JP3578229B2 - Fine particle filter media - Google Patents

Fine particle filter media Download PDF

Info

Publication number
JP3578229B2
JP3578229B2 JP00285395A JP285395A JP3578229B2 JP 3578229 B2 JP3578229 B2 JP 3578229B2 JP 00285395 A JP00285395 A JP 00285395A JP 285395 A JP285395 A JP 285395A JP 3578229 B2 JP3578229 B2 JP 3578229B2
Authority
JP
Japan
Prior art keywords
layer
pore diameter
range
ratio
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00285395A
Other languages
Japanese (ja)
Other versions
JPH08192016A (en
Inventor
尚 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP00285395A priority Critical patent/JP3578229B2/en
Publication of JPH08192016A publication Critical patent/JPH08192016A/en
Application granted granted Critical
Publication of JP3578229B2 publication Critical patent/JP3578229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Filtering Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ビールなどの液体中に含まれる微小粒子を除去するための濾過材に関し、さらに詳しくは高い濾過精度と長い濾過ライフとをバランス良く合わせもつ微小粒子の濾過材に関する。
【0002】
【従来の技術】
従来、液体中に含まれる微小粒子を除去するために極細繊維不織布からなる濾過材が用いられているが、この濾過材は濾過精度を高くするとライフが短くなり、ライフを長くすると濾過精度が低下するという相反する問題点があった。
高い濾過精度とライフを両立させることに関しては、深さ方向に濾過材の濾過径を変化させる製造条件を採用して芯部に濾過材を巻き付けたもの(特開昭60−216818号公報)があるが、これは製造条件を変化させながら紡糸しつつ芯部に繊維を巻きつけるものであるため、紡糸が不安定になり、糸切れやジェットの発生が生じやすく安定したものが得られにくい問題があった。
他方、繊維充填率を深さ方向に変化させた濾過材にあっては、充填率の調整に別の工程が必要になり、コストが高くなるという問題があった。
【0003】
また、従来の濾過材は数種類の不織布を別々に作り、これらを積層するものであることから、別工程による接着工程が必要になり、接着部分がデッドとなり、ライフを長くできず、また、コストが高くなるという点で問題があり、しかも、濾過精度とライフをバランス良くすることについての工夫がなされていなかった。
【0004】
【発明が解決しようとする課題】
本発明は、気体又は液体中に含まれる微小粒子を除去するための濾過材における従来の欠点、即ち濾過精度と濾過ライフという二律相反する課題を解消し、濾過精度と濾過ライフに優れた微小粒子の濾過材を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明は、前記課題を解決するために次の手段をとる。すなわち、本発明は、最大孔径と平均流量孔径との比が1.5〜3.0の範囲にある第1層と、最大孔径と平均流量孔径との比が1.0〜2.0の範囲にある第2層となる積層体からなり、該第1層及び該第2層の構成繊維が互いに自己接着して一体化しており、前記最大孔径と平均流量孔径との比は第2層が第1層より小さく、前記積層体の構成繊維の平均繊維径が0.5μm〜5μmの範囲にあり、該構成繊維の繊維径の変動係数が50%以下であり、該積層体の最大孔径が15〜50μmの範囲にあり、繊維の充填率が0.05〜0.35の範囲にあり、目付が5〜100g/mの範囲にあることを特徴とする微小粒子の濾過材である。
【0006】
以下に本発明を詳細に説明する。本発明の濾過材は、特定の第1層と第2層とよりなる積層体からなるが、この第1層は、最大孔径と平均流量孔径との比が1.5〜3.0の範囲、好ましくは1.8〜2.5の範囲にある不織布からなる。この第1層は微小粒子の捕集と濾過ライフの向上のために繊維の分散性に分布を持たせることが必要であるために設けられるものであり、比が1.5未満であると精密濾過膜に近づき、いわゆる表面濾過になるため、ライフの向上が望めず好ましくない。比が3.0をこえると孔径のバラツキが大きくなり濾過精度が低下するので好ましくない。
【0007】
他方、第2層は、最大孔径と平均流量孔径との比は1.0〜2.0の範囲、好ましくは1.0〜1.8の範囲にある不織布からなる。この第2層は、微小粒子を捕集するため繊維が均一に分散していることが必要であり、このために最大孔径と平均流量孔径との比をできるだけ小さく1.0〜2.0の範囲におさめる必要があり、比が2.0をこえると大きな孔の存在により微小粒子の捕集ができなくなるおそれがあるので好ましくない。この意味から1.0〜1.8が好ましい。
【0008】
さらに、最大孔径と平均流量孔径との比は、第1層の方が第2層の比より大きくなければならない。これは、第1層で精密濾過より大きな領域の粒子を捕集し、第2層にかかる負荷を低下し、ライフを長くするためである。そして第2層で精密濾過を行なう。
【0009】
また、前記第1層、第2層の構成繊維は夫々自己接着していなければならない。これは、フィルターカートリッジ等に加工する際に各々の層が剥離する等の問題点を防ぐためである。
【0010】
前記積層体は、第1層と第2層とが積層されてなるが、この積層体の最大孔径は15〜50μmの範囲になければならない。最大孔径が15μm未満になると濾過ライフが短くなるので好ましくなく、他方、50μmをこえると目的の精密濾過の精度が得られなくなって好ましくない。
【0011】
また、該積層体の充填率は0.05〜1.35の範囲になければならない。充填率が0.05未満になると濾過精度が低くなって好ましくない。他方、0.35をこえるとライフが短くなって好ましくない
【0012】
さらに、目付は5〜100g/mの範囲になければならない。目付が5g/ m 未満であると濾過精度が低くなり、また、製造工程で繊維集合体が破断しやすくなって好ましくない。他方、100g/mをこえると充填率にもよるが、濾過精度及び濾過ライフのバランスが悪くなって好ましくない。
【0013】
次に、構成繊維の平均繊維径は0.5〜5μmの範囲になければならない。平均繊維径は細いほど望ましいが、0.5μm未満になると濾過精度は向上するものの、繊維が細いために濾過材として使用するときに繊維が脱落したり、また積層体としての引張強力が弱くなり、工程中で破断しやすく好ましくない。他方、平均繊維径が5μmをこえると孔径のバラツキがはなはだしくなり、濾過精度が低くなり好ましくない。
また、繊維径の分布は均一なものが好ましく、変動係数で50%以下であることが好ましい。
【0014】
ここで、本発明の濾過材の製造法について説明する。例えばメルトブロー法により第2層を形成した後、該第2層上に直接第1層を吹きつけて形成したり、第1層を形成してロール状に巻き上げ、第2層を形成しつつ該第2層の上に前記第1層を巻きもどして重ねたり、紡糸ノズル列を2組進行方向に並列に配置し、上流側の紡糸ノズル列にて第2層を、続いて下流側の紡糸ノズル列にて第1層を形成したりすることによって製造することができる。なお、この最後の方法がコストを低下させる点から好ましい。
【0015】
本発明の濾過材は第1層と第2層とよりなる積層体からなるが、第1層、第2層夫々の不織布の構成繊維は自己接着しており、紡糸ノズルと捕集コンベア間の距離を調節することにより行なわれる。
因みに、この距離は、第1層にあっては15cm〜60cm、第2層にあっては5cm〜20cmが好ましい。
【0016】
【実施例】
実施例1〜3、比較例1〜3
メルトフローレート300〜1000のポリプロピレン樹脂を用い、2組の紡糸ノズル列を進行方向に並列させて設置したメルトブロー装置を用いて第1層と第2層とを積層して濾過材を製造した。その製造条件と物性とを表1に示す。なお、比較例3は第1層と第2層とを別々に作製し、エンボスカレンダーにてロール温度80℃、線圧80kg/cmで積層したものである。
【0017】
【表1】

Figure 0003578229
【0018】
イ.平均繊維径(μm)、繊維径変動率(%)
走査型電子顕微鏡により不織布の表面を1000倍にて撮影し、写真により任意に選択した100本の繊維径を測定し、算術平均値を平均繊維径(μm)とした。また、この平均繊維径で標準偏差を割って百分率であらわしたものを繊維径変動率CV(%)とした。
【0019】
ロ.目付(g/m
ヨコ5cm×タテ20cmの試料を幅方向に連続して採取し、秤量して1m2当りの重量に換算し目付(g/m)を求めた。
【0020】
ハ.充填率
ヨコ5cm×タテ20cmの試料の任意の5箇所の厚みを7g/cmの 荷重下で測定し、目付(g/m)と厚み(mm)とから次式により求めた。
充填率=〔目付(g/m)/厚み(mm)〕・1000/密度(g/cm
【0021】
ニ.孔径(μm)
コールター社製ポロメーターIIにより、ASTM F316−86に準じて最大孔径、平均流量孔径を各々求めた。
【0022】
ホ.捕集効率(%)
JIS 11種粒子とJIS 8種粒子を質量比8:2で混合した粒子を0.025g/l分散させた水溶液を線速度5cm/分で供給し、3分経過後に濾過材前後の液の濁度を測定し、次式より求めた。
捕集効率(%)=(1−出口濃度/入口濃度)×100
【0023】
ヘ.捕集ライフ
濾過材前後の差圧をデイジタルマノメーターで測定して、濾過圧力が5kgf/cmになるまでの時間を測定した。
【0024】
表1より次のことが確認された。すなわち、実施例1は、捕集効率が88%であり、基準値70%を上まわり、また、ライフも35分と基準値20分を上まわっており、これは本発明の要件を全て満足しているためであり、実施例2、3も本発明の要件の全てを満足しており、捕集効率も82%、70%を示し、ライフも45分、55分と長かった。
【0025】
比較例1は、第2層の孔径比が小さいために捕集効率は良好なるものの、ライフが短かった。比較例2は、逆に比較例1と異なり捕集効率が悪くライフが長くなった。比較例3は、比較例1と同じく最大孔径が小さいためにライフが短かった。
比較例4は、最大孔径が55μmと大きく、しかも平均繊維径が太いために捕集効率が低かった。
比較例5は、最大孔径が大きいために比較例4と同じく捕集効率が低かった。
【0026】
【発明の効果】
本発明の濾過材は、濾過精度に優れると同時にライフも長く、バランスの良い性能を有する。[0001]
[Industrial applications]
The present invention relates to a filtering material for removing fine particles contained in a liquid such as beer, and more particularly, to a filtering material for fine particles having a good balance between high filtration accuracy and long filtration life.
[0002]
[Prior art]
Conventionally, a filter material made of a microfiber nonwoven fabric has been used to remove microparticles contained in a liquid.However, this filter material has a shorter life if the filtration accuracy is increased, and decreases if the life is increased. There was a conflicting problem of doing so.
In order to achieve both high filtration accuracy and life, a filter material wound around a core using a manufacturing condition that changes the filtration diameter of the filter material in the depth direction (Japanese Patent Laid-Open No. 60-216818) is known. However, this is because the fiber is wound around the core while spinning while changing the manufacturing conditions, so that the spinning becomes unstable and yarn breakage and jets are likely to occur, making it difficult to obtain a stable product. was there.
On the other hand, in the case of the filter medium in which the fiber filling ratio is changed in the depth direction, there is a problem that a separate process is required for adjusting the filling ratio, which increases the cost.
[0003]
In addition, the conventional filter medium separately forms several types of nonwoven fabrics and laminates them, so that a separate bonding process is required, the bonding portion becomes dead, the life cannot be lengthened, and the cost increases. However, there has been a problem in that the filtration accuracy is increased, and furthermore, no attempt has been made to achieve a good balance between filtration accuracy and life.
[0004]
[Problems to be solved by the invention]
The present invention solves the conventional drawbacks of filter media for removing microparticles contained in gas or liquid, that is, the two conflicting problems of filtration accuracy and filtration life, and provides fine particles with excellent filtration accuracy and filtration life. It is an object to provide a filter material for particles.
[0005]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems. That is, the present invention provides a first layer in which the ratio between the maximum pore diameter and the average flow pore diameter is in the range of 1.5 to 3.0, and the ratio between the maximum pore diameter and the average flow pore diameter is 1.0 to 2.0. The first layer and the constituent fibers of the second layer are self-adhered and integrated with each other, and the ratio between the maximum pore diameter and the average flow pore diameter is the second layer. Is smaller than the first layer, the average fiber diameter of the constituent fibers of the laminate is in the range of 0.5 μm to 5 μm, the coefficient of variation of the fiber diameter of the constituent fibers is 50% or less, and the maximum pore diameter of the laminate is Is in the range of 15 to 50 μm, the filling factor of the fiber is in the range of 0.05 to 0.35, and the basis weight is in the range of 5 to 100 g / m 2. .
[0006]
Hereinafter, the present invention will be described in detail. The filter medium of the present invention comprises a laminate comprising a specific first layer and a second layer, and the first layer has a ratio between the maximum pore diameter and the average flow pore diameter in the range of 1.5 to 3.0. , Preferably in the range of 1.8 to 2.5. This first layer is provided because it is necessary to impart a distribution to the dispersibility of the fibers in order to collect fine particles and improve the filtration life. Since it approaches the filtration membrane and becomes so-called surface filtration, improvement in life cannot be expected, which is not preferable. If the ratio exceeds 3.0, the variation in the pore size becomes large, and the filtration accuracy is undesirably reduced.
[0007]
On the other hand, the second layer is made of a nonwoven fabric having a ratio of the maximum pore diameter to the average flow pore diameter in the range of 1.0 to 2.0, preferably in the range of 1.0 to 1.8. In the second layer, the fibers need to be uniformly dispersed in order to collect the fine particles. For this reason, the ratio between the maximum pore size and the average flow pore size should be as small as 1.0 to 2.0. It is necessary to keep the ratio within the range, and if the ratio exceeds 2.0, there is a possibility that the collection of fine particles may not be possible due to the presence of large pores, which is not preferable. In this sense, 1.0 to 1.8 is preferable.
[0008]
Further, the ratio between the maximum pore size and the average flow pore size must be greater in the first layer than in the second layer. This is because the first layer captures particles in a region larger than the microfiltration, reduces the load on the second layer, and extends the life. Then, microfiltration is performed on the second layer.
[0009]
The constituent fibers of the first and second layers must be self-adhered. This is to prevent problems such as peeling of each layer when processing into a filter cartridge or the like.
[0010]
The laminate has a structure in which a first layer and a second layer are laminated, and the maximum pore size of the laminate must be in the range of 15 to 50 μm. If the maximum pore diameter is less than 15 μm, the filtration life is shortened, which is not preferable. On the other hand, if it exceeds 50 μm, the precision of the intended microfiltration cannot be obtained, which is not preferable.
[0011]
Further, the filling rate of the laminate must be in the range of 0.05 to 1.35. If the filling ratio is less than 0.05, the filtration accuracy is undesirably reduced. On the other hand, if it exceeds 0.35, the life becomes short, which is not preferable.
Further, the basis weight should be in the range of 5 to 100 g / m 2. If the basis weight is less than 5 g / m 2 , the filtration accuracy is lowered, and the fiber aggregate is easily broken in the manufacturing process, which is not preferable. On the other hand, if it exceeds 100 g / m 2 , although it depends on the filling rate, the balance between filtration accuracy and filtration life becomes poor, which is not preferable.
[0013]
Next, the average fiber diameter of the constituent fibers must be in the range of 0.5 to 5 μm. The average fiber diameter is preferably as small as possible, but when it is less than 0.5 μm, the filtration accuracy is improved, but the fibers fall off when used as a filter material because the fibers are thin, and the tensile strength as a laminate becomes weak. It is not preferred because it is easily broken during the process. On the other hand, when the average fiber diameter exceeds 5 μm, the variation in the pore diameter becomes remarkable, and the filtration accuracy is lowered, which is not preferable.
The distribution of the fiber diameter is preferably uniform, and the coefficient of variation is preferably 50% or less.
[0014]
Here, a method for producing the filter material of the present invention will be described. For example, after the second layer is formed by a melt blow method, the first layer is formed by spraying the first layer directly on the second layer, or the first layer is formed and wound into a roll to form the second layer. The first layer is wound back on the second layer and stacked, or two sets of spinning nozzle rows are arranged in parallel in the traveling direction, and the second layer is formed on the upstream spinning nozzle row, and then the spinning is performed on the downstream side. It can be manufactured by forming the first layer with a nozzle row. Note that this last method is preferable from the viewpoint of reducing costs.
[0015]
The filter medium of the present invention is composed of a laminate composed of a first layer and a second layer. The constituent fibers of the nonwoven fabric of each of the first layer and the second layer are self-adhered, and the fiber between the spinning nozzle and the collecting conveyor is formed. This is done by adjusting the distance.
Incidentally, this distance is preferably 15 cm to 60 cm in the first layer, and 5 cm to 20 cm in the second layer.
[0016]
【Example】
Examples 1-3, Comparative Examples 1-3
Using a polypropylene resin having a melt flow rate of 300 to 1000, a first layer and a second layer were laminated using a melt blow device in which two sets of spinning nozzle rows were arranged in parallel in the traveling direction to produce a filter material. Table 1 shows the production conditions and physical properties. In Comparative Example 3, the first layer and the second layer were separately manufactured, and were laminated with an emboss calender at a roll temperature of 80 ° C. and a linear pressure of 80 kg / cm.
[0017]
[Table 1]
Figure 0003578229
[0018]
I. Average fiber diameter (μm), fiber diameter fluctuation rate (%)
The surface of the nonwoven fabric was photographed at a magnification of 1000 with a scanning electron microscope, and the diameter of 100 fibers arbitrarily selected from the photograph was measured, and the arithmetic average value was defined as the average fiber diameter (μm). Further, a value obtained by dividing the standard deviation by the average fiber diameter and expressing the result as a percentage was defined as a fiber diameter variation rate CV (%).
[0019]
B. Weight (g / m 2 )
A sample of 5 cm (width) × 20 cm (length) was continuously sampled in the width direction, weighed, converted to the weight per 1 m 2, and the basis weight (g / m 2 ) was obtained.
[0020]
C. The thickness of any five places of a sample having a filling factor of 5 cm in width and 20 cm in length was measured under a load of 7 g / cm 2 , and was determined from the basis weight (g / m 2 ) and the thickness (mm) by the following formula.
Filling rate = [weight (g / m 2 ) / thickness (mm)] · 1000 / density (g / cm 3 )
[0021]
D. Pore size (μm)
The maximum pore size and the average flow pore size were determined using a Coulter porometer II according to ASTM F316-86.
[0022]
E. Collection efficiency (%)
An aqueous solution in which particles obtained by mixing JIS 11 seed particles and JIS 8 seed particles at a mass ratio of 8: 2 and dispersed at 0.025 g / l are supplied at a linear velocity of 5 cm / min. The degree was measured and determined by the following equation.
Collection efficiency (%) = (1−outlet concentration / inlet concentration) × 100
[0023]
F. The differential pressure between before and after the collecting life filtration material was measured with a digital manometer, and the time until the filtration pressure became 5 kgf / cm 2 was measured.
[0024]
The following was confirmed from Table 1. That is, in Example 1, the collection efficiency was 88%, which exceeded the reference value of 70%, and the life was 35 minutes, which exceeded the reference value of 20 minutes, which satisfied all the requirements of the present invention. Therefore, Examples 2 and 3 also satisfied all the requirements of the present invention, the collection efficiency was 82% and 70%, and the life was as long as 45 minutes and 55 minutes.
[0025]
In Comparative Example 1, the collection efficiency was good because the pore size ratio of the second layer was small, but the life was short. In contrast, Comparative Example 2 was different from Comparative Example 1 in that the collection efficiency was poor and the life was long. Comparative Example 3 had a short life because the maximum pore diameter was small as in Comparative Example 1.
In Comparative Example 4, the maximum pore diameter was as large as 55 μm, and the collection efficiency was low because the average fiber diameter was large.
In Comparative Example 5, the collection efficiency was low as in Comparative Example 4 because the maximum pore size was large.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION The filtration material of this invention is excellent in filtration accuracy, has a long life, and has well-balanced performance.

Claims (3)

最大孔径と平均流量孔径との比が1.5〜3.0の範囲にある第1層と、最大孔径と平均流量孔径との比が1.0〜2.0の範囲にある第2層とよりなる積層体からなり、該第1層及び該第2層の構成繊維が互いに自己接着して一体化しており、前記最大孔径と平均流量孔径との比は第2層が第1層より小さく、前記積層体の構成繊維の平均繊維径が0.5μm〜5μmの範囲にあり、該構成繊維の繊維径の変動係数が50%以下であり、該積層体の最大孔径が15〜50μmの範囲にあり、繊維の充填率が0.05〜0.35の範囲にあり、目付が5〜100g/m2の範囲にあるメルトブロー不織布よりなることを特徴とする微小粒子の濾過材。A first layer having a ratio between the maximum pore diameter and the average flow pore diameter in a range of 1.5 to 3.0, and a second layer having a ratio between the maximum pore diameter and the average flow pore diameter in a range of 1.0 to 2.0. Wherein the constituent fibers of the first layer and the second layer are self-adhered to each other and integrated, and the ratio between the maximum pore diameter and the average flow pore diameter is such that the second layer is more than the first layer. Small, the average fiber diameter of the constituent fibers of the laminate is in the range of 0.5 μm to 5 μm, the coefficient of variation of the fiber diameter of the constituent fibers is 50% or less, and the maximum pore diameter of the laminate is 15 to 50 μm. A filter material for fine particles comprising a melt-blown nonwoven fabric having a fiber filling rate in a range of 0.05 to 0.35 and a basis weight in a range of 5 to 100 g / m 2 . 最大孔径と平均流量孔径との比が、第1層にあっては1.8〜2.5の範囲にあり、第2層にあっては1.0〜1.8の範囲にある請求項1に記載の微小粒子の濾過材。The ratio between the maximum pore diameter and the average flow pore diameter is in the range of 1.8 to 2.5 in the first layer, and is in the range of 1.0 to 1.8 in the second layer. 2. The filtering material for fine particles according to 1. 紡糸ノズル列を2組進行方向に並列に配置し、一方のノズル列により最大孔径と平均流量孔径との比が1.5〜3.0の範囲にある層を、他方の紡糸ノズル列により最大孔径と平均流量孔径との比が1.0〜2.0の範囲にある層を形成し、積層体を製造することを特徴とするメルトブロー不織布積層体の製造方法。Two sets of spinning nozzle rows are arranged in parallel in the advancing direction, and one layer forms a layer in which the ratio of the maximum hole diameter to the average flow hole diameter is in the range of 1.5 to 3.0, and the other layer forms the maximum. A method for producing a melt-blown nonwoven laminate, comprising forming a layer having a ratio of pore diameter to average flow pore diameter in the range of 1.0 to 2.0, and producing a laminate.
JP00285395A 1995-01-11 1995-01-11 Fine particle filter media Expired - Fee Related JP3578229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00285395A JP3578229B2 (en) 1995-01-11 1995-01-11 Fine particle filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00285395A JP3578229B2 (en) 1995-01-11 1995-01-11 Fine particle filter media

Publications (2)

Publication Number Publication Date
JPH08192016A JPH08192016A (en) 1996-07-30
JP3578229B2 true JP3578229B2 (en) 2004-10-20

Family

ID=11540959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00285395A Expired - Fee Related JP3578229B2 (en) 1995-01-11 1995-01-11 Fine particle filter media

Country Status (1)

Country Link
JP (1) JP3578229B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342282B2 (en) * 2003-11-25 2009-10-14 旭化成せんい株式会社 Filter material
JP4424444B2 (en) 2006-09-14 2010-03-03 ダイニック株式会社 Air filter material
JP4464434B2 (en) * 2007-08-31 2010-05-19 日本バイリーン株式会社 Cylindrical filter
JP4464433B2 (en) * 2007-08-31 2010-05-19 日本バイリーン株式会社 Cylindrical filter
JP2009112887A (en) * 2007-11-01 2009-05-28 Daiwabo Co Ltd Filter medium, its manufacturing method, and cartridge filter

Also Published As

Publication number Publication date
JPH08192016A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
JP2581994B2 (en) High precision cartridge filter and method of manufacturing the same
JP4236284B2 (en) Cylindrical filter
JP6934902B2 (en) Melt blow non-woven fabric
JP2016536486A (en) Bicomponent fiber, product formed therefrom and method of making the same
EP2654920A1 (en) High porosity high basis weight filter media
JP2007152216A (en) Nonwoven fabric for filter
JP3578229B2 (en) Fine particle filter media
JP2013034919A (en) Cartridge filter
JP2016030866A (en) Melt-blown nonwoven fabric
JPH08309124A (en) Cylindrical filter medium and manufacture thereof
JPH05295645A (en) Nonwoven fabric and its production
JPH07116427A (en) Nonwoven fabric for filter and production thereof
JPH0596110A (en) Cylindrical filter and its production
JP3449429B2 (en) Fine particle filter media
JP6957472B2 (en) Non-woven
CN111364163B (en) Beaded polyacrylonitrile fiber filter element and preparation method and application thereof
JP2003220310A (en) Electret filter medium and method for producing the same
JP2531486B2 (en) Filter medium for treating waste liquid in which inorganic particles are dispersed
WO2011091251A2 (en) Meltblown fiber spinning die
JP3431086B2 (en) Filter cartridge and filtration method
JPH0515717A (en) Electret fiber filter
JP3373877B2 (en) Nonwoven fabric having pore diameter gradient and method for producing the same
JP2001293316A (en) Method for producing unit filter
JP2023144365A (en) spunbond nonwoven fabric
CN116113483A (en) Melt-blown nonwoven fabric and filter provided with same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees