JPH0724230A - Filter medium for fine particles - Google Patents

Filter medium for fine particles

Info

Publication number
JPH0724230A
JPH0724230A JP16555993A JP16555993A JPH0724230A JP H0724230 A JPH0724230 A JP H0724230A JP 16555993 A JP16555993 A JP 16555993A JP 16555993 A JP16555993 A JP 16555993A JP H0724230 A JPH0724230 A JP H0724230A
Authority
JP
Japan
Prior art keywords
fiber
fibers
diameter
filter
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16555993A
Other languages
Japanese (ja)
Other versions
JP3449429B2 (en
Inventor
Shigeki Tanaka
茂樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16555993A priority Critical patent/JP3449429B2/en
Publication of JPH0724230A publication Critical patent/JPH0724230A/en
Application granted granted Critical
Publication of JP3449429B2 publication Critical patent/JP3449429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a filter medium having high precision of filtration separation of fine particles and a long filtration life by using a fiber assembly of superposed superfine fibers having specified properties and specifying the pore diameter and filling rate of the assembly. CONSTITUTION:In order to capture fine particles whose diameter is smaller than the average fiber diameter of superfine fibers by filtration with high precision, superfine fibers having 0.5-4mum fiber diameter are used and 10-40 such superfine fibers are superposed in the thickness direction to form a fiber assembly having <=25mum p[fl max. pore diameter, 1.0-1.8 ratio of the max. pore diameter to average flow rate and 0.05-0.35 filling rate of fibers. The controlled fibers are dispersed so as to attain a very uniformly dispersed state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体または液体中に含
まれるミクロンまたはサブミクロンオーダーの微小な粒
子を除去するための濾過材、および該濾過材を用いたフ
ィルターカートリッジに関し、更に詳しくは、濾材を構
成する繊維の円相当直径より小さい濾過精度が高いうえ
に濾過ライフが長く、処理能力に優れた特性を示す濾過
材、および該濾過材を用いたカートリッジフィルターに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter material for removing fine particles of micron or submicron order contained in a gas or liquid, and a filter cartridge using the filter material. The present invention relates to a filtering material which has a high filtering accuracy smaller than the equivalent circle diameter of fibers constituting the filtering material, has a long filtering life, and exhibits excellent processing ability, and a cartridge filter using the filtering material.

【0002】[0002]

【従来の技術】従来より濾過材の開発において濾過精度
を高くなるように濾材を設定すると濾過ライフが短くな
り、逆に濾過ライフを長くすると濾過精度が低下すると
いう問題点がありその解決に努力されてきた。かかる問
題を解決し、フィルターの濾過精度が高く濾過ライフを
長くするための工夫として、特開昭60−21618に
記載されたように濾過材の繊維径を濾過材の深さ方向に
変えたり、また実開昭60−28009に見られるよう
に繊維の充填密度を深さ方向に勾配をもたせたり、さら
には特開平1−297113に記載されるように繊維径
と平均孔径を同時に深さ方向で変化させるという方法が
取られてきた。
2. Description of the Related Art Conventionally, in the development of a filter medium, if the filter medium is set so that the filter precision is increased, the filter life is shortened, and conversely, if the filter life is lengthened, the filter precision is decreased, and an effort is made to solve the problem. It has been. As a device for solving such a problem and increasing the filtration accuracy of the filter and prolonging the filtration life, the fiber diameter of the filter medium is changed in the depth direction of the filter medium as described in JP-A-60-21618. Further, as shown in Japanese Utility Model Application Laid-Open No. 60-28009, the packing density of the fibers is made to have a gradient in the depth direction, and further, as described in JP-A-1-297113, the fiber diameter and the average pore diameter are simultaneously set in the depth direction. The method of changing has been taken.

【0003】しかしながら、繊維径を変更するためには
異なった紡糸条件下でつくられた不織布を何種類も保有
する事が必要であり、濾材の製造条件の設定変更時のロ
スが大きいという問題があった。また、特開昭60−2
16818に見られるように製造条件を変更しつつ濾過
材を濾芯(管状コアー部材)に巻き付けていく方法は、
そのような問題点を解決できるが、紡糸の条件が安定し
ないためにポリマー配管内に流れの変動や不均一を生じ
ポリマー滞留時間の斑を生じるためにポリマー粘度の斑
が発生し、オリフィスの孔詰まりを生じたり、紡糸が不
安定化し繊維径の変動や糸切れを生じるという問題点が
あった。また、充填率の調整には新たな工程の追加が必
要でありコストを高くするという問題点もあった。
However, in order to change the fiber diameter, it is necessary to have many kinds of non-woven fabrics made under different spinning conditions, and there is a problem that a large loss occurs when the setting of the manufacturing conditions of the filter medium is changed. there were. In addition, JP-A-60-2
16818, the method of winding the filter medium around the filter core (tubular core member) while changing the production conditions is as follows.
Although such a problem can be solved, fluctuations in the flow and non-uniformity occur in the polymer piping due to unstable spinning conditions, and variations in polymer residence time cause variations in polymer viscosity, resulting in orifice hole There are problems that clogging occurs, spinning becomes unstable, and fiber diameter changes and yarn breakage occurs. In addition, there is a problem in that a new process is required to adjust the filling rate, which increases the cost.

【0004】さらに特公平3−72322に記載されて
いるように水流交路による不織布は、水流の当たった部
分に孔があき、本発明が目的とする微小粒子の高精度濾
過には適していない。また、濾過精度を上げるために充
填率を0.4〜0.85程度まで上げる方法も知られて
いるがライフを長くするという観点からは好ましくな
く、また、この様な濾材を積層してもその積層効果が少
ないことが知られている。このような努力にもかかわら
ず、繊維径より小さい粒子を効率的に濾過する方法は知
られていない。
Further, as described in Japanese Patent Publication No. 3-73222, the non-woven fabric formed by the water flow intersection has holes at the portion hit by the water flow, and is not suitable for the high precision filtration of fine particles for the purpose of the present invention. . A method of increasing the filling rate to about 0.4 to 0.85 in order to improve the filtration accuracy is also known, but it is not preferable from the viewpoint of prolonging the life, and even if such a filter medium is laminated. It is known that the stacking effect is small. Despite these efforts, no method is known for efficiently filtering particles smaller than the fiber diameter.

【0005】また、これらの充填率があまり大きくない
濾過材をロールにまいた状態で保管した際には表層と濾
芯側で濾材の充填率が変わるために、カートリッジを作
成した際に濾過性能がばらつくという問題もあった。
Further, when these filter materials having a low filling rate are stored in a state of being sprinkled on rolls, the filling rate of the filter material changes between the surface layer and the filter core side. There was also the problem of variations.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の濾過
材では不充分であった点を改良し、微小粒子の濾過精度
が高く、さらに濾過ライフの長い濾過を可能とする微小
粒子の濾過材及びフィルターカートリッジを提供するこ
とを課題とする。
DISCLOSURE OF THE INVENTION The present invention has improved the point that conventional filter media are insufficient, has high filtration accuracy of fine particles, and enables filtration of fine particles having a long filtration life. It is an object to provide a material and a filter cartridge.

【0007】[0007]

【課題を解決するための手段】本発明は、前記課題を解
決するために次の手段をとる。すなわち、本発明は、平
均繊維径が0.5μm以上4μm以下の極細繊維が厚さ
方向に10〜40本重ねられた繊維集合体の最大孔径が
25μm以下でありかつ、該最大孔径と平均流量孔径の
比が1.0〜1.8の間にあり、繊維の充填率が0.0
5〜0.35の範囲にあることを特徴とする微小粒子の
濾過材(請求項1)であり、さらに、平均繊維径が0.
5μm以上4μm以下の極細繊維よりなり、目付が5〜
40g/m2の範囲にある繊維集合体よりなり、該繊維
集合体は厚み方向には部分的に繊維相互の接着点が表層
と内層の間に差がないように存在することを特徴とする
請求項1に記載の微小粒子の濾過材(請求項2)であ
り、さらにまた、液体通過孔を有する管状コアー部材
と、その周囲に配置せしめられた濾過材層とがその端部
において固定せしめられてなるフィルターカートリッジ
であって、該濾過材層は請求項1または請求項2に記載
の濾過材が少なくとも3層以上巻き付けられたものであ
ることを特徴とするフィルターカートリッジである。
The present invention adopts the following means in order to solve the above problems. That is, the present invention has a maximum pore diameter of 25 µm or less in a fiber assembly in which 10 to 40 ultrafine fibers having an average fiber diameter of 0.5 µm to 4 µm are stacked in the thickness direction, and the maximum pore diameter and the average flow rate. Pore size ratio is between 1.0 and 1.8, and fiber packing ratio is 0.0
A fine particle filtering material (claim 1) characterized by being in the range of 5 to 0.35, and further having an average fiber diameter of 0.
Made of ultrafine fibers of 5 μm or more and 4 μm or less, with a basis weight of 5
It is characterized by comprising a fiber aggregate in the range of 40 g / m 2 , and the fiber aggregate is characterized in that the adhesive points of the fibers are partially present in the thickness direction so that there is no difference between the surface layer and the inner layer. The filter material for fine particles according to claim 1 (claim 2), and further, a tubular core member having a liquid passage hole and a filter material layer arranged around the tubular core member are fixed at their ends. A filter cartridge having the above-mentioned structure, wherein the filter material layer is formed by winding at least three layers of the filter material according to claim 1 or claim 2.

【0008】以下に本発明を詳細に説明する。本発明に
使用される濾過材において濾材を形成する極細繊維の平
均繊維径より小さい粒子を高精度で濾過捕集するために
は、繊維径が0.5μmから4μmの間にある極細繊維
よりなる濾材を用いる事が必要である。一般に深層濾過
に用いられる繊維は、より細い程好ましく、平均値で4
μm以下、更に好ましくは、3μm以下が好ましい。平
均繊維径が4μmをこえると濾過効率を高くする事が困
難である。繊維径を小さくするのは好ましいが繊維径が
0.5μmより小さくなるとコアー部材に濾材を巻き付
ける際に濾材が破断する危険性が大きく、濾材の製造コ
ストも高くつく。本発明者は、鋭意研究の結果、濾過対
象粒子径の3倍以下好ましくは、2倍より小さい繊維径
を用いる事で本発明の目的である微小粒子の高精度の濾
過に好適である事を明らかとした。また、繊維径を充填
率の平方根で割った値から繊維径を引いた値は、繊維が
濾材中に均一に濾材中に分散した際の繊維間隙距離にほ
ぼ相当するが、本発明の充填率の範囲内においては繊維
径の0.7〜3.5倍の間にあり、深層濾過に好適であ
ると推定される。また、繊維径分布のバラツキは小さい
方が本発明の効果を上げやすく、このましくは、繊維径
の分布を示すCV%(標準偏差を平均値で割って百分率
に表した値)が50%より小さいことが好ましい。更に
好ましくは、繊維径の標準偏差が対象粒子の球換算平均
径より小さいことが好ましい。
The present invention will be described in detail below. In order to highly accurately filter and collect particles smaller than the average fiber diameter of the ultrafine fibers forming the filter medium in the filter medium used in the present invention, the filter medium is composed of ultrafine fibers having a fiber diameter of 0.5 μm to 4 μm. It is necessary to use a filter medium. Generally, the finer the fiber used for depth filtration is, the more the average value is 4
μm or less, more preferably 3 μm or less. If the average fiber diameter exceeds 4 μm, it is difficult to increase the filtration efficiency. It is preferable to make the fiber diameter small, but if the fiber diameter is smaller than 0.5 μm, there is a high risk that the filter medium will break when the filter medium is wound around the core member, and the manufacturing cost of the filter medium will be high. As a result of earnest research, the present inventor has found that the use of a fiber diameter of 3 times or less, preferably 2 times or less, of the particle diameter to be filtered is suitable for high-precision filtration of fine particles, which is the object of the present invention. Made it clear. Further, the value obtained by subtracting the fiber diameter from the value obtained by dividing the fiber diameter by the square root of the filling rate is approximately equivalent to the fiber gap distance when the fibers are uniformly dispersed in the filter medium, but the filling rate of the present invention Within the range, it is between 0.7 and 3.5 times the fiber diameter, and it is presumed that it is suitable for depth filtration. Further, the smaller the variation in the fiber diameter distribution is, the more easily the effect of the present invention can be enhanced, and preferably the CV% (the value obtained by dividing the standard deviation by the average value and expressed as a percentage) showing the fiber diameter distribution is 50%. It is preferably smaller. More preferably, the standard deviation of the fiber diameter is smaller than the average spherical equivalent diameter of the target particles.

【0009】これらの濾過材を構成する極細繊維を製造
する方法として熱可塑性ポリマーを材料とする際には例
えば、複合紡糸法やスパンボンド法、メルトブロー法、
静電紡糸法などがあげられる。これらの方法の中で、ス
パンボンド法やメルトブロー法は後加工工程なしで濾過
材を直接形成できるためコスト的に有利であると考えら
れる。繊維集合体の形態としては織布でも不織布でもよ
いが、不織布の方が繊維がランダムに分散しており濾過
精度を上げるうえで効果的である。繊維の断面形状は円
形でもよいしその他の形状でも良く、場合によっては異
形断面の方がより好ましい。
When a thermoplastic polymer is used as a material for producing the ultrafine fibers constituting these filter materials, for example, a composite spinning method, a spunbond method, a melt blow method,
Electrostatic spinning method and the like can be mentioned. Among these methods, the spunbond method and the melt blow method are considered to be advantageous in terms of cost because the filter medium can be directly formed without a post-processing step. The form of the fiber aggregate may be a woven fabric or a non-woven fabric, but the non-woven fabric is more effective in improving filtration accuracy because the fibers are randomly dispersed. The cross-sectional shape of the fiber may be circular or any other shape, and in some cases, a modified cross-section is more preferable.

【0010】繊維集合体の目付は5〜40g/m2の範
囲にあることが好ましく、更に好ましくは25〜40g
/m2にあることが好ましい。目付が5g/m2より小さ
くなると管状コアー材に繊維集合体を巻き付けるコスト
が上昇したり、加工工程で濾材が何らかの理由で切断さ
れる危険性が増すなどの問題を生じやすい。一方、目付
が40g/m2より大きくなると濾材に巻き付ける際に
シワが入るなどして操業性に問題があることが多い。
The basis weight of the fiber assembly is preferably in the range of 5 to 40 g / m 2 , and more preferably 25 to 40 g.
/ M 2 is preferable. When the basis weight is less than 5 g / m 2 , problems such as an increase in the cost of winding the fiber assembly around the tubular core material and an increase in the risk of the filter material being cut for some reason during the processing step are likely to occur. On the other hand, if the fabric weight is more than 40 g / m 2 , there are many problems in operability, such as wrinkles when wound around the filter medium.

【0011】また、本発明では、極細繊維が深さ方向に
10〜40本重ねられていることが重要である。この深
さ方向での繊維の本数は、目付を繊維構成物質の比重と
繊維径の積で除した以下の式により与えられる。 深さ方向繊維本数=濾過目付(g/m2)/[繊維密度
(g/cm3)×繊維径(μm)]
In the present invention, it is important that 10 to 40 ultrafine fibers are stacked in the depth direction. The number of fibers in the depth direction is given by the following formula in which the basis weight is divided by the product of the specific gravity of the fiber constituent substance and the fiber diameter. Depth direction number of fibers = filtration weight (g / m 2 ) / [fiber density (g / cm 3 ) × fiber diameter (μm)]

【0012】従来、特開昭58−186412にあるよ
うに、深さ方向には繊維の数が多いことが良いとされて
いたが、本発明者らは、深さ方向の繊維本数が40本よ
り大きくなると濾材中での繊維の均質分散が困難になる
ことを明らかとした。特にメルトブロー法により製造さ
れた極細繊維よりなる不織布においては、捕集体に捕集
された繊維が牽引エアージェット流れにより吹き飛ばさ
れないように捕集体下面よりサクションを働かせている
が、繊維層深さが深くなると該繊維層の圧力損失により
繊維を引き取る際、繊維が吹き飛ばないように作用する
吸引力が弱められるためにシートの上部ほどロープ等の
斑が発生するため濾過精度があまり上がらないことを実
験により確認した。また、繊維層が深すぎると濾芯に均
一に巻き付け難くなるという問題を生じる。一方、深さ
方向の繊維本数が小さくなり過ぎることは目付の低下を
意味し、強度等の面で問題を生じ易くなる。
Conventionally, as disclosed in Japanese Patent Laid-Open No. 58-186412, it has been considered that the number of fibers in the depth direction should be large, but the present inventors have found that the number of fibers in the depth direction is 40 fibers. It has been clarified that it becomes difficult to uniformly disperse the fibers in the filter medium as the size becomes larger. Especially in the non-woven fabric made of ultrafine fibers produced by the melt-blowing method, suction is made to work from the lower surface of the collector so that the fibers collected in the collector are not blown off by the traction air jet flow, but the depth of the fiber layer is deep. Then, when the fiber is pulled due to the pressure loss of the fiber layer, the suction force acting to prevent the fiber from being blown off is weakened, and unevenness such as ropes is generated near the top of the sheet, so it is not possible to improve filtration accuracy by experiments. confirmed. Further, if the fiber layer is too deep, there is a problem that it becomes difficult to uniformly wind the fiber layer around the filter core. On the other hand, if the number of fibers in the depth direction is too small, it means that the basis weight is reduced, and problems such as strength tend to occur.

【0013】繊維の充填率については0.05以上0.
35以下であればよい。充填率が0.05より小さくな
ると本発明で目的とする平均繊維径より小さい粒子の高
効率濾過が難しくなる。一方、充填率が0.35より高
くなると濾過精度は若干改善されるが、濾材を積層して
もライフがほとんど変わらず、長い濾過ライフを達成し
がたい。
The filling factor of the fiber is 0.05 or more and 0.
It may be 35 or less. If the filling rate is less than 0.05, it becomes difficult to perform highly efficient filtration of particles smaller than the average fiber diameter, which is the object of the present invention. On the other hand, when the filling rate is higher than 0.35, the filtration accuracy is slightly improved, but even if the filter media are laminated, the life is hardly changed and it is difficult to achieve a long filtration life.

【0014】平均粒子径が平均繊維径より小さい比較的
単分散に近い粒子を高精度で濾過するための最も重要な
要件として、濾材中に繊維を分散状態が極めて均一にな
るよう分散させる事が重要である。これは、粒子径が濾
材の繊維径より大きい際に、繊維が濾材中で均一に分散
したときに問題となる表層と濾材内部(断面方向)に構
造の差がないために大きな粒子はほとんど濾材の表面で
のみ、篩い分け効果により濾過されることが多いため、
一番上流側にある濾材の表層部分でケーキ層を形成する
ために濾過抵抗が著しく増加し、濾過ライフを短くする
という現象と全く異なる。
The most important requirement for highly accurately filtering particles having an average particle diameter smaller than the average fiber diameter and being relatively monodisperse is to disperse the fibers in the filter medium so that the dispersed state is extremely uniform. is important. This is because when the particle size is larger than the fiber diameter of the filter medium, there is no difference in structure between the surface layer and the inside of the filter medium (cross-sectional direction), which is a problem when the fibers are evenly dispersed in the filter medium. Since it is often filtered only by the surface of the
This is completely different from the phenomenon that the filtration resistance is remarkably increased because the cake layer is formed on the surface layer portion of the filter medium on the most upstream side, and the filtration life is shortened.

【0015】粒子径の分布が広い多分散系である際に
は、本発明の濾過材を何種類組み合わせて利用し、各濾
材の捕集対象粒子径を予め決定した上で、それに応じた
繊維径、充填率、最大孔径を有する濾過材を対象粒子径
が大きい濾材ほど上流側において積層する事で効果的な
濾過を実現できる。
In the case of a polydisperse system having a wide distribution of particle diameters, a number of kinds of the filtering materials of the present invention are used in combination, the particle diameters to be collected by the respective filtering materials are preliminarily determined, and the corresponding fibers are used. Effective filtration can be realized by laminating the filter material having the diameter, the filling factor, and the maximum pore diameter on the upstream side of the filter material having a larger target particle diameter.

【0016】本発明においては、繊維の分散状態を制御
する事が重要であるが、分散状態を制御する方法の一つ
としては、例えばメルトブロー法においてはポリマーを
吐出するダイと不織布の捕集体の間の距離を変えること
で容易に達成が可能である。適正なダイと捕集体の距離
としては、紡糸の条件や濾過の対象粒子の大きさにより
異なるが、一般的には3〜60cmが好ましく、より好
ましくは10〜30cmの間にあることが好ましい。
In the present invention, it is important to control the dispersed state of the fibers, and as one of the methods for controlling the dispersed state, for example, in the melt blow method, a die for discharging a polymer and a collector for a nonwoven fabric are used. This can be easily achieved by changing the distance between them. The appropriate distance between the die and the collector varies depending on the spinning conditions and the size of particles to be filtered, but is generally preferably 3 to 60 cm, and more preferably 10 to 30 cm.

【0017】繊維の分散性の評価は、濾過材の変形を防
いで断面をカットし(例えば液体窒素中でカットしたり
するなどにより)、走査型電子顕微鏡写真でその断面を
観察し繊維が融着してロープ状に複数本の繊維が絡まっ
た箇所の数や融着本数を数えたり、あるいはポロメータ
ーなどで繊維により形成されるポアーのサイズを測定す
るなどの方法があげられる。繊維分散性が良くなるほど
ポアーサイズは均一となるが、例えば最大孔径(最大ポ
アーサイズ)と平均流量孔径(ミーンフローポアー)の
比を測定し比較する事で容易に確認できる。繊維集合体
が不織布である場合は、繊維の形態があまり均一でない
ことから、測定点を増やして測定を実施し、少なくとも
3点以上の平均値で評価する事が必要である。
The dispersibility of the fiber is evaluated by cutting the cross section while preventing the filter material from being deformed (for example, by cutting it in liquid nitrogen), and observing the cross section with a scanning electron micrograph to melt the fiber. Examples include a method of counting the number of places where a plurality of fibers are entangled in a rope shape and fused and the number of fused fibers, or measuring the size of pores formed by the fibers with a porometer or the like. The better the fiber dispersibility, the more uniform the pore size, but it can be easily confirmed by, for example, measuring and comparing the ratio of the maximum pore size (maximum pore size) to the average flow pore size (mean flow pore). When the fiber assembly is a non-woven fabric, since the morphology of the fibers is not so uniform, it is necessary to increase the number of measurement points and perform the measurement, and to evaluate with an average value of at least 3 points.

【0018】繊維径より小さい粒子を捕集する濾過材に
おいては、最大孔径と平均流量孔径の比は1.0〜1.
8の間にある事が必要である。この比の値が1.0に近
づくと精密濾過膜に近づくが、濾材を積層する効果を大
きくするために最大孔径が平均粒子径より大きい事が望
ましい。一方、この比の値が1.8より大きくなると大
きな孔の存在の為に流れにチャンネリング(偏流)を生
じ微小粒子の濾過の際には精度を高くすることが困難で
あった。最大孔径と平均流量孔径の比の値は繊維の分散
状態だけでなく、平均繊維径や繊維径分散にも影響され
る。平均繊維径が小さいほど、繊維径標準偏差が小さい
ほど好ましく、特に平均繊維径が4μm以下で繊維径標
準偏差が平均繊維径の50%以下、より好ましくは、3
5%であることが好ましい。これにより本発明要件であ
る該比の値を1.0〜1.8の値に調整する事が容易で
あることが明らかとなった。また、本発明の要件内で
は、最大孔径と平均流量孔径の比が大きくなるほど積層
枚数を増やした効果が大きいことが明らかとなった。
In the filter medium that collects particles smaller than the fiber diameter, the ratio of the maximum pore diameter to the average flow pore diameter is 1.0-1.
It must be between eight. When the value of this ratio approaches 1.0, it approaches a microfiltration membrane, but it is desirable that the maximum pore size is larger than the average particle size in order to enhance the effect of laminating the filter media. On the other hand, if the value of this ratio is larger than 1.8, the presence of large pores causes channeling in the flow, which makes it difficult to increase the precision when filtering fine particles. The value of the ratio of the maximum pore diameter to the average flow pore diameter is influenced not only by the fiber dispersion state but also by the average fiber diameter and the fiber diameter dispersion. The smaller the average fiber diameter and the smaller the fiber diameter standard deviation, the more preferable. In particular, the average fiber diameter is 4 μm or less and the fiber diameter standard deviation is 50% or less of the average fiber diameter, and more preferably 3
It is preferably 5%. From this, it became clear that it is easy to adjust the value of the ratio, which is a requirement of the present invention, to a value of 1.0 to 1.8. Further, within the requirements of the present invention, it became clear that the larger the ratio of the maximum pore diameter to the average flow pore diameter, the greater the effect of increasing the number of laminated layers.

【0019】繊維径より小さい粒子の濾過のためには、
最大孔径が25μm、より好ましくは20μm以下、更
に好ましくは、15μm以下である事が濾過精度を高め
るために重要である。最大孔径が25μmより大きくな
ると濾過精度が低下して好ましくない。
For the filtration of particles smaller than the fiber diameter,
It is important that the maximum pore size is 25 μm, more preferably 20 μm or less, and further preferably 15 μm or less in order to improve filtration accuracy. If the maximum pore size is larger than 25 μm, the filtration accuracy will decrease, which is not preferable.

【0020】本発明においては繊維径の分布が狭いこと
が好ましいが、メルトブロー法において繊維分布を小さ
くする方法としては、単孔当たりの吐出量を0.01以
上0.75g/分以下にし、牽引流体であるエアーの流
れのノズル幅方向の分布を可能な限り小さくする事で達
成可能であることがわかった。
In the present invention, it is preferable that the fiber diameter distribution is narrow, but as a method for reducing the fiber distribution in the melt blowing method, the discharge amount per single hole is set to 0.01 or more and 0.75 g / min or less, and traction is performed. It was found that this can be achieved by making the distribution of the air flow, which is a fluid, in the nozzle width direction as small as possible.

【0021】本発明に用いられる濾過材は、従来から用
いられてきたように、繊維径を深さ方向に変更したり、
充填率を深さ方向に変更するなどの方法によりフィルタ
ーカートリッジを構成することも可能である。
The filter material used in the present invention can change the fiber diameter in the depth direction, as has been used conventionally.
It is also possible to construct the filter cartridge by a method such as changing the filling rate in the depth direction.

【0022】本発明で実施される濾過操作の適正な条件
としては、濾過を線速度0.5〜20cm/分で処理す
ることが好ましい。濾過速度が0.5cm/分より小さ
くなると捕集の機構が変化するためか本発明の効果がラ
イフ改善に十分あらわれなかった。また、濾過速度が低
いことは、濾過処理量の低下を意味し、工業上も余り好
ましくない。一方、20cm/分より大きくなると、本
発明の濾材では濾過精度を十分高くすることができなか
った。
As a proper condition of the filtration operation carried out in the present invention, it is preferable to carry out the filtration at a linear velocity of 0.5 to 20 cm / min. When the filtration rate is less than 0.5 cm / min, the effect of the present invention is not sufficiently shown in improving the life, probably because the collecting mechanism changes. In addition, a low filtration rate means a reduction in the amount of filtration treatment, which is not industrially preferable. On the other hand, when it is higher than 20 cm / min, the filtering accuracy of the filter material of the present invention cannot be sufficiently increased.

【0023】また、本発明の濾過材が最も効果的に用い
られる対象の粒子としては、ポリスチレンラテックスな
どの完全に球形に近い粒子だけでなく非球形粒子にも有
用である。血球や細菌等の不定形粒子(外部からの刺激
により変形する粒子)にも大きな効果が認められた。
As the particles to which the filter material of the present invention is most effectively used, not only particles having a nearly spherical shape such as polystyrene latex but also non-spherical particles are useful. A large effect was also observed on irregular particles such as blood cells and bacteria (particles that are deformed by external stimuli).

【0024】次に、ロール状に巻いて保存された濾材の
性能の巻き内外による差を無くすために、本発明の濾過
材をカレンダー処理することが望ましい。本発明の濾過
材は風速5.3cm/秒での通気抵抗が0.5〜8.0
mmAqであることが多いが、例えばカレンダーローラ
ーなどにより線圧で5〜100kgf/cm2の圧力で
該濾過材構成物質の融点の1/2以下の温度でプレスす
ることが好ましい。これにより、通気度が20〜100
%高くなり、例えば通気抵抗が0.6〜16mmAqの
間にあるように調整されることが好ましい。カレンダー
加工処理により精度は若干高くなり、ライフが短くなる
傾向が認められるが、ロールの巻き内外での特性差がな
くなり、従って、濾過特性も差が認められなくなった。
通気抵抗が8.0mmAqより大きい濾材ではカレンダ
ー調整をしなくてもあまり内外層の差は認められなかっ
た。一方、通気抵抗が0.5mmAqより小さい物では
所望の通気抵抗が実現できなかった。カレンダーを用い
る際の線圧は5kgf/cm2より小さいとその効果が
少なくまた、制御が難しく、一方100kgf/cm2
より大きくなると濾材が潰れすぎて、ライフが短くなり
過ぎたり、積層効果が小さいことが明らかとなった。ま
た、カレンダー時の温度としては融点にあまり近すぎる
とシートの表面が融解し濾材の表面で捕集粒子による閉
塞のために濾過ライフが短くなるために好ましくない。
発明者らの経験によると融点の1/2の温度と室温の間
の温度で処理することが好ましい。本発明では、部分的
に加圧変形により弱く接着された場所を濾材中に均一に
分散させることが好ましい。この際、特開平3−696
54にあるようにシートの表面のみに結合点が分散する
のではなく、濾材深さ方向全体に弱く結合されているこ
とが必要である。これは、該特許で述べられているよう
な高いカレンダー処理温度条件で達成するのは極めて困
難である。
Next, in order to eliminate the difference between the inside and the outside of the performance of the filter medium stored in a roll, it is desirable to calender the filter medium of the present invention. The filtration material of the present invention has a ventilation resistance of 0.5 to 8.0 at a wind speed of 5.3 cm / sec.
Although it is often mmAq, it is preferable to press at a temperature of 1/2 or less of the melting point of the constituent material of the filter medium at a linear pressure of 5 to 100 kgf / cm 2 with a calender roller or the like. Thereby, the air permeability is 20 to 100.
%, And the ventilation resistance is preferably adjusted to be, for example, between 0.6 and 16 mmAq. The calendering process slightly increased the accuracy and tended to shorten the life, but there was no difference in the characteristics between the inside and outside of the roll, and therefore no difference was found in the filtration characteristics.
With a filter medium having a ventilation resistance of more than 8.0 mmAq, no significant difference between the inner and outer layers was observed without calendar adjustment. On the other hand, the desired ventilation resistance could not be realized in the case where the ventilation resistance was less than 0.5 mmAq. If the linear pressure when using a calender is less than 5 kgf / cm 2 , its effect is small and control is difficult, while 100 kgf / cm 2
It became clear that the filter material was crushed too much when it was larger, the life was too short, and the stacking effect was small. If the temperature at the time of calendering is too close to the melting point, the surface of the sheet will be melted and the surface of the filter material will be clogged with trapped particles to shorten the filter life, which is not preferable.
According to the experience of the inventors, it is preferable to carry out the treatment at a temperature between half the melting point and room temperature. In the present invention, it is preferable to uniformly disperse, in the filter medium, the places that are weakly bonded due to the pressure deformation. At this time, Japanese Patent Laid-Open No. 3-696
It is necessary that the bonding points are not dispersed only on the surface of the sheet as in 54, but are weakly bonded in the entire depth direction of the filter medium. This is extremely difficult to achieve at the high calendering temperature conditions as described in that patent.

【0025】カレンダー処理等により若干通気抵抗が上
昇し、その結果ライフも若干低下するが、カートリッジ
を作成する際にも、その巻きテンションで濾材が変形
し、通気抵抗が大きくなることを考えると、この問題は
あまり重要でない。加工効率を上げるために2枚以上の
濾材を積層して処理することも問題がない。水流交絡法
や熱処理により結合点数を調整しても良い。この様に比
較的低温でカレンダー処理された濾材は壁折り(プリー
ツ)加工して2〜10層積層して利用してもよい。本発
明のフィルターを多孔性のフイルムや膜など他の素材と
積層したり、水流交絡処理やエレクトレット加工処理な
どの後加工を施してもその効果に変わりはない。また、
顆粒状あるいは繊維状の活性炭やその他の多孔体より成
る層を途中や前後に設けたりして吸着処理などを同時に
行う事も好ましい形態のひとつである。また、本発明の
濾過材は、その極細繊維特性と適度な流体透過性から保
温材やバクテリアバリア材としても有用である。
Although the airflow resistance is slightly increased by calendering and the life is slightly decreased as a result, when the cartridge is made, the filter material is deformed by the winding tension and the airflow resistance is increased. This issue is not very important. There is no problem in processing by laminating two or more filter media in order to improve the processing efficiency. The number of bonding points may be adjusted by a hydroentangling method or heat treatment. Such a filter medium calendered at a relatively low temperature may be wall-folded (pleated) to be used by laminating 2 to 10 layers. Even if the filter of the present invention is laminated with another material such as a porous film or a membrane, or subjected to post-processing such as hydroentangling treatment or electret processing, the effect is the same. Also,
It is also one of the preferable modes to carry out the adsorption treatment at the same time by providing a layer made of granular or fibrous activated carbon or other porous material in the middle or before and after. The filter material of the present invention is also useful as a heat retaining material or a bacterial barrier material because of its ultrafine fiber characteristics and appropriate fluid permeability.

【0026】[0026]

【実施例】【Example】

実施例1〜3、比較例1〜3 以下実施例をあげて、本発明を具体的に説明する。実施
例に記載の特性値は以下の測定法により決定した。 繊維径 繊維の走査型電子顕微鏡写真を倍率1000〜5000
倍で取り、その写真より任意に抽出した200本の繊維
側面の幅を測定し、算術平均により決定した。 繊維充填率 繊維の目付を20cm角の試料を秤量し、1m2あたり
の目付けに換算する。また、該試料の任意の箇所を5箇
所の厚みをJIS L1096に準じ、7g/cm2
荷重下で測定した。目付けをポリマー比重で割った値
を、更に厚みで割り無次元の体積充填率を求めた。 繊維分散状態 コールター社製ポロメーターIIを使用し、ASTM F
316−86に準じて測定を実施し、最大孔径と平均流
量孔径の比を求めた。 粒子濾過精度及び濾過ライフ JIS11種粒子と0.6μm単分散アルミナ粒子を質
量比で8対2の比で混合した粒子を0.025g/1分
散させた水溶液を線速度5cm/分で供給し、3分経過
後に濾材前後の液の濁度を測定し、以下の式により捕集
効率を求めた。 捕集効率(%)=(1−出口濃度/入口濃度)×100 また、濾過ライフは濾材前後の差圧をディジタルマノメ
ーターで測定して、濾過圧力が5kgf/cm2になる
までの時間を測定して求めた。
Examples 1 to 3 and Comparative Examples 1 to 3 The present invention will be specifically described with reference to Examples. The characteristic values described in the examples were determined by the following measuring methods. Fiber diameter Scanning electron micrograph of the fiber at a magnification of 1000 to 5000
The width of the side surface of 200 fibers arbitrarily taken from the photograph was measured and determined by arithmetic mean. The basis weight of the fiber packing ratio fibers weighed sample of 20cm square, it is converted to the basis weight per 1 m 2. Further, the thickness of 5 arbitrary points of the sample was measured according to JIS L1096 under a load of 7 g / cm 2 . The value obtained by dividing the basis weight by the specific gravity of the polymer was further divided by the thickness to obtain a dimensionless volume filling rate. Fiber dispersion state Using a Coulter Porometer II, ASTM F
Measurement was carried out according to 316-86, and the ratio of the maximum pore diameter to the average flow pore diameter was obtained. Particle Filtration Accuracy and Filtration Life JIS11 seed particles and 0.6 μm monodispersed alumina particles mixed at a mass ratio of 8: 2 are dispersed at 0.025 g / 1, and an aqueous solution is supplied at a linear velocity of 5 cm / min. After 3 minutes, the turbidity of the liquid before and after the filter medium was measured, and the collection efficiency was calculated by the following formula. Collection efficiency (%) = (1-outlet concentration / inlet concentration) × 100 Further, as for the filtration life, the differential pressure before and after the filter medium is measured with a digital manometer, and the time until the filtration pressure becomes 5 kgf / cm 2 is measured. I asked.

【0027】メルトフローレイトが300〜1000の
ポリプロピレン樹脂を用い、メルトブロー法により繊維
径が0.8〜6.0μmの極細繊維よりなる目付が30
g/m2の不織布を作成し濾過テストを実施した。結果
を表1に示す。表1において孔径比は平均流量孔径に対
する最大孔径の比をいい、捕集効率は15枚重ねて、J
IS11種粒子および0.6μmアルミナ粒子混合物の
捕集する効果。
A polypropylene resin having a melt flow rate of 300 to 1000 is used, and a basis weight of ultrafine fibers having a fiber diameter of 0.8 to 6.0 μm is 30 by a melt blow method.
A nonwoven fabric of g / m 2 was prepared and a filtration test was performed. The results are shown in Table 1. In Table 1, the pore diameter ratio refers to the ratio of the maximum pore diameter to the average flow pore diameter.
Effect of collecting IS11 seed particles and 0.6 μm alumina particle mixture.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例4 実施例2に用いた不織布を1000m巻のロールで用意
し、3ケ月放置したのちロールを巻き返して、表層部と
芯部をそれぞれ10mづつサンプリングし、カレンダー
ローラーにより線圧20kgf/cmで20℃室温状態
でプレスした。空気線速度5.3cm/秒通気抵抗は、
表層部で3.6mmAq、芯部で3.9mmAqであっ
たが、カレンダー処理により両者とも4.8mmAqに
なった。若干の通気抵抗の上昇は有るが、これは実際の
使用上は全く問題がない。それぞれのサンプルついて5
回の濾過テストを実施したところ、両者とも捕集効率が
92%、ライフが37分であり、2つの効果に有意差は
認められなかった。
Example 4 The non-woven fabric used in Example 2 was prepared with a roll of 1000 m, left for 3 months and then rewound to sample 10 m each of the surface layer and the core, and a linear pressure of 20 kgf with a calendar roller. / Cm at 20 ° C. room temperature. Air velocity 5.3 cm / sec Ventilation resistance is
The surface layer portion had 3.6 mmAq and the core portion had 3.9 mmAq, but both were 4.8 mmAq by the calendar treatment. Although there is a slight increase in ventilation resistance, this does not cause any problem in actual use. 5 for each sample
When the filtration test was conducted twice, the collection efficiency was 92% and the life was 37 minutes for both, and no significant difference was observed between the two effects.

【0030】比較例4 実施例2に用いた不織布を1000m巻のロールで用意
し、3ケ月放置したのち、ロールの表層部と芯部をサン
プリングし、それぞれについて5回の濾過テストを実施
したところ、表層部は実施例1と性能差がなかったが、
芯側のサンプルは捕集効率が89%、ライフが38分と
変化し有意差が認められ、濾過性能の差が大きく問題と
なった。
Comparative Example 4 The non-woven fabric used in Example 2 was prepared with a roll of 1000 m, left for 3 months, the surface layer and core of the roll were sampled, and a filtration test was carried out 5 times for each. The surface layer had no difference in performance from Example 1, but
The sample on the core side had a significant difference in the collection efficiency of 89% and the life changed to 38 minutes, and a significant difference was observed, and the difference in filtration performance was a big problem.

【0031】[0031]

【発明の効果】本発明の濾材は、制御された繊維の分散
性ゆえにフィルターとして使用した際に、目的とする微
小粒子の濾過精度が高く、さらに濾過ライフの長い濾過
を可能とし、濾過にかかるコストを大幅に改善し、その
効果は極めて大である。
INDUSTRIAL APPLICABILITY The filter material of the present invention has a high filtering accuracy for the target fine particles when used as a filter due to the controlled dispersibility of the fibers, and also enables filtration with a long filtration life, and The cost is greatly improved and the effect is extremely large.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均繊維径が0.5μm以上4μm以下
の極細繊維が厚さ方向に10〜40本重ねられた繊維集
合体からなり、該繊維集合体の最大孔径が25μm以下
でありかつ、該最大孔径と平均流量孔径の比が1.0〜
1.8の範囲にあり、繊維の充填率が0.05〜0.3
5の範囲にあることを特徴とする微小粒子の濾過材。
1. A fiber assembly in which 10 to 40 ultrafine fibers having an average fiber diameter of 0.5 μm or more and 4 μm or less are stacked in the thickness direction, and the maximum pore diameter of the fiber assembly is 25 μm or less, and The ratio of the maximum pore diameter to the average flow pore diameter is 1.0 to
It is in the range of 1.8 and the filling factor of the fiber is 0.05 to 0.3.
A filter material for fine particles, which is in the range of 5.
【請求項2】 平均繊維径が0.5μm以上4μm以下
の極細繊維よりなり、目付が5〜40g/m2の範囲に
ある繊維集合体よりなり、該繊維集合体は厚み方向には
部分的に繊維相互の接着点が表層と内層の間に差がない
ように存在することを特徴とする請求項1に記載の微小
粒子の濾過材。
2. An ultrafine fiber having an average fiber diameter of 0.5 μm or more and 4 μm or less, and a fiber assembly having a basis weight in the range of 5 to 40 g / m 2 , and the fiber assembly is partially formed in the thickness direction. The filter material for fine particles according to claim 1, wherein the adhesion points of the fibers are present so that there is no difference between the surface layer and the inner layer.
【請求項3】 液体通過孔を有する管状コアー部材と、
その周囲に配置せしめられた濾過材層とがその端部にお
いて固定せしめられてなるフィルターカートリッジであ
って、該濾過材層は請求項1または請求項2に記載の濾
過材が少なくとも3層以上巻き付けられたものであるこ
とを特徴とするフィルターカートリッジ。
3. A tubular core member having a liquid passage hole,
A filter cartridge in which a filter material layer disposed around the filter material is fixed at an end thereof, and the filter material layer is formed by winding at least three layers of the filter material according to claim 1 or 2. A filter cartridge characterized in that
JP16555993A 1993-07-05 1993-07-05 Fine particle filter media Expired - Lifetime JP3449429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16555993A JP3449429B2 (en) 1993-07-05 1993-07-05 Fine particle filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16555993A JP3449429B2 (en) 1993-07-05 1993-07-05 Fine particle filter media

Publications (2)

Publication Number Publication Date
JPH0724230A true JPH0724230A (en) 1995-01-27
JP3449429B2 JP3449429B2 (en) 2003-09-22

Family

ID=15814666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16555993A Expired - Lifetime JP3449429B2 (en) 1993-07-05 1993-07-05 Fine particle filter media

Country Status (1)

Country Link
JP (1) JP3449429B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218909A (en) * 2004-02-03 2005-08-18 Japan Vilene Co Ltd Filter medium and filter
JP2006341233A (en) * 2005-06-10 2006-12-21 Japan Vilene Co Ltd Sterilization filter medium and sterilization filter
JP2011104568A (en) * 2009-11-20 2011-06-02 Asahi Kasei Fibers Corp High discreteness liquid filter
JP2012237015A (en) * 2012-08-28 2012-12-06 Japan Vilene Co Ltd Composite sheet
CN112770827A (en) * 2018-09-28 2021-05-07 大金工业株式会社 Air filter medium, filter pack, air filter unit, and methods for producing these

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9498742B2 (en) 2008-12-25 2016-11-22 Kuraray Co., Ltd. Filtration material for filters, and filter cartridge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218909A (en) * 2004-02-03 2005-08-18 Japan Vilene Co Ltd Filter medium and filter
JP4614669B2 (en) * 2004-02-03 2011-01-19 日本バイリーン株式会社 Filter material and filter
JP2006341233A (en) * 2005-06-10 2006-12-21 Japan Vilene Co Ltd Sterilization filter medium and sterilization filter
JP2011104568A (en) * 2009-11-20 2011-06-02 Asahi Kasei Fibers Corp High discreteness liquid filter
JP2012237015A (en) * 2012-08-28 2012-12-06 Japan Vilene Co Ltd Composite sheet
CN112770827A (en) * 2018-09-28 2021-05-07 大金工业株式会社 Air filter medium, filter pack, air filter unit, and methods for producing these

Also Published As

Publication number Publication date
JP3449429B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
US4714647A (en) Melt-blown material with depth fiber size gradient
EP1851046B1 (en) Filtration media for filtering particulate material from gas streams
JP5483878B2 (en) Filter media for liquid filtration
Uppal et al. Meltblown nanofiber media for enhanced quality factor
EP1819414B1 (en) Filtration media for filtering particulate material from gas streams
RU2412742C2 (en) Single-component one-layer linen blown from melt and device for blowing from melt
KR0162896B1 (en) Filtration media and method of manufacture
EP0880988B1 (en) High-precision filter
EP1790406B1 (en) Filter element and method of making
EP0664842A1 (en) Meltblown fabric
US20180066386A1 (en) Nonwoven fabric and method of manufacturing same
JP2021525168A (en) Manufacturing method of non-woven fabric with improved filtration performance
JP3449429B2 (en) Fine particle filter media
JP3449430B2 (en) Fine particle filter media
JPH08309124A (en) Cylindrical filter medium and manufacture thereof
JP3164172B2 (en) Nonwoven fabric and method for producing the same
Akgul et al. Nanofibrous composite air filters
CN111364163B (en) Beaded polyacrylonitrile fiber filter element and preparation method and application thereof
JP3578229B2 (en) Fine particle filter media
WO2020202899A1 (en) Melt-blown nonwoven fabric for liquid filter, layered body of said melt-blown nonwoven fabric, and liquid filter equipped with layered body
JP3431086B2 (en) Filter cartridge and filtration method
US6749753B1 (en) Filter of high accuracy
JP3373877B2 (en) Nonwoven fabric having pore diameter gradient and method for producing the same
WO2022250057A1 (en) Melt-blow non-woven fabric and filter comprising same
WO2011091251A2 (en) Meltblown fiber spinning die

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100711

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

EXPY Cancellation because of completion of term