生回路の出力Vr に所定の
定数βを乗算する第1乗算回路と、前記第1乗算回路の
出力βVr にa(t−t0 )(ここでaはセンサ自身の
もつセンサ出力の温度係数、t0 は基準温度)を乗算す
る第2電圧発生回路と、前記第1乗算回路の出力βVr
から前記第2電圧発生回路の出力βVr ×a(t−
t0 )を減算し、その差値をセンサ駆動電圧として出力
する減算回路と、により構成される。(2) According to another aspect of the sensor drive circuit of the present invention, a first voltage generating circuit for generating a constant voltage V r independent of the sensor temperature t, and a predetermined constant β for the output V r of the first voltage generating circuit. And the output βV r of the first multiplier circuit is multiplied by a (t−t 0 ), where a is the temperature coefficient of the sensor output of the sensor itself, and t 0 is the reference temperature. The output βV r of the second voltage generation circuit and the first multiplication circuit
From the output of the second voltage generating circuit βV r × a (t-
t 0) is subtracted and a subtraction circuit for outputting the difference value as the sensor driving voltage, the constructed.
【0013】(3)請求項3のセンサ駆動回路は、セン
サ温度tに依存しない一定電圧Vrを発生する第1電圧
発生回路と、センサ温度tに対応した電圧Vt を発生す
る第2電圧発生回路と、前記第1、第2電圧発生回路の
出力Vr 及びVt をそれぞれ入力して、 γVt =βVr ×a(t−t0 ) a:センサ自身のもつセンサ出力の温度係数 t0 :基準温度;β,γ:定数 とする時、βVr −γVt を演算し、その演算値をセン
サ駆動電圧として出力する、演算増幅器と複数の抵抗器
とより成る駆動電圧発生回路と、より構成される。(3) According to another aspect of the sensor drive circuit of the present invention, a first voltage generation circuit for generating a constant voltage V r independent of the sensor temperature t and a second voltage for generating a voltage V t corresponding to the sensor temperature t. Inputting the generator circuit and the outputs V r and V t of the first and second voltage generator circuits, respectively, γV t = βV r × a (t−t 0 ) a: temperature coefficient of the sensor output of the sensor itself t 0 : reference temperature; β, γ: a constant value, a driving voltage generating circuit composed of an operational amplifier and a plurality of resistors for calculating βV r −γV t and outputting the calculated value as a sensor driving voltage. , Composed of.
【0014】[0014]
【実施例】本発明は、センサ駆動電圧Vs を(2)式の
ごとく、 Vs =Vi {1−α(t0 −t)} =Vi {1+α(t−t0 )} …(15) とすることにより、センサの持つ温度係数の補償と駆動
電圧Vs を独立任意に決定できるようにする。ここでt
0 は基準温度、tはセンサ温度、αは駆動電圧V s の温
度係数である。式(15)は Vs =Vi −Vi α(t0 −t) …(16) と変形でき、ここで βVr =Vi …(17) γVt =Vi α(t0 −t) …(18) なる温度に依存しない電圧Vr とその係数β及び温度の
関数である電圧Vt とその係数γにより Vs =βVr −γVt …(19) と表すことができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is based on the sensor drive voltage VsOf (2)
Like Vs= Vi{1-α (t0-T)} = Vi{1 + α (t-t0)} (15), the temperature coefficient of the sensor is compensated and driven.
Voltage VsCan be independently determined. Where t
0Is the reference temperature, t is the sensor temperature, and α is the drive voltage V. sThe temperature of
It is a frequency coefficient. Equation (15) is Vs= Vi-Viα (t0-T) can be transformed into (16), where βVr= Vi … (17) γVt= Viα (t0-T) (18) voltage V which does not depend on temperaturerAnd its coefficient β and temperature
Voltage V as a functiontAnd its coefficient γs= ΒVr-ΓVt It can be expressed as (19).
【0015】βVr とγVt との関係は(17),(1
8)式より、 βVr =γVt /α(t0 −t) ∴γVt =βVr ×α(t0 −t) …(20) この発明のセンサ駆動回路1は図1に示すように温度に
依存しない一定電圧V r を発生する第1電圧発生回路4
と、温度の関数となる電圧Vt を発生する第2電圧発生
回路5と、Vr 、Vt をそれぞれβ倍、γ倍する演算回
路6,7と、βVr がγVt を減算する減算回路8と、
減算回路8の出力電圧Vs =βVr −γVt を出力する
電圧フォロア回路9から構成される。しかし電圧フォロ
ア回路は省略する場合もある。第1、第2乗算回路6,
7、減算回路10及び電圧フォロア回路9により駆動電
圧発生回路10が構成される。ΒVrAnd γVtThe relationship with (17), (1
From equation 8), βVr= ΓVt/ Α (t0-T) ∴γVt= ΒVr× α (t0-T) (20) The sensor drive circuit 1 according to the present invention is operated at a temperature as shown in FIG.
Independent constant voltage V rVoltage generation circuit 4 for generating
And the voltage V as a function of temperaturetSecond voltage generation to generate
Circuit 5 and Vr, VtCalculation times for multiplying by β and γ respectively
Roads 6, 7 and βVrIs γVtA subtraction circuit 8 for subtracting
Output voltage V of the subtraction circuit 8s= ΒVr-ΓVtOutput
It is composed of a voltage follower circuit 9. But the voltage follower
A circuit may be omitted. First and second multiplication circuits 6,
7, driving by subtractor circuit 10 and voltage follower circuit 9
The pressure generation circuit 10 is configured.
【0016】ここで、センサ出力Vo がaなるセンサ固
有の温度係数を持ち、(1)式で与えられる場合の温度
補償について考える。(2)式と(15)式の対比によ
り、 −a=α …(21) T=t−t0 …(22) (18)式に(21)式を代入すれば γ=aVi /{Vt /(t−t0 )} …(18′) (20)式に(21)式を代入すれば γVt =βVr ×a(t−t0 ) …(20′) 図1Bは図1Aの駆動電圧発生回路12の他の構成例で
ある。演算増幅器13の2つの入力端子の電圧をV+ V
- とおけば V+ =Vr ×R5 /(R4 +R5 ) …(23) 電流I1 ,I2 ,I3 を図のように定義すると、図1B
のP点においてI1 +I2 =I3 が成立する。従って、 (Vt −V- )/R3 +(Vs −V- )/R2 =V- /R1 …(24) (23)式を変形して、 R1 R2(Vt −V- ) +R1 R3(VS −V- ) −R2 R3 V- =0 …(25) ∴V- =(R1 R2 Vt +R1 R3 VS )/(R2 R1 +R3 R1 +R2 R3 ) …(26) 理想アンプではV+ =V- であるから、(22)、(2
5)式より Vs ={R5 (R1 R3 +R1 R2 +R2 R3 )/R1 R3 (R4 +R5 ) }Vr −(R2 /R3 )Vt …(27) (19)式に(26)式を対応させると β=R5 (R1 R3 +R1 R2 +R2 R3 )/R1 R3 (R4 +R5 ) …(28) γ=R2 /R3 …(29) (18′)式に(29)式を代入して γ=R2 /R3 =aVi (t−t0 )/Vt …(30) =aVi /{Vt /(t−t0 )} …(30′) (30′)式を満足するようなR2 ,R3 を選べばよ
い。Now, consider temperature compensation when the sensor output V o has a temperature coefficient peculiar to the sensor and is given by the equation (1). (2) in comparison equation (15), -a = α ... (21) T = t-t 0 ... (22) (18) Equation (21) Substituting equation γ = aV i / { V t / (t−t 0 )} (18 ′) Substituting the expression (21) into the expression (20), γV t = βV r × a (t−t 0 ) (20 ′) FIG. 1B is a diagram. 7 is another example of the configuration of the drive voltage generating circuit 12 of 1A. Set the voltage at the two input terminals of the operational amplifier 13 to V + V
- and if V + = V r × R 5 / (R 4 + R 5) ... (23) currents I 1, I 2, defines a I 3 as shown in FIG. In put, Figure 1B
At the point P of, I 1 + I 2 = I 3 holds. Therefore, (V t −V − ) / R 3 + (V s −V − ) / R 2 = V − / R 1 (24) Equation (23) is modified to R 1 R 2 (V t − V -) + R 1 R 3 (V S -V -) -R 2 R 3 V - = 0 ... (25) ∴V - = (R 1 R 2 V t + R 1 R 3 V S) / (R 2 R 1 + R 3 R 1 + R 2 R 3 ) (26) Since V + = V − in the ideal amplifier, (22), (2
5) than V s = {R 5 (R 1 R 3 + R 1 R 2 + R 2 R 3) / R 1 R 3 (R 4 + R 5)} V r - (R 2 / R 3) V t ... ( 27) When equation (26) is associated with equation (19), β = R 5 (R 1 R 3 + R 1 R 2 + R 2 R 3 ) / R 1 R 3 (R 4 + R 5 ) ... (28) γ = R 2 / R 3 (29) By substituting the expression (29) into the expression (18 ′), γ = R 2 / R 3 = aV i (t−t 0 ) / V t (30) = aV i / {V t / (t−t 0 )} (30 ′) It is sufficient to select R 2 and R 3 that satisfy the equation (30 ′).
【0017】一例として、a=1000ppm/℃、
(17)式が満足するように、 βVr =Vi =5V; β=1 …(31) と与え、 Vt /(t−t0 )=1mV/℃ …(32) の時には、(18′)式、(30′)式を満足するよう
に γ=R2 /R3 =aVi /{Vt /(t−t0 )} …(33a) =1000×10-6×5/{1×10-3}…(33b) =5 に設定する。そのためには、例えばR2 =50kΩ、R
3 =10kΩとすればよい。As an example, a = 1000 ppm / ° C.,
As the expression (17) is satisfied, βV r = V i = 5 V; β = 1 ... (31) is given. When V t / (t−t 0 ) = 1 mV / ° C. (32), (18) ′) And (30 ′) are satisfied γ = R 2 / R 3 = aV i / {V t / (t−t 0 )} (33a) = 1000 × 10 −6 × 5 / { 1 × 10 −3 } (33b) = 5 is set. For that purpose, for example, R 2 = 50 kΩ, R
3 = 10 kΩ may be set.
【0018】(27)式を変形して β={R5 /(R4 +R5 )}(1+R2 /R3 +R2 /R1)…(34) 先の例ではβ=1であり β=1={R5 /(R4 +R5 )}(1+5+R2 /R1 ) となり、例えばR4 =50k、R5 =10k、R1 =∞
とすればよい。By transforming the equation (27), β = {R 5 / (R 4 + R 5 )} (1 + R 2 / R 3 + R 2 / R 1 ) ... (34) In the above example, β = 1 and β = 1 = {R 5 / (R 4 + R 5 )} (1 + 5 + R 2 / R 1 ), for example, R 4 = 50k, R 5 = 10k, R 1 = ∞
And it is sufficient.
【0019】この例の場合には、(17)式及び(1
8′)式が満足するようにβVr とγVt とを(3
1)、(33)式により与えているので、当然(2
0′)式が成立するようにされている。ちなみに、(3
3)式に(31)式を代入すれば、 γVt =aVi (t−t0 )=βVr a(t−t0 ) …(20′) となり、(20′)式が直ちに得られる。In the case of this example, equations (17) and (1
8 ′) is satisfied so that βV r and γV t are set to (3
Since it is given by the equations (1) and (33), naturally (2
The expression 0 ') is established. By the way, (3
3) Substituting equation (31) into equation, γV t = aV i (t -t 0) = βV r a (t-t 0) ... (20 ') , and the (20') below is obtained immediately .
【0020】温度に依存しない電圧Vr はリファレンス
ダイオードやツェナーダイオードなどを、温度の関数と
なる電圧Vt はIC化温度センサ、白金薄膜抵抗体又は
サーミスタなどを用いれば容易に発生させることができ
る。The voltage V r that does not depend on temperature can be easily generated by using a reference diode or a Zener diode, and the voltage V t that is a function of temperature can be easily generated by using an IC temperature sensor, a platinum thin film resistor or a thermistor. .
【0021】[0021]
【発明の効果】この発明によれば、センサ温度tに依存
しない電圧Vr を発生する第1電圧発生回路4と、セン
サ温度tに依存する電圧Vt を発生する第2電圧発生回
路5と、駆動電圧Vs =βVr −γVt =βVr {1−
a(t−t0 )}〔しかし、γVt =βVr ×a(t−
t0 );aはセンサ自身の温度係数、β、γは定数〕を
合成する駆動電圧発生回路10とセンサ駆動回路とで構
成し、各センサ固有の温度係数aに合せることにより広
い適用範囲をもち、高精度の温度補償を行え、かつβV
r を適宜に設定することによって任意の大きさのセンサ
駆動電圧VS を発生できる。According to the present invention, the first voltage generating circuit 4 for generating the voltage V r independent of the sensor temperature t, and the second voltage generating circuit 5 for generating the voltage V t dependent on the sensor temperature t. , Drive voltage V s = βV r −γV t = βV r {1-
a (t−t 0 )} [But γV t = βV r × a (t−
t 0 ); a is a temperature coefficient of the sensor itself, β and γ are constants], and the driving voltage generating circuit 10 and the sensor driving circuit are combined. Moisture, highly accurate temperature compensation, and βV
By appropriately setting r, it is possible to generate a sensor drive voltage V S of any magnitude.
【図1】Aは請求項1の発明の実施例を示すブロック
図、Bは図1の駆動電圧発生回路10の変形例を示す回
路図。1 is a block diagram showing an embodiment of the invention of claim 1, and B is a circuit diagram showing a modified example of the drive voltage generating circuit 10 of FIG.
【図2】請求項2の発明の実施例を示すブロック図。FIG. 2 is a block diagram showing an embodiment of the invention of claim 2;
【図3】従来のセンサ駆動回路の一例を示す回路図。FIG. 3 is a circuit diagram showing an example of a conventional sensor drive circuit.
Claims (3)
を発生する第1電圧発生回路と、 センサ温度tに対応した電圧Vt を発生する第2電圧発
生回路と、 前記第1電圧発生回路の出力電圧Vr に所定の第1の定
数βを乗算する第1乗算回路と、 前記第2電圧発生回路の出力電圧Vt に所定の第2の定
数γを乗算する第2乗算回路と、 前記第1乗算回路の出力βVr から前記第2乗算回路の
出力γVt を減算し、その差値βVr −γVt をセンサ
駆動電圧として出力する減算回路とを具備し、 前記第1乗算回路の出力βVr と前記第2乗算回路の出
力γVt との間に、 γVt =βVr ×a(t−t0 ) a:センサ自身のもつセンサ出力の温度係数 t0 :基準温度 の関係が付与されていることを特徴とする、 センサ駆動回路。1. A constant voltage V r independent of the sensor temperature t.
A first voltage generating circuit for generating a second voltage generating circuit for generating a voltage V t corresponding to the sensor temperature t, the β first constant predetermined output voltage V r of said first voltage generating circuit multiplication A second multiplication circuit for multiplying the output voltage V t of the second voltage generation circuit by a predetermined second constant γ; and an output β V r of the first multiplication circuit to the second multiplication circuit. the output .gamma.V t subtracts the, comprising a subtraction circuit which outputs the difference value βV r -γV t as sensor driving voltage and output .gamma.V t output .beta.v r and the second multiplier circuit of the first multiplier circuit The sensor drive circuit is characterized in that a relation of γV t = βV r × a (t−t 0 ) a: temperature coefficient of sensor output of the sensor itself t 0 : reference temperature is given between
を発生する第1電圧発生回路と、 その第1電圧発生回路の出力Vr に所定の定数βを乗算
する第1乗算回路と、 前記第1乗算回路の出力βVr にa(t−t0 )(ここ
でaはセンサ自身のもつセンサ出力の温度係数、t0 は
基準温度)を乗算した電圧を発生する第2電圧発生回路
と、 前記第1乗算回路の出力βVr から前記第2電圧発生回
路の出力βVr ×a(t−t0 )を減算し、その差値を
センサ駆動電圧として出力する減算回路と、を具備する
ことを特徴とするセンサ駆動回路。2. A constant voltage V r independent of the sensor temperature t.
A first voltage generating circuit for generating a voltage, a first multiplier circuit for multiplying the output V r of the first voltage generating circuit by a predetermined constant β, and an output βV r of the first multiplier circuit for a (t−t 0 ) (Where a is the temperature coefficient of the sensor output of the sensor itself, t 0 is the reference temperature), and a second voltage generating circuit for generating a voltage, and the second voltage from the output βV r of the first multiplying circuit. A sensor drive circuit comprising: a subtraction circuit that subtracts the output βV r × a (t−t 0 ) of the generation circuit and outputs the difference value as a sensor drive voltage.
を発生する第1電圧発生回路と、 センサ温度tに対応した電圧Vt を発生する第2電圧発
生回路と、 前記第1、第2電圧発生回路の出力Vr 及びVt をそれ
ぞれ入力して、 γVt =βVr ×a(t−t0 ) a:センサ自身のもつセンサ出力の温度係数 t0 :基準温度;β,γ:定数 とする時、βVr −γVt を演算し、その演算値をセン
サ駆動電圧として出力する、演算増幅器と複数の抵抗器
とより成る駆動電圧発生回路と、を具備することを特徴
とするセンサ駆動回路。3. A constant voltage V r independent of the sensor temperature t.
A first voltage generating circuit for generating a voltage, a second voltage generating circuit for generating a voltage V t corresponding to the sensor temperature t, and outputs V r and V t of the first and second voltage generating circuits, respectively. , ΓV t = βV r × a (t−t 0 ) a: temperature coefficient of sensor output of the sensor itself t 0 : reference temperature; β, γ: when constants, βV r −γV t is calculated, and A sensor driving circuit comprising: a driving voltage generating circuit including an operational amplifier and a plurality of resistors, which outputs a calculated value as a sensor driving voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6034524A JPH07243862A (en) | 1994-03-04 | 1994-03-04 | Sensor drive circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6034524A JPH07243862A (en) | 1994-03-04 | 1994-03-04 | Sensor drive circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07243862A true JPH07243862A (en) | 1995-09-19 |
Family
ID=12416670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6034524A Withdrawn JPH07243862A (en) | 1994-03-04 | 1994-03-04 | Sensor drive circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07243862A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102541133A (en) * | 2011-05-11 | 2012-07-04 | 电子科技大学 | Voltage reference source capable of compensation in full temperature range |
-
1994
- 1994-03-04 JP JP6034524A patent/JPH07243862A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102541133A (en) * | 2011-05-11 | 2012-07-04 | 电子科技大学 | Voltage reference source capable of compensation in full temperature range |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100197821B1 (en) | Hall sensor with automatic compensation | |
US5460050A (en) | Semiconductor strain sensor with Wheatstone bridge drive voltage compensation circuit | |
US7786790B2 (en) | Temperature compensation circuit | |
US8240204B2 (en) | Synchronous detection circuit, sensing circuit, physical quantity measuring device, gyro sensor, and electronic apparatus | |
JP2000136966A (en) | Temperature measuring circuit using thermopile sensor | |
EP0543056B1 (en) | Temperature dependent current generator | |
US5475623A (en) | Method for the conversion of a measured signal, a converter as well as a measurement setup and a pirani measuring circuit | |
KR0125595B1 (en) | Power multiplication circuit | |
US20240003992A1 (en) | Sensor output compensation circuit | |
KR100462179B1 (en) | Thermometric output type heating element air flow meter and heating element air flow meter and engine control device | |
WO2006093177A1 (en) | Dc amplifier and method for compensating for offset voltage thereof | |
WO2020172245A1 (en) | Apparatus and method for magnetic sensor output compensation based upon ambient temperature | |
JPH07243862A (en) | Sensor drive circuit | |
US6107861A (en) | Circuit for self compensation of silicon strain gauge pressure transmitters | |
JP3352006B2 (en) | Sensor temperature compensation circuit | |
EP0618452B1 (en) | An average power detector circuit | |
KR100202589B1 (en) | Temperature measuring device and temperature compensating method thereof | |
JP3153463B2 (en) | Hall element drive circuit | |
JP7534601B2 (en) | Sensor driver circuit | |
JPS6255629B2 (en) | ||
JP3684691B2 (en) | Temperature characteristic compensation circuit and magnetoelectric conversion element driving device using the temperature characteristic compensation circuit | |
JPH09105680A (en) | Temperature measuring circuit | |
JPS5942691Y2 (en) | temperature compensation circuit | |
JP2610736B2 (en) | Amplification compensation circuit of semiconductor pressure sensor | |
JP2940283B2 (en) | Offset temperature drift compensation method for semiconductor strain gauge type sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010508 |