JPH07243001A - Rust resisting non-magnetic steel - Google Patents

Rust resisting non-magnetic steel

Info

Publication number
JPH07243001A
JPH07243001A JP3821994A JP3821994A JPH07243001A JP H07243001 A JPH07243001 A JP H07243001A JP 3821994 A JP3821994 A JP 3821994A JP 3821994 A JP3821994 A JP 3821994A JP H07243001 A JPH07243001 A JP H07243001A
Authority
JP
Japan
Prior art keywords
steel
less
machinability
magnetic
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3821994A
Other languages
Japanese (ja)
Other versions
JP2929933B2 (en
Inventor
Hiroyasu Yokoyama
泰康 横山
Sadahiro Yamamoto
定弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3821994A priority Critical patent/JP2929933B2/en
Publication of JPH07243001A publication Critical patent/JPH07243001A/en
Application granted granted Critical
Publication of JP2929933B2 publication Critical patent/JP2929933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an inexpensive rust resisting non-magnetic steel excellent in magnetic permeability, machinability, and weldability after cold working and having high strength by specifying respective contents of C, Mn, S, Ni, Cr, and N. CONSTITUTION:This steel is a rust resisting non-magnetic steel which has a composition constaining, by weight, 0.03-0.08% C, 18.0-22.0% Mn, 0.004-0.04% S, 5.5-8.0% Ni, 17.0-20.0% Cr, and 0.15-0.25% N and further containing, if necessary, 0.001-0.01% Ca and/or 0.005-0.03% Se and has superior machinability and weldability. This steel has >=300MPa 0.2% yield strength after solution heat treatment. Moreover, this steel can maintain <=1.010 magnetic permeability even after cold working.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特にリニアモーターカー
等超伝導を応用した磁気推進装置の構造部材に有効で、
冷間加工されても安定な非磁性を維持し、かつ屋外で用
いられるため耐銹性を要求される非磁性鋼に関する。
BACKGROUND OF THE INVENTION The present invention is particularly effective as a structural member of a magnetic propulsion device applying superconductivity such as a linear motor car,
The present invention relates to a non-magnetic steel that maintains stable non-magnetic properties even when cold-worked and is required to have rust resistance because it is used outdoors.

【0002】[0002]

【従来の技術】超伝導を応用した磁気推進装置の構造部
材には、磁力線に晒されても磁性を示さず、そのうえ強
度の高い非磁性鋼が必要とされる。その要求特性を具体
的に表わすと以下のとおりである。
2. Description of the Related Art A structural member of a magnetic propulsion apparatus applying superconductivity requires non-magnetic steel which does not exhibit magnetism even when exposed to magnetic lines of force and has high strength. The required characteristics are specifically shown below.

【0003】透磁率 ………… 1.010以下 強度 ………… 0.2%耐力300MPa以上 その他 ………… 低廉、被削性が良好、溶接性が良
好、銹び難いこと 既存の非磁性鋼としてはSUS304LNオーステナイ
ト系ステンレス鋼がある。これは、溶接性、耐銹性およ
び冷間加工しない時点での透磁率は良好であるが、強
度、価格、被削性、冷間加工後の透磁率に問題があっ
た。とりわけ、Niを多量に含有するため高価であるこ
と、冷間加工するとオーステナイトの一部が加工誘起変
態によりマルテンサイトに変化して透磁率が2.0以上
になること、という点が致命的である。これらを解決す
るため高価なNiのかわりにMn,Nを多量に含有させ
てオーステナイトの安定化をはかった非磁性鋼として特
開昭54−130428、特開昭57−155350が
提案されている。
Magnetic permeability: 1.010 or less Strength: 0.2% proof stress: 300 MPa or more Others: Low cost, good machinability, good weldability, and difficult to rust. As the magnetic steel, there is SUS304LN austenitic stainless steel. This has good weldability, rust resistance, and magnetic permeability before cold working, but has problems in strength, price, machinability, and magnetic permeability after cold working. In particular, it is fatal that it contains a large amount of Ni and thus is expensive, and that when cold working, a part of austenite changes to martensite due to work-induced transformation and the magnetic permeability becomes 2.0 or more. is there. In order to solve these problems, Japanese Patent Laid-Open Nos. 54-130428 and 57-155350 have been proposed as non-magnetic steels containing a large amount of Mn and N instead of expensive Ni to stabilize austenite.

【0004】これらは共に強度、価格、冷間加工後の透
磁率の改善に成功しているが、反面、溶接性に関しては
特開昭54−130428はCを0.5ないし1.5
%、特開昭57−155350はCを最大0.4%含有
するため溶接時に溶接熱影響部が著しく硬化してその部
分に割れが発生しやすく、溶接が極めて難しいという問
題点があった。また、Mn,Nを多量に含有しているた
め、冷間加工による加工硬化が大きく冷間での切削、穿
孔などの被削性が劣るという問題点もあった。要する
に、従来公知の非磁性鋼は上記した要求性能の一部を満
足はするもののすべてを満足するものではなかった。
Both of these have succeeded in improving the strength, the price and the magnetic permeability after cold working, but on the other hand, regarding weldability, JP-A-54-130428 discloses C of 0.5 to 1.5.
%, JP-A-57-155350 has a problem that the heat-affected zone of the welding is significantly hardened during welding and cracks are likely to occur at the time of welding because it contains 0.4% of C at the maximum, and welding is extremely difficult. Further, since it contains a large amount of Mn and N, there is a problem that work hardening due to cold working is great and machinability such as cold cutting and drilling is poor. In short, the conventionally known non-magnetic steel satisfies some of the above-mentioned required performances but does not satisfy all of them.

【0005】[0005]

【発明が解決しようとする課題】本発明は冷間加工後の
透磁率、被削性、溶接性、高強度という要求性能を同時
に満足する安価な耐銹性非磁性鋼を提供することを目的
としている。ここで溶接性が優れるとは、溶接時に、溶
接熱影響部の割れ、あるいは溶接部直下の非金属介在物
に沿った割れ(以下ラメラ・テアという)を生じず溶接
ができることをいう。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an inexpensive rust-resistant non-magnetic steel which simultaneously satisfies the requirements of magnetic permeability, machinability, weldability and high strength after cold working. I am trying. Here, “excellent in weldability” means that welding can be performed without causing cracks in the heat-affected zone of the weld or cracks along non-metallic inclusions immediately below the weld (hereinafter referred to as lamella tear).

【0006】[0006]

【課題を解決するための手段】上記目的を達成するには
溶接性、被削性、透磁率、耐銹性に影響する鋼成分を適
切な範囲に制御してやればよいが、鋼成分の各々が相互
に影響するため、適切な成分範囲の決定は単純ではな
い。本発明者らは研究を重ねた結果以下の成分範囲の鋼
を用いればこれら要求性能を同時に達成できることを見
出した。
In order to achieve the above object, the steel components affecting the weldability, machinability, magnetic permeability, and rust resistance may be controlled within an appropriate range. Determining the appropriate component range is not straightforward because of the influence of each other. As a result of repeated studies, the present inventors have found that these required performances can be achieved at the same time by using a steel having the following composition range.

【0007】すなわち、重量%で、C:0.03%以上
0.08%以下、Mn:18.0%以上22.0%以
下、S:0.004%以上0.04%以下、Ni:5.
5%以上8.0%以下、Cr:17.0%以上20.0
%以下、N:0.15%以上0.25%以下を有する鋼
を用いることにより、溶接性、被削性に優れ、しかも冷
間加工後も透磁率が1.010以下を維持する安価な耐
銹性非磁性鋼が実現できる。
That is, in weight%, C: 0.03% to 0.08%, Mn: 18.0% to 22.0%, S: 0.004% to 0.04%, Ni: 5.
5% or more and 8.0% or less, Cr: 17.0% or more 20.0
% Or less and N: 0.15% or more and 0.25% or less is used, the weldability and machinability are excellent, and the magnetic permeability is 1.010 or less even after cold working. Corrosion-resistant non-magnetic steel can be realized.

【0008】また、この鋼にCa:0.001%以上
0.01%以下、Se:0.005%以上0.03%以
下のうち1種類以上を含有させることにより、ラメラ・
テアが著しく改善されることを見出した。
Further, by adding at least one of Ca: 0.001% to 0.01% and Se: 0.005% to 0.03% to the lamella.
We have found that the tare is significantly improved.

【0009】[0009]

【作用】本発明に係わる耐銹性非磁性鋼の各成分の限定
理由を述べる。 (1)C:0.03%以上0.08%以下 Cは、強度の確保、オーステナイトの安定化のために
0.03%以上必要であるが、0.08%を越えると溶
接時熱影響部が硬化して割れが発生しやすくなるため
0.08%以下に抑える必要がある。
The reason for limiting each component of the rust-resistant non-magnetic steel according to the present invention will be described. (1) C: 0.03% or more and 0.08% or less C is required to be 0.03% or more in order to secure strength and stabilize austenite, but if it exceeds 0.08%, it is affected by heat during welding. It is necessary to suppress the content to 0.08% or less because the portion hardens and cracks easily occur.

【0010】 (2)Mn:18.0%以上22.0%以下 MnはNiより安価なオーステナイト安定化成分であ
り、Niを5.5ないし8.0%含有する鋼に安定なオ
ーステナイトを生成させるにはMnを15.0ないし2
2.0%含有させることが必要である。一方、Mnの含
有量が18%未満では良好なドリル寿命が得られない。
結局ドリル寿命に代表される被削性と冷間加工後の非磁
性との観点から18.0%以上22.0%以下の含有量
とする。
(2) Mn: 18.0% or more and 22.0% or less Mn is an austenite stabilizing component that is cheaper than Ni, and produces stable austenite in steel containing 5.5 to 8.0% Ni. To make Mn 15.0 to 2
It is necessary to contain 2.0%. On the other hand, if the Mn content is less than 18%, a good drill life cannot be obtained.
After all, the content is set to 18.0% or more and 22.0% or less from the viewpoint of machinability represented by drill life and nonmagnetic property after cold working.

【0011】 (3)S:0.004%以上0.04%以下 Sはおもに介在物の形態で鋼中に存在し鋼の被削性を向
上させる効果があるが、0.004%未満ではその効果
が著しく減少する。一方、0.04%を越えて添加して
も被削性の向上は少なく、逆に溶接時にラメラ・テアが
発生しやすくなるという弊害が顕著になる。そのため、
Sの含有量は0.004%以上0.04%以下とする。
(3) S: 0.004% or more and 0.04% or less S exists mainly in the form of inclusions in the steel and has the effect of improving the machinability of the steel, but if it is less than 0.004%. Its effect is significantly reduced. On the other hand, even if added over 0.04%, the machinability is not improved so much, and conversely, the disadvantage that lamella and tear are likely to occur during welding becomes remarkable. for that reason,
The content of S is 0.004% or more and 0.04% or less.

【0012】(4)Ni:5.5%以上8.0%以下 Niは、本発明鋼のようにMnとCrを多量に含む鋼に
おいてはオーステナイトを安定化させるために重要な成
分であり、5.5%以上含有させることが必要である。
しかしMn含有量が18.0ないし22.0%であれば
Niを8.0%を越えて含有させてもオーステナイト安
定化効果は少ないことから、Ni含有量は5.5%以上
8.0%以下とする。
(4) Ni: 5.5% or more and 8.0% or less Ni is an important component for stabilizing austenite in a steel containing a large amount of Mn and Cr, such as the steel of the present invention, It is necessary to contain 5.5% or more.
However, if the Mn content is 18.0 to 22.0%, the austenite stabilizing effect is small even if Ni is contained in an amount exceeding 8.0%. Therefore, the Ni content is 5.5% or more and 8.0% or more. % Or less.

【0013】 (5)Cr:17.0%以上20.0%以下 Crは本発明鋼に耐銹性を付与するに必要な成分で1
7.0%未満の含有では耐銹性が不足すること、およ
び、20.0%を越えて含有させるとCrを主体とする
金属間化合物を生成しオーステナイトが不安定化するこ
とから、17.0%以上20.0%以下の含有とする。
(5) Cr: 17.0% to 20.0% Cr is a component necessary for imparting rust resistance to the steel of the present invention.
If the content is less than 7.0%, the rust resistance is insufficient, and if the content exceeds 20.0%, an intermetallic compound mainly containing Cr is formed and austenite is destabilized. The content is 0% or more and 20.0% or less.

【0014】(6)N:0.15%以上0.25%以下 Nはオーステナイトを安定化するだけでなく、固溶体と
して鋼基地に存在することにより溶体化熱処理後の0.
2%耐力を高くするのに必要な成分である。しかし0.
15%未満ではその効果が現れないこと、および0.2
5%を越えると溶接時溶接金属にNが侵入しブローホー
ル等の欠陥が発生するため0.15%以上0.25%以
下の含有とする。
(6) N: 0.15% or more and 0.25% or less N not only stabilizes austenite but also exists as a solid solution in the steel matrix, so that N.
It is a component necessary for increasing the 2% proof stress. But 0.
If less than 15%, the effect does not appear, and 0.2
If it exceeds 5%, N penetrates into the weld metal during welding and defects such as blowholes occur, so the content is set to 0.15% or more and 0.25% or less.

【0015】 (7)Ca:0.001%以上0.01%以下 Caはドリル刃先の劣化を抑える成分であるが、それに
くわえ硫化物介在物の形態を球状に制御することにより
鋼の強度に影響を与えること無く溶接時のラメラ・テア
を抑制する効果がある。そのため特別にラメラ・テアに
注意が必要な用途には重要な成分である。しかし、0.
001%未満ではその効果を発揮せず、一方0.01%
を越えると硬い酸化物介在物を形成してドリル寿命を劣
化させ被削性を阻害する。そのため0.001%以上
0.01%以下の含有量に制御する必要がある。
(7) Ca: 0.001% or more and 0.01% or less Ca is a component that suppresses deterioration of the drill cutting edge, and the strength of steel can be improved by controlling the morphology of sulfide inclusions in a spherical shape. It has the effect of suppressing lamella and tear during welding without affecting. Therefore, it is an important ingredient for applications that require special attention to lamella thea. However, 0.
If less than 001%, the effect is not exhibited, while 0.01%
If it exceeds, hard oxide inclusions are formed and the drill life is deteriorated and machinability is impaired. Therefore, it is necessary to control the content to be 0.001% or more and 0.01% or less.

【0016】 (8)Se:0.005%以上0.03%以下 SeはCaと同様ドリル刃先の劣化を抑えると同時に溶
接時のラメラ・テアを抑制する効果があり、特別にラメ
ラ・テアに注意が必要な用途には重要な成分である。し
かし、0.005%未満ではその効果を発揮せず、一方
0.03%を越えると硬い酸化物介在物を形成してドリ
ル寿命を劣化させ被削性を阻害する。そのため0.00
5%以上0.03%以下の含有量に制御する必要があ
る。
(8) Se: 0.005% or more and 0.03% or less Se has the effect of suppressing deterioration of the drill cutting edge as well as Ca, and at the same time suppressing lamella tear during welding. It is an important ingredient for sensitive applications. However, if it is less than 0.005%, the effect is not exhibited, while if it exceeds 0.03%, hard oxide inclusions are formed to deteriorate the drill life and hinder the machinability. Therefore 0.00
It is necessary to control the content to be 5% or more and 0.03% or less.

【0017】ここで、SeとCaはどちらか一方のみを
含有させてもよいし両方含有させても含有量が上記の範
囲内であれば上記の効果を発揮する。なお、不可避不純
物には、鋼製造の際の原料に含まれるPなど微量元素の
ほか鋼精練の際の脱酸剤として添加されるSi,Alが
含まれ、Siは0.10%から0.50%まで、Alは
0.001%から0.07%までの範囲で添加されるの
が一般的である。
Here, only one of Se and Ca may be contained, or both of them may be contained, but if the content is within the above range, the above effect is exhibited. The unavoidable impurities include trace elements such as P contained in the raw material during steel production, as well as Si and Al added as deoxidizing agents during steel refining, with Si ranging from 0.10% to 0. Up to 50%, Al is generally added in the range of 0.001% to 0.07%.

【0018】以下に本発明鋼の成分限定の根拠とした実
験例について述べる。図1は安価な不銹鋼として知られ
る18%Cr系の鋼の透磁率を測定した結果である。供
試材は表1に示すようにCrを18%と固定しMn,N
iを種々変化させた成分で、いずれも熱間圧延で厚み2
0mmの鋼板に仕上げ溶体化熱処理を施した。その後5
0%の冷間加工として、冷間圧延で厚み10mmにまで
減厚(以下50%冷間加工という)したのち透磁率を測
定した。表1の供試材は、冷間加工前の透磁率はすべて
1.010以下である。
Experimental examples based on which the constituents of the steel of the present invention are limited will be described below. FIG. 1 shows the results of measuring the magnetic permeability of 18% Cr-based steel known as inexpensive stainless steel. As shown in Table 1, the test material has Mn and N fixed with Cr fixed at 18%.
i is a component with various changes, and each has a thickness of 2 after hot rolling.
A 0 mm steel plate was subjected to finish solution heat treatment. Then 5
As 0% cold working, the magnetic permeability was measured after reducing the thickness to 10 mm by cold rolling (hereinafter referred to as 50% cold working). The test materials in Table 1 all have a magnetic permeability of 1.010 or less before cold working.

【0019】[0019]

【表1】 [Table 1]

【0020】図1から理解できるように、Mn含有量1
5.0ないし22.0%の領域では基地のオーステナイ
トは冷間加工に対し安定で、50%冷間加工後も1.0
10以下の透磁率を維持できる。したがって、本発明の
目的とする非磁性鋼のMn含有量は15.0ないし2
2.0%としなければならないことがわかる。
As can be seen from FIG. 1, the Mn content 1
In the range of 5.0 to 22.0%, the austenite of the matrix is stable against cold working, and 1.0% even after 50% cold working.
A magnetic permeability of 10 or less can be maintained. Therefore, the Mn content of the non-magnetic steel targeted by the present invention is 15.0 to 2
It turns out that it should be 2.0%.

【0021】次に、被削性について述べる。図2はMn
含有量15.0ないし22.0%の鋼の被削性を調べた
結果である。供試材は表2に示すようにMnを15.
0,18.0,22.0%の3グループとし、Niを
1.5から9.5%の範囲で変化させた。圧延、冷間加
工条件は図1の場合と同じである。被削性はドリル寿命
を指標とし、ドリル寿命は次のように定義した。すなわ
ち、1本のドリルで穿孔しうる孔の合計長さをドリル寿
命とした。また、穿孔途中でドリル寿命に達し穿孔不能
となった時は貫通孔長さの50%穿孔できたとみなし
た。例えば、1本のドリルで厚み10mmの供試材に孔
をあけてゆき、21回目の穿孔途中にドリルが切れなく
なって穿孔できなくなったとすると、10mm×(21
−1)+10mm×0.5=205mmがドリル寿命と
なる。
Next, the machinability will be described. Figure 2 shows Mn
It is the result of examining the machinability of steel having a content of 15.0 to 22.0%. As shown in Table 2, the test material contained Mn of 15.
Three groups of 0, 18.0 and 22.0% were used, and Ni was changed in the range of 1.5 to 9.5%. The rolling and cold working conditions are the same as those in FIG. The machinability is defined by the drill life as an index, and the drill life is defined as follows. That is, the total length of the holes that can be drilled with one drill was defined as the drill life. Further, when the life of the drill was reached during the drilling and drilling became impossible, it was considered that 50% of the length of the through hole was drilled. For example, if one hole is drilled in a sample material having a thickness of 10 mm, and the drill cannot be cut during the 21st drilling, it becomes 10 mm × (21
-1) +10 mm x 0.5 = 205 mm is the drill life.

【0022】[0022]

【表2】 [Table 2]

【0023】図2から理解できるように、Mn15.0
%のグループではドリル寿命は高々400mmである
が、Mnが18.0%と22.0%のグループではNi
が5.5から8.0%の範囲でドリル寿命は800mm
以上と飛躍的に向上する。すなわち、被削性の観点か
ら、Mnは、透磁率の観点から範囲限定した15.0な
いし22.0%よりさらに狭い18.0ないし22.0
%の範囲に限定し、しかも、Niは5.5ないし8.0
%の範囲に限定すべきことがわかる。
As can be seen from FIG. 2, Mn15.0
%, The drill life is at most 400 mm, while Mn is 18.0% and 22.0%, the drill life is Ni.
Has a drill life of 800 mm in the range of 5.5 to 8.0%
This is a dramatic improvement. That is, from the viewpoint of machinability, Mn is 18.0 to 22.0, which is narrower than 15.0 to 22.0%, which is the range limited from the viewpoint of magnetic permeability.
%, And the Ni content is 5.5 to 8.0.
It turns out that it should be limited to the range of%.

【0024】次に被削性およびラメラ・テアの発生しや
すさに対するSの影響を述べる。図3はMnが18.0
から22.0%、Niが5.5から8.0%の範囲の非
磁性鋼のS量とドリル寿命および板厚方向引張り試験に
おける断面収縮率(以下RAzという)を調べた。ここ
で、RAzはラメラ・テアの生じ難さを示す指標で20
%以上であればラメラ・テアが発生しないことが知られ
ている。供試材の成分を表3に示す。表3中下線部は本
発明の範囲を外れている成分である。
Next, the influence of S on the machinability and the susceptibility to lamella tear will be described. In FIG. 3, Mn is 18.0.
To 22.0% and Ni in the range of 5.5 to 8.0%, the S content of the non-magnetic steel, the drill life, and the cross-sectional shrinkage ratio (hereinafter referred to as RAz) in the tensile test in the plate thickness direction were examined. Here, RAz is an index indicating the degree of difficulty of lamella / tea generation, and is 20.
It is known that lamella / tea does not occur if it is at least%. Table 3 shows the components of the test material. The underlined parts in Table 3 are components outside the scope of the present invention.

【0025】[0025]

【表3】 [Table 3]

【0026】図3から理解できるように、S含有量が
0.004%以上になるとドリル寿命は800mm以上
に改善される。一方、S含有量が0.04%を越えると
RAzが20%あるいはそれ以下となり溶接時ラメラ・
テアが発生する危険が生じる。それゆえ、S含有量は
0.004%から0.04%の範囲に制限すべきことが
わかる。
As can be seen from FIG. 3, when the S content is 0.004% or more, the drill life is improved to 800 mm or more. On the other hand, when the S content exceeds 0.04%, RAz becomes 20% or less and the lamella during welding.
There is a risk of tare. Therefore, it is understood that the S content should be limited to the range of 0.004% to 0.04%.

【0027】この耐銹性非磁性鋼の製造方法は、転炉ま
たは電気炉で本発明鋼の成分範囲に調整した鋼を連続鋳
造法または鋳型造塊法を経て熱間圧延により製造すれば
よい。この耐銹性非磁性鋼には溶体化熱処理を施すのが
原則であるが、熱間圧延の条件および熱間圧延後の冷却
速度によっては溶体化熱処理は必要ない場合もある。
This rust-resistant non-magnetic steel can be produced by hot rolling the steel adjusted to the composition range of the steel of the present invention in a converter or an electric furnace through a continuous casting method or a mold ingot method. . In principle, this rust-resistant nonmagnetic steel is subjected to solution heat treatment, but depending on the conditions of hot rolling and the cooling rate after hot rolling, solution heat treatment may not be necessary.

【0028】[0028]

【実施例】以下に実施例を述べるが、目安とする目標性
能は次のように設定した。 強度:0.2%耐力 ………… 300MPa以上 非磁性:透磁率 ………… 50%冷間加工後1.
010以下 被削性:ドリル寿命 ………… 800mm以上 溶接性:熱影響部の割れ …… なし ラメラ・テアとブローホール・・いずれも発生しない 本発明鋼は目標性能をすべて満たすが、本発明鋼の成分
範囲から外れる耐銹性非磁性鋼は目標性能すべてを同時
に満足するものでないことは以下の実施例、比較例から
明らかである。 (実施例1)表4(a)は本発明鋼の一組の実施例を示
す。供試材は表4(b)の成分の鋼を転炉にて精練する
と同時にSi,Alを添加して脱酸し、その後連続鋳造
にて製造したスラブを厚さ20mmに熱間圧延し105
0℃30分保持後水冷という溶体化熱処理をした後50
%冷間加工を施したものを用いた。以下供試材の製造方
法はすべて同じであるが、ここで、転炉による精練、脱
酸方法、連続鋳造の工程は本発明の本質ではなく、例え
ば電気炉による精練、普通造塊および分塊圧延などで製
造されたものであっても本発明の効果は変わるものでは
ない。
[Examples] Examples will be described below, and the target performance as a guide was set as follows. Strength: 0.2% proof stress ………… 300 MPa or more Non-magnetic: Permeability ………… 50% After cold working 1.
Machinability: Drill life ………… 800 mm or more Weldability: Crack in heat-affected zone …… None Neither lamella tears nor blowholes ... The steel of the present invention satisfies all target performances, but the present invention It is clear from the following examples and comparative examples that rust-resistant non-magnetic steels that are out of the composition range of steel do not simultaneously satisfy all target performances. (Example 1) Table 4 (a) shows a set of examples of the steel of the present invention. As the test material, steel having the components shown in Table 4 (b) was refined in a converter and Si and Al were added at the same time to deoxidize it, and then a slab produced by continuous casting was hot rolled to a thickness of 20 mm.
After holding at 0 ° C for 30 minutes and performing solution heat treatment of water cooling, 50
% Cold working was used. Hereinafter, the manufacturing method of the test material is all the same, but here, the refining by the converter, the deoxidizing method, the steps of continuous casting are not the essence of the present invention. The effect of the present invention does not change even if it is manufactured by rolling or the like.

【0029】表4(a)から理解されるように、本発明
鋼であるD−1からD−5はすべて目標性能を満足して
おり、優れた強度、ドリル寿命、溶接性を示すのみなら
ず冷間加工後も安定した非磁性を示している。
As can be seen from Table 4 (a), all of the steels of the present invention D-1 to D-5 satisfy the target performance and only show excellent strength, drill life and weldability. Stable non-magnetic property is exhibited even after cold working.

【0030】[0030]

【表4】 [Table 4]

【0031】本発明の有効性を確認するために以下に比
較例を示す。 比較例1:CとNの効果 表5(a)に各性能の実験結果を示す。性能が目標値を
外れている部分には表5(a)中に(*)印をつけて示
した。供試材は表5(b)の成分の鋼を実施例1と同じ
処理を施した。表5(b)の成分値のうち本発明の成分
範囲から外れるものには下線をつけて示した。
Comparative examples are shown below to confirm the effectiveness of the present invention. Comparative Example 1: Effects of C and N Table 5 (a) shows experimental results of each performance. The part where the performance is out of the target value is indicated by (*) mark in Table 5 (a). As the test material, the steel having the components shown in Table 5 (b) was subjected to the same treatment as in Example 1. Of the component values in Table 5 (b), those outside the component range of the present invention are indicated by underlining.

【0032】C含有量が0.03%未満のd−1とd−
2およびNが0.15%未満のd−5では、0.2%耐
力が300MPa未満であった。また、C含有量が0.
08%を越えたd−3,d−4ではドリル寿命が著しく
劣り、また溶接時に熱影響部に割れが発生した。さら
に、Nが0.25%をこえるd−6では溶接時ブローホ
ールが発生した。
D-1 and d- having a C content of less than 0.03%
In d-5 in which 2 and N were less than 0.15%, the 0.2% proof stress was less than 300 MPa. Further, the C content is 0.
With d-3 and d-4 exceeding 08%, the drill life was remarkably inferior, and cracks occurred in the heat affected zone during welding. Furthermore, blow holes were generated during welding in d-6 in which N exceeded 0.25%.

【0033】[0033]

【表5】 [Table 5]

【0034】比較例2:MnとNiの効果 表6(a)に各性能の実験結果を示す。供試材は表6
(b)の成分の鋼を実施例1と同じ処理を施した。表中
の(*)印および下線の意味はそれぞれ表5(a)およ
び表5(b)のものと同じである。
Comparative Example 2: Effects of Mn and Ni Table 6 (a) shows experimental results of each performance. Table 6 shows the test materials.
The steel of the component (b) was subjected to the same treatment as in Example 1. The meanings of (*) mark and underline in the table are the same as those in Table 5 (a) and Table 5 (b), respectively.

【0035】Mn含有量2.6%のe−1ではオーステ
ナイトが不安定なため50%冷間加工あるいはドリル穿
孔時の加工によりマルテンサイトが容易に生成し、透磁
率が高くなり、またドリル寿命が著しく劣化して非磁性
鋼としては使えないことが確認された。e−2ではMn
を15%以上含有するためオーステナイトが安定になっ
ており50%冷間加工後の透磁率は目標値を満足する
が、ドリル寿命が劣っている。次に、Mn含有量が22
%を越えるe−3,e−4ではこの鋼が凝固するときに
生成する金属間加工物によってオーステナイトが不安定
となる。その結果50%冷間加工後の透過率が高くなっ
た。
With e-1 having a Mn content of 2.6%, the austenite is unstable, so that martensite is easily formed by 50% cold working or working at the time of drilling, the magnetic permeability is increased, and the drill life is increased. Was significantly deteriorated and it could not be used as non-magnetic steel. e-2 is Mn
Content of 15% or more, the austenite is stable and the magnetic permeability after 50% cold working satisfies the target value, but the drill life is inferior. Next, the Mn content is 22
%, The austenite becomes unstable due to the intermetallic work formed when the steel is solidified. As a result, the transmittance after 50% cold working became high.

【0036】e−5,e−6はNi含有量が本発明鋼の
それより低い場合であり、この場合もオーステナイトが
不安定であるためドリル穿孔時にマルテンサイトが生成
しドリル寿命を劣化させた。
E-5 and e-6 are cases in which the Ni content is lower than that of the steel of the present invention, and in this case as well, the austenite is unstable, so martensite is formed during drilling and the drill life is deteriorated. .

【0037】[0037]

【表6】 [Table 6]

【0038】比較例3:Sの効果 表7(a)に各性能の実験結果を示す。供試材は表7
(b)の成分の鋼を実施例1と同じ処理を施した。表中
の(*)印および下線の意味はそれぞれ表5(a)およ
び表5(b)のものと同じである。
Comparative Example 3: Effect of S Table 7 (a) shows the experimental results of each performance. Table 7 shows the test materials.
The steel of the component (b) was subjected to the same treatment as in Example 1. The meanings of (*) mark and underline in the table are the same as those in Table 5 (a) and Table 5 (b), respectively.

【0039】f−1,f−2はSが0.04%を越えて
いるため溶接時ラメラ・テアが発生した。f−3はSが
0.004%より低いため被削性が悪くドリル寿命が著
しく短かかった。
In f-1 and f-2, since S exceeds 0.04%, lamella tear occurs during welding. Since the S of f-3 was lower than 0.004%, the machinability was poor and the drill life was extremely short.

【0040】[0040]

【表7】 (実施例2)表8(a)はCa,Seの効果を明らかに
した実施例を示す。供試材は表8(b)の成分の鋼を実
施例1と同じ処理を施した。なお、表7(a),表8
(b)には、比較例も併記している。表中の(*)印お
よび下線の意味はそれぞれ表5(a),表5(b)のも
のと同じである。
[Table 7] (Example 2) Table 8 (a) shows an example in which the effects of Ca and Se were clarified. As the test material, steel having the components shown in Table 8 (b) was subjected to the same treatment as in Example 1. In addition, Table 7 (a), Table 8
Comparative examples are also shown in (b). The meanings of (*) mark and underline in the table are the same as those in Table 5 (a) and Table 5 (b), respectively.

【0041】Caが0.001から0.01%の範囲を
外れたg−1とg−2、Seが0.005から0.03
%の範囲を外れたg−3とg−4はドリル寿命が400
mm以下と著しく短く被削性は満足できるものではな
い。一方Ca,Seが本発明の範囲内にあるG−1およ
びG−2は良好なドリル寿命を示し、良好な被削性を持
っていることがわかる。
Ca is out of the range of 0.001 to 0.01%, g-1 and g-2, and Se is 0.005 to 0.03.
The drill life of g-3 and g-4 out of the range of 400 is 400
The length is remarkably short as mm or less and the machinability is not satisfactory. On the other hand, it can be seen that G-1 and G-2 in which Ca and Se are within the range of the present invention have a good drill life and have good machinability.

【0042】[0042]

【表8】 [Table 8]

【0043】[0043]

【発明の効果】以上に示したように、非磁性鋼の分野に
おいて、C,Mn,Ni,Cr,S,Nの含有量を適切
に組み合わせ、さらに非磁性鋼の被削性に影響を与える
Ca,Seを必要に応じ適正量含有させることによっ
て、高強度で溶接性、被削性に優れ、しかも冷間加工し
ても安定な非磁性を維持する非磁性鋼を提供することが
できる。
As described above, in the field of non-magnetic steel, the contents of C, Mn, Ni, Cr, S and N are appropriately combined to further affect the machinability of the non-magnetic steel. By containing Ca and Se in appropriate amounts as needed, it is possible to provide a non-magnetic steel that has high strength, excellent weldability, and machinability, and that maintains stable non-magnetism even during cold working.

【図面の簡単な説明】[Brief description of drawings]

【図1】透磁率におよぼすC,Mn,Ni,Nの影響を
示す図。
FIG. 1 is a diagram showing the influence of C, Mn, Ni, and N on magnetic permeability.

【図2】被削性におよぼすMn,Niの影響を示す図。FIG. 2 is a diagram showing the effect of Mn and Ni on machinability.

【図3】S含有量とドリル寿命、RAzの関係の影響を
示す図。
FIG. 3 is a diagram showing the influence of the relationship between S content, drill life, and RAz.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 実質的に、重量%で、C:0.03%以
上0.08%以下、Mn:18.0%以上22.0%以
下、S:0.004%以上0.04%以下、Ni:5.
5%以上8.0%以下、Cr:17.0%以上20.0
%以下、N:0.15%以上0.25%以下を有する被
削性、溶接性に優れた耐銹性非磁性鋼。
1. Substantially, by weight%, C: 0.03% or more and 0.08% or less, Mn: 18.0% or more and 22.0% or less, S: 0.004% or more and 0.04%. Hereinafter, Ni: 5.
5% or more and 8.0% or less, Cr: 17.0% or more 20.0
%, N: 0.15% or more and 0.25% or less, rust-resistant non-magnetic steel excellent in machinability and weldability.
【請求項2】 実質的に、重量%で、C:0.03%以
上0.08%以下、Mn:18.0%以上22.0%以
下、S:0.004%以上0.04%以下、Ni:5.
5%以上8.0%以下、Cr:17.0%以上20.0
%以下、N:0.15%以上0.25%以下を有し、か
つ、Ca:0.001%以上0.01%以下とSe:
0.005%以上0.03%以下のうち1種類以上を有
する被削性、溶接性に優れた耐銹性非磁性鋼。
2. Substantially, by weight%, C: 0.03% or more and 0.08% or less, Mn: 18.0% or more and 22.0% or less, S: 0.004% or more and 0.04%. Hereinafter, Ni: 5.
5% or more and 8.0% or less, Cr: 17.0% or more 20.0
% Or less, N: 0.15% or more and 0.25% or less, and Ca: 0.001% or more and 0.01% or less and Se:
A rust-resistant non-magnetic steel having at least one of 0.005% to 0.03% and having excellent machinability and weldability.
【請求項3】 溶体化熱処理後の0.2%耐力が300
MPa以上であることを特徴とする請求項1または2に
記載した耐銹性非磁性鋼。
3. The 0.2% proof stress after solution heat treatment is 300.
The rust-resistant non-magnetic steel according to claim 1 or 2, which has a pressure of at least MPa.
JP3821994A 1994-03-09 1994-03-09 Rust-resistant non-magnetic steel Expired - Fee Related JP2929933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3821994A JP2929933B2 (en) 1994-03-09 1994-03-09 Rust-resistant non-magnetic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3821994A JP2929933B2 (en) 1994-03-09 1994-03-09 Rust-resistant non-magnetic steel

Publications (2)

Publication Number Publication Date
JPH07243001A true JPH07243001A (en) 1995-09-19
JP2929933B2 JP2929933B2 (en) 1999-08-03

Family

ID=12519200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3821994A Expired - Fee Related JP2929933B2 (en) 1994-03-09 1994-03-09 Rust-resistant non-magnetic steel

Country Status (1)

Country Link
JP (1) JP2929933B2 (en)

Also Published As

Publication number Publication date
JP2929933B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
US4302248A (en) High manganese non-magnetic steel with excellent weldability and machinability
WO2015151519A1 (en) High-tensile-strength steel plate and process for producing same
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JP2008208406A (en) Steel material having small material anisotropy and excellent fatigue crack propagation properties, and producing method therefor
JP4203068B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
US3834897A (en) Low-carbon,high-strength structural steel with good weldability
JP2995524B2 (en) High strength martensitic stainless steel and its manufacturing method
JP3440710B2 (en) H-section steel excellent in toughness of fillet portion and method for producing the same
JPH03291358A (en) Duplex stainless steel excellent in toughness and hot workability and its production
JPS628504B2 (en)
JP2875375B2 (en) How to prevent local corrosion in welds
JPH07243001A (en) Rust resisting non-magnetic steel
JPS621823A (en) Manufacture of nonmagnetic high-mn steel having superior machinability
JPH09291344A (en) Low hardness martensitic stainless steel
JPS5887221A (en) Production of high tensile steel having excellent resistance to sulfide corrosion cracking
JPS628499B2 (en)
JPH0995730A (en) Production of building steel for low temperature use
JPH0558053B2 (en)
JPH0510418B2 (en)
JP2005290555A (en) Steel plate excellent in machinability and toughness, and method for production thereof
JPH055127A (en) Production of high strength steel sheet pile
JPH01176016A (en) Manufacture of steel stock for welded joint excellent in toughness
JPH0535209B2 (en)
JP2005133145A (en) Austenitic stainless steel having excellent hot workability and corrosion resistance
JPS61231141A (en) Steel having superior plating crack resistance in weld heat-affected zone

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees