JPS63175156A - Nonwoven fabric - Google Patents

Nonwoven fabric

Info

Publication number
JPS63175156A
JPS63175156A JP62000304A JP30487A JPS63175156A JP S63175156 A JPS63175156 A JP S63175156A JP 62000304 A JP62000304 A JP 62000304A JP 30487 A JP30487 A JP 30487A JP S63175156 A JPS63175156 A JP S63175156A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fibers
less
free space
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62000304A
Other languages
Japanese (ja)
Inventor
英夫 磯田
石原 英昭
茂樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP62000304A priority Critical patent/JPS63175156A/en
Publication of JPS63175156A publication Critical patent/JPS63175156A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、極細の合成繊維によって構成され、且つ縦・
横方向の乾熱収縮率及び縦・横方向の透過マイクロ波強
度比を特定することによって、特にフィルター用として
高性能を発揮する不織布に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is made of ultra-fine synthetic fibers, and
By specifying the dry heat shrinkage rate in the lateral direction and the transmitted microwave intensity ratio in the longitudinal and lateral directions, the present invention relates to a nonwoven fabric that exhibits high performance especially for use in filters.

[従来の技術] 血液等の体液用フィルターに対する需要が高まり、細デ
ニール繊維を用いた不織布が実用化されている。例えば
特開昭54−119012号や同54−119013号
等に記載された不織布はその一例である。ところがこれ
らの不織布を製造する為に用いられる繊維は直径3.5
〜10μm程度とやや太めであるためこれら繊維の折り
重なり体である不織布の自由空間が大き過ぎて比較的大
きい物質も容易に透過することが可能となり、血液用フ
ィルターとしては満足できるものではない。
[Prior Art] Demand for filters for body fluids such as blood is increasing, and nonwoven fabrics using fine denier fibers are being put into practical use. For example, the nonwoven fabrics described in JP-A-54-119012 and JP-A-54-119013 are examples. However, the fibers used to manufacture these nonwovens have a diameter of 3.5
Since the nonwoven fabric is a little thick, about ~10 μm, the free space of the nonwoven fabric, which is a folded body of these fibers, is too large, allowing even relatively large substances to pass through easily, making it unsatisfactory as a blood filter.

こうした問題に対処するものとして最近メルトブロー法
によって得られる細デニール繊維を用いた不織布が提案
され(特開昭60−193468号や同60−2032
67号等)、濾過分離効率の向上が期待されている。と
ころがメルトブロー法では、繊維径が細くなり過ぎると
共に延伸作用が期待されないのでモジュラスが低くなる
傾向にあり、しかも不織布製品としてでき上った後の収
縮防止や構造保持のために行なわれる熱固定処理によっ
て繊維のモジュラスは更に低下し、更に不織布としての
抗圧縮性が悪化するという問題もある。
To address these problems, nonwoven fabrics using fine denier fibers obtained by melt blowing have recently been proposed (Japanese Patent Laid-Open No. 60-193468 and No. 60-2032).
No. 67, etc.), it is expected that the filtration separation efficiency will be improved. However, in the melt-blowing method, the fiber diameter becomes too thin and no stretching action is expected, so the modulus tends to be low.Furthermore, after the nonwoven fabric is finished, the heat setting process that is performed to prevent shrinkage and maintain the structure There is also the problem that the modulus of the fibers further decreases and the compression resistance as a nonwoven fabric further deteriorates.

しかも血液等の体液用フィルターとして使用される不織
布は、加工の最終工程で■ポリエチレンオキサイドガス
等を用いて熱処理(50℃程度)するか、あるいは■加
熱水蒸気(130℃程度)で処理して無菌化されるが、
従来の不織布ではこの熱処理工程で生ずる熱収縮が大き
く、その結果自由空間が狭められると共に、熱収縮に伴
なう繊維の太りによって自由空間は更に狭められること
となり、メルトブロー法の深川による繊維の細径化によ
って狭められた自由空間は一層狭いものとなってしまう
。その結果不織布の網目が狭隘になり過ぎて通液抵抗が
増大するほか、たとえば赤血球の如く本来は通過させな
ければならない微細物質までも濾去することとなり、濾
過分離の目的が果たせなくなる。
Moreover, nonwoven fabrics used as filters for body fluids such as blood are sterilized by being heat-treated (about 50°C) using polyethylene oxide gas or the like or heated steam (about 130°C) in the final process of processing. Although it is
In conventional nonwoven fabrics, the heat shrinkage caused by this heat treatment process is large, and as a result, the free space is narrowed, and the free space is further narrowed due to the thickening of the fibers due to heat shrinkage. The free space narrowed by the diameter becomes even narrower. As a result, the mesh of the nonwoven fabric becomes too narrow, increasing resistance to liquid passage, and even fine substances such as red blood cells that should normally be allowed to pass through are filtered out, thus defeating the purpose of filtration and separation.

他方不織布の濾過性能に影響を及ぼす因子として自由空
間の均一性が挙げられ、濾過性能を高めるうえでは自由
空間のサイズができるだけ一定で細孔分布の狭いものが
よく、そのためにはランダムな繊維配列のものが好まし
いといった定性的知見は得られている様であるが、特に
不織布の自由空間の均一性と濾過性能の関係について定
量的関係まで追求した研究はなされていない。
On the other hand, the uniformity of the free space is cited as a factor that affects the filtration performance of nonwoven fabrics.In order to improve the filtration performance, it is best to have the free space size as constant as possible and the pore distribution to be narrow. Although it seems that qualitative knowledge has been obtained that filtration performance is preferable, there has been no research that pursues the quantitative relationship between the uniformity of the free space of nonwoven fabrics and filtration performance.

[発明が解決しようとする問題点コ 本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、上記問題点のうち特に不織布構成繊維
の径並びに不織布の熱収縮及び自由空間の均一性に起因
する濾過性能不良の問題を解消し、フィルター用として
優れた性能を発揮し得る様な不織布を提供しようとする
ものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to solve the above-mentioned problems, particularly the diameter of the fibers constituting the non-woven fabric, heat shrinkage of the non-woven fabric, and The purpose of this invention is to solve the problem of poor filtration performance due to the uniformity of free space, and to provide a nonwoven fabric that can exhibit excellent performance as a filter.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明不織布の構成
は、単繊維径が3μm以下の合成繊維からなり、160
℃における縦方向及び横方向の乾熱収縮率が夫々15%
以下で且つ 以下であるところに要旨を有するものである。
[Means for Solving the Problems] The structure of the nonwoven fabric of the present invention that has achieved the above object is made of synthetic fibers with a single fiber diameter of 3 μm or less,
The dry heat shrinkage rate in the longitudinal and transverse directions at °C is 15% each.
The gist is as follows and below.

[作用] 本発明に係る不織布を構成する合成繊維の繊維径は3μ
m以下でなければならず、より好ましいのは2μm以下
である。繊維径が3μmを超える場合は、これら繊維の
折り重なり体である不織布が見目になって本来除去しな
ければならない粗大物質まで通過させるものとなり、血
液用フィルター等としての実用性を欠くものとなる。し
かし繊維径が3μm以下の繊維を使用すると、たとえば
血液中の白血球等を効率良く分離除去することができ、
その結果高純度の赤血球を高収率で回収することが可能
となる。但し繊維径が細くなり過ぎると、不織布の自由
空間が狭くなり過ぎて濾過抵抗が大きくなるばかりでな
く、たとえば血液用フィルターとして使用した場合赤血
球の一部も白血球等と共に濾去されて赤血球の回収率が
低下するので、繊維径は0.1μm以上とするのがよい
[Function] The fiber diameter of the synthetic fibers constituting the nonwoven fabric according to the present invention is 3μ
m or less, more preferably 2 μm or less. If the fiber diameter exceeds 3 μm, the nonwoven fabric, which is a folded body of these fibers, becomes visible and allows coarse substances that should originally be removed to pass through, making it impractical as a blood filter, etc. Become. However, if fibers with a fiber diameter of 3 μm or less are used, for example, leukocytes in blood can be efficiently separated and removed.
As a result, it becomes possible to collect highly purified red blood cells at a high yield. However, if the fiber diameter becomes too thin, not only will the free space of the nonwoven fabric become too narrow and the filtration resistance will increase, but also, for example, when used as a blood filter, some of the red blood cells will be filtered out along with white blood cells, etc., making it difficult to recover the red blood cells. The fiber diameter is preferably set to 0.1 μm or more, since the fiber ratio decreases.

次に本発明に係る不織布の160℃における縦方向及び
横方向の乾熱収縮率は夫々15%以下、より好ましくは
5%以下でなければならない。該収縮率が15%を超え
る場合は、製品フィルターの熱的寸法安定性が悪く、前
述の如き無菌化等のための熱処理工程で収縮しフィルタ
ー支持材との間に隙間ができて濾過分離の目的が果たせ
なくなることがあるほか、熱収縮に伴なう自由空間の狭
小化に繊維の太りによる自由空間の狭小化が加わって不
織布の網目が緻密となり過ぎ、通液抵抗が増大するばか
りでなく濾過分離効率も低下してくる。
Next, the dry heat shrinkage rate of the nonwoven fabric according to the present invention at 160° C. in the longitudinal direction and the transverse direction must be 15% or less, and more preferably 5% or less. If the shrinkage rate exceeds 15%, the thermal dimensional stability of the product filter is poor, and it shrinks during the heat treatment process for sterilization as described above, creating a gap between the filter support material and the filtration separation. In addition, the narrowing of the free space due to heat shrinkage and the narrowing of the free space due to the thickening of the fibers may cause the mesh of the nonwoven fabric to become too dense, which not only increases the resistance to liquid flow. Filtration separation efficiency also decreases.

また本発明不織布をフィルターとして使用する場合、特
定サイズの固形物をうまく濾過分離するためには自由空
間によって構成される細孔の大きさができるだけ一定で
あることが望まれる。即ち仮に細孔の平均サイズが同一
であっても註サイズの分布幅が広いときは目の荒い部分
から粗大物の洲れが生じて分離効果が著しく悪くなる。
Furthermore, when the nonwoven fabric of the present invention is used as a filter, it is desirable that the size of the pores formed by the free space be as constant as possible in order to successfully filter and separate solids of a specific size. That is, even if the average size of the pores is the same, if the distribution width of the size is wide, coarse particles will be shed from the rough areas and the separation effect will be significantly deteriorated.

この様なところから自由空間のサイズを一定にする必要
があるが、不織布については該サイズの均一性を確認す
る手段が明らかにされていないところから、この点につ
いての改良研究は殆んど行なわれていないのが現状であ
る。ところが本発明者らが色々研究を行なったところに
よると、 下透過強度比という)と細孔サイズの均一性との間には
一定の相間々係があり、この値が1に近づくにつれて細
孔サイズは均一となり分離効率が向上することをつきと
めた。そして本発明の目的を達成するためには上記透過
強度比を1.5以下、より好ましくは1.2以下に抑え
る必要があることを確認した。そしてこの様な特性を有
する不織布は、後述する様な方法で繊維を縦方向及び横
方向にランダムに配列させることによって得ることがで
きる。
From this point of view, it is necessary to keep the size of the free space constant, but since there is no means to confirm the uniformity of the size for nonwoven fabrics, almost no improvement research has been conducted on this point. The current situation is that this is not the case. However, according to various studies conducted by the present inventors, there is a certain correlation between the lower transmission intensity ratio (lower transmission intensity ratio) and the uniformity of pore size, and as this value approaches 1, the pore size becomes smaller. It was found that the size became uniform and the separation efficiency improved. It was also confirmed that in order to achieve the object of the present invention, it is necessary to suppress the transmission intensity ratio to 1.5 or less, more preferably 1.2 or less. A nonwoven fabric having such characteristics can be obtained by randomly arranging fibers in the vertical and horizontal directions using a method described below.

本発明に係る不織布に求められる特性は上記の通りであ
るが、この他、該不織布を構成する繊維の初期引張抵抗
は15g/デニール以上、より好ましくは20g/デニ
ール以上とすることが望まれる。即ち繊維の初期引張抵
抗は不織布の抗圧縮力、即ち圧縮に伴なう濾過性能の低
下の抑制と密接な関係を有しており、該引張抵抗が15
g/デニール未満であるものは不織布の抗圧縮力が乏し
く、吸引若しくは加圧濾過時に受ける圧縮力によって自
由空間が押し潰されて嵩高さを喪失し通液抵抗が激増す
るばかりでなく、細孔も小さくなり過ぎて分離効率が劣
化となる。しかしながら不織布を構成する繊維の初期引
張抵抗が15g/デニール以上であるものは十分な抗圧
縮性を示し、自由空間が押し潰されて嵩高さを失うこと
が少なく、当初の優れた濾過分離性能を持続し得るもの
となる。
The properties required of the nonwoven fabric according to the present invention are as described above, but in addition to this, it is desirable that the initial tensile resistance of the fibers constituting the nonwoven fabric be 15 g/denier or more, more preferably 20 g/denier or more. That is, the initial tensile resistance of the fibers is closely related to the anti-compressive force of the nonwoven fabric, that is, the suppression of the decline in filtration performance due to compression, and the tensile resistance is 15
If it is less than g/denier, the nonwoven fabric will have poor compression resistance, and the free space will be crushed by the compression force applied during suction or pressure filtration, resulting in a loss of bulk and a drastic increase in liquid passage resistance, as well as pores. becomes too small and the separation efficiency deteriorates. However, nonwoven fabrics whose initial tensile resistance is 15 g/denier or higher exhibit sufficient compression resistance, are less likely to lose bulk due to free space being crushed, and retain their initial excellent filtration and separation performance. It becomes something that can last.

また本発明不織布の見掛は密度は濾過性能に影響を及ぼ
す嵩高さの目安となるものであり、0.01g/cm’
以上が好ましく、特に血液用フィルターとして使用する
場合はプレス等によって0.05〜0.5 g/cm3
程度に調整することができる。この場合抗圧縮力の乏し
い不織布ではプレス処理によって潰されペーパ状の薄い
ものとなり嵩高性を失って実用不能となるが、前述の如
く初期引張抵抗の高い繊維により構成した不織布は抗圧
縮力が強いので、フィルターとしての適正な嵩高性を維
持しつつ見掛は密度を容易にコントロールすることがで
きる。
In addition, the apparent density of the nonwoven fabric of the present invention is a measure of bulkiness that affects filtration performance, and is 0.01 g/cm'.
The above is preferable, and especially when used as a blood filter, it is 0.05 to 0.5 g/cm3 by pressing etc.
It can be adjusted to the extent. In this case, a nonwoven fabric with poor compression resistance will be crushed by the press treatment and become paper-like and thin, losing its bulk and becoming unpractical. However, as mentioned above, nonwoven fabrics made of fibers with high initial tensile resistance have strong compression resistance. Therefore, the apparent density can be easily controlled while maintaining appropriate bulkiness as a filter.

このほか本発明に係る不織布を構成する繊維は、下記の
様な構造を有する繊維であることから、フィルターとし
ての性能は一段と優れたものである。
In addition, since the fibers constituting the nonwoven fabric according to the present invention have the following structure, the performance as a filter is even more excellent.

即ち表面が著しく分子配向し、巨大な結晶から成り、内
層は著しく低配向な非晶質であるシースコア構造を有す
るもので、高モジュラスで且つ低比重となるため、素材
の表面境界層の利用率が同一デニールでは高くなるため
濾過性能は向上する。交絡処理後熱処理により、形成さ
れた不織布に比へるとこうした点で構成繊維が全く異な
っている。
In other words, it has a sheath-core structure in which the surface is composed of huge crystals with extremely oriented molecules, and the inner layer is amorphous with extremely low orientation, resulting in high modulus and low specific gravity, making it possible to utilize the surface boundary layer of the material. The filtering performance improves because the rate increases for the same denier. In this respect, the constituent fibers are completely different from the nonwoven fabric formed by the heat treatment after the entanglement treatment.

本発明で使用する繊維の原料ポリマーは、均質でデニー
ルむらの少ない極細繊維状に加工し得るものであればす
べて使用できるが、中でも芳香族又は脂肪族のポリエス
テルまたはポリアミドあるいはポリアクリロニトリル等
は、血液用フィルターとして使用したときに血液中の変
性成分を吸着しあるいは変性蛋白質などの粘着物を捕捉
して?f1通物の清浄化に寄与するので、好ましいもの
として推奨される。
The raw material polymer for the fibers used in the present invention can be any polymer that can be processed into ultrafine fibers that are homogeneous and have little denier unevenness, but aromatic or aliphatic polyesters, polyamides, polyacrylonitrile, etc. When used as a filter, does it adsorb denatured components in blood or capture sticky substances such as denatured proteins? Since it contributes to the cleaning of f1 materials, it is recommended as a preferable method.

また本発明の不織布は、フラッシュ紡糸法やスーパード
ロー法等によって極細繊維とした後不織布状に加工する
ことによって製造することもできるが、最も好ましいの
はメルトブロー法により極細繊維の製造と不織布への加
工を連続的に行なう方法である。尚メルトブロー法自体
はたとえば特開昭59−26561号公報等にも記載さ
れている如く公知であるが、公知の方法をそのまま適用
しても前述の如き要求特性を満たす細デニール繊維が得
られる訳ではなく、その実施に当たっては紡糸温度を原
料樹脂の融点よりも10±5℃高い温度に設定すると共
に、牽引流体温度も該融点より20±5℃高い温度に設
定して伸長しなければならず、牽引流体の流速はマツハ
1前後に設定することが望まれる。たとえばポリエチレ
ンテレフタレートを原料樹脂とする場合の最も好ましい
条件は、紡糸温度が約275℃、牽引流体温度が同じく
約275℃である。樹脂の単孔当たりの吐出量は目標と
する繊維径や嵩密度等によって任意に決めればよいが、
繊維径が2μm以下の不織布を得る場合は0.1〜0.
01g/分、より好ましく0.05〜0.02g/分の
範囲から選定するのがよい。
The nonwoven fabric of the present invention can also be produced by forming ultrafine fibers using a flash spinning method, super draw method, etc., and then processing them into a nonwoven fabric. However, it is most preferable to use a melt blowing method to produce ultrafine fibers and turn them into a nonwoven fabric. This is a method in which processing is performed continuously. The melt blowing method itself is well known as described in, for example, Japanese Patent Application Laid-open No. 59-26561, but it is not possible to obtain fine denier fibers that meet the above-mentioned required characteristics even if the known method is applied as is. Instead, in carrying out this process, the spinning temperature must be set at 10 ± 5°C higher than the melting point of the raw material resin, and the pulling fluid temperature must also be set at 20 ± 5°C higher than the melting point for elongation. It is desirable that the flow velocity of the traction fluid be set to around 1 Matsuha. For example, when polyethylene terephthalate is used as the raw material resin, the most preferable conditions are that the spinning temperature is about 275°C and the pulling fluid temperature is also about 275°C. The amount of resin discharged per single hole can be arbitrarily determined depending on the target fiber diameter, bulk density, etc.
When obtaining a nonwoven fabric with a fiber diameter of 2 μm or less, the amount is 0.1 to 0.
It is preferable to select from the range of 0.01 g/min, more preferably from 0.05 to 0.02 g/min.

この様な条件で紡出された繊維群は、吸引されたドラム
またはネット上に3次元的に交差させながら垂下させつ
つ繊維同士をわずかに交絡させて不織布とされる。紡出
ノズルとドラムまたはネットとの間隔は、繊維同士が密
に交絡してひも状とならない距離、即ち同伴する牽引流
体の拡がりと乱れにより3次元的に交差し合いつつ積層
されていくのに十分な距離、たとえば30〜60cm程
度に設定される。この場合不織布の繊維配列をできるだ
けランダムにして前記透過強度比を1.5以下とするた
めには、たとえば第1図(図中1は紡出ノズル群、2は
ネット、3はローラ、4はサクション部、5は進行方向
を示す)に略示する如く、紡出ノズル群1,1.・・・
が相互に直交する様に配置しておくのが有効である。尚
ネット2の移動速度が早くなり過ぎると繊維配列が、縦
方向に片寄ってランダム配列がくずれてくるので、該移
動速度は前記紡出ノズル群の設置角度や紡出速度等を考
慮しつつ適正にコントロールすることが望まれる。この
ようにして得られる積層物はそのままで不織布とすると
もできるが、必要により加熱ローラ等で軽くプレスした
りエンボス加工を施すことによって見掛けの嵩密度等を
調整することもできる。
The fiber group spun under these conditions is made into a nonwoven fabric by hanging the fibers in a three-dimensional manner while intersecting each other on a suctioned drum or net, and intertwining the fibers slightly with each other. The distance between the spinning nozzle and the drum or net is such that the fibers are not tightly intertwined with each other and form a string, that is, the fibers are layered while intersecting each other three-dimensionally due to the spread and turbulence of the accompanying traction fluid. The distance is set to a sufficient distance, for example, about 30 to 60 cm. In this case, in order to make the fiber arrangement of the nonwoven fabric as random as possible and make the transmission intensity ratio 1.5 or less, for example, as shown in FIG. The spinning nozzle groups 1, 1. ...
It is effective to arrange them so that they are orthogonal to each other. If the moving speed of the net 2 becomes too fast, the fiber arrangement will be biased in the vertical direction and the random arrangement will be disrupted, so the moving speed should be set appropriately while taking into account the installation angle of the spinning nozzle group, the spinning speed, etc. It is desirable to control the The laminate thus obtained can be made into a nonwoven fabric as it is, but if necessary, the apparent bulk density etc. can be adjusted by lightly pressing it with a heating roller or the like or by embossing it.

以下実施例を挙げて本発明の構成及び作用効果を一層明
確にする。尚本発明で定義する不織布及び構成繊維の物
性は下記の方法で測定した値を言う。
Examples will be given below to further clarify the structure and effects of the present invention. The physical properties of the nonwoven fabric and the constituent fibers defined in the present invention refer to values measured by the following method.

繊維径 不織布を電子顕微鏡写真によって撮影し、拡大写真の中
から繊維100本をランダムに選択してその直径(di
)を測定し、次式により平均値として求める。
Fiber Diameter The nonwoven fabric was photographed using an electron microscope, 100 fibers were randomly selected from the enlarged photograph, and their diameter (di
) and obtain the average value using the following formula.

不織布を25cmx25cmに切断し、該切断片の周縁
に沿って20cII+×200111の枠を記入する。
The nonwoven fabric is cut to 25 cm x 25 cm, and a frame of 20 cII + x 200111 is drawn along the periphery of the cut piece.

該切断片の枠外の1点をクリップで保持して熱風乾燥器
中に吊し、160℃で30分間熱処理した後、30分間
で室温雰囲気(20℃×65%RH)まで冷却し、縦方
向長さくIt;cm)及び横方向長さく1.:cm)よ
り次式によって縦方向収縮率[SHD (T)]及び横
方向収縮率[SHD (T)]を算出する。
The cut piece was held at one point outside the frame with a clip and hung in a hot air dryer, heat-treated at 160°C for 30 minutes, cooled to room temperature atmosphere (20°C x 65% RH) for 30 minutes, and dried vertically. Length It; cm) and lateral length 1. : cm), the longitudinal shrinkage rate [SHD (T)] and the lateral shrinkage rate [SHD (T)] are calculated using the following formula.

n    n−b 不織布を25cmX 25cmに切断して試料とし、神
崎製紙社製マイクロ波分子配向計rMDA−2001A
型」を用いて縦方向及び横方向の透過マイクロ波強度の
比を算出する。尚試料は1〜3枚を周方向に重ねて測定
し、厚み効果を最小2重法で求めた補正曲線より夫々目
付80g/cm”に相当する値に基づいて求める。
n n-b The nonwoven fabric was cut into 25 cm x 25 cm as a sample, and a microwave molecular orientation meter rMDA-2001A manufactured by Kanzaki Paper Co., Ltd. was used.
Calculate the ratio of the transmitted microwave intensities in the vertical and horizontal directions using the ``type''. Note that one to three samples are measured by stacking them in the circumferential direction, and the thickness effect is determined based on a value corresponding to a basis weight of 80 g/cm'' from a correction curve determined by the minimum double method.

[実施例] 実施例1 第2図[6はポリマー吐出管、7はオリフィス孔(0,
15rnmφ)、8は牽引流体吹出し口(リップ巾30
0μm)、9は牽引流体温度検出端を夫々示す]を使用
し、極限粘度0.65のポリエチレンテレフタレートを
275℃、オリフィス1孔当たり0.025 g/分の
吐出量で紡出すると共に、牽引流体吹出し口3からは検
出端の温度が275℃である牽引空気を圧力2.2 k
g/cm2で供給しつつ前記第1図に示す様に配設され
たノズル群からメルトブローし、ノズル吐出端から40
 cmilれた位置で1m/分の速度で移動するネット
上に紡出繊維を捕集し不織布を得た。
[Example] Example 1 Figure 2 [6 is a polymer discharge pipe, 7 is an orifice hole (0,
15rnmφ), 8 is the traction fluid outlet (lip width 30mm)
0 μm) and 9 indicate the temperature detection end of the traction fluid], polyethylene terephthalate with an intrinsic viscosity of 0.65 was spun at 275°C at a discharge rate of 0.025 g/min per orifice, and the traction fluid was From the fluid outlet 3, traction air whose temperature at the detection end is 275°C is supplied at a pressure of 2.2 k.
g/cm2, the melt is blown from the nozzle group arranged as shown in FIG.
The spun fibers were collected on a net moving at a speed of 1 m/min at the cmil position to obtain a nonwoven fabric.

この不織布は窩高で弾力性をもちながら且つソフトな感
触を有している。この不織布を直径90mmの円板状に
切断して3枚を重ね合せ、厚さ40mm、有効径80m
mのカラムに固定した。次いでとのカラムを130℃の
スチーム中で30分間熱処理した後減圧乾燥した。
This nonwoven fabric has elasticity at the height of the groove and has a soft feel. This nonwoven fabric was cut into disk shapes with a diameter of 90 mm, and three sheets were stacked on top of each other to obtain a thickness of 40 mm and an effective diameter of 80 m.
It was fixed on a column of m. The column was then heat treated in steam at 130°C for 30 minutes and then dried under reduced pressure.

このカラムを使用し、第3図に示す装置を用いて25℃
にてフィルター性能評価試験を行なった。即ち1μm標
準粒子1重量%を含むエマルジョンE(粒子分散のため
界面活性剤0.2%を添加したもの)をエマルジョンタ
ンク10に入れ、送給圧力を0.1 kg/cm2に調
整したポンプ11によって上記エマルジョンをカラム1
2へ供給する(図中13は圧力計、14は圧力コントロ
ーラを示す)。カラム12を通過した液の量より10分
間及び60分間の平均通過液量を求めると共に、濾液中
の1μm標準粒子量より粒子捕捉率を求めた(図中15
は流量計、16は濾液タンク、17は撹拌機、18は液
面計を示す)。
Using this column, 25℃ using the apparatus shown in Figure 3.
A filter performance evaluation test was conducted. That is, emulsion E containing 1% by weight of 1 μm standard particles (to which 0.2% surfactant was added for particle dispersion) was placed in an emulsion tank 10, and the pump 11 was adjusted to have a feeding pressure of 0.1 kg/cm2. Column 1 of the above emulsion by
2 (in the figure, 13 indicates a pressure gauge, and 14 indicates a pressure controller). The average amount of liquid passing through column 12 for 10 minutes and 60 minutes was calculated from the amount of liquid passing through column 12, and the particle capture rate was calculated from the amount of 1 μm standard particles in the filtrate (15 in the figure).
16 is a filtrate tank, 17 is a stirrer, and 18 is a liquid level gauge).

実施例2 メルトインデックス13のポリプロピレンを使用し、紡
糸温度を265℃、牽引流体温度を265℃に設定した
以外は上記実施例1と同様にして不織布を得た後、同様
にしてフィルター性能評価試験を行なった。
Example 2 A nonwoven fabric was obtained in the same manner as in Example 1 above, except that polypropylene with a melt index of 13 was used, the spinning temperature was set at 265°C, and the pulling fluid temperature was set at 265°C, and then a filter performance evaluation test was performed in the same manner. I did it.

比較例1 牽引流体温度を285℃とした以外は実施例1と同様に
して不織布を得た後、同様にしてフィルター性能評価試
験を行なった。
Comparative Example 1 A nonwoven fabric was obtained in the same manner as in Example 1 except that the traction fluid temperature was 285° C., and then a filter performance evaluation test was conducted in the same manner.

比較例2 ノズル群の配列をネット移動方向に対して直角に4本並
べて配置し、ネット移動速度を5m/分とした以外は実
施例1と同様にして不織布を得た後、同様にしてフィル
ター性能評価試験を行なった。
Comparative Example 2 A nonwoven fabric was obtained in the same manner as in Example 1, except that four nozzle groups were arranged perpendicular to the net movement direction and the net movement speed was 5 m/min, and then a filter was obtained in the same manner. A performance evaluation test was conducted.

比較例3 単孔光たり吐出量を0.05 g 7分、牽引流体の圧
力を0.5 kg/cm2、ネット移動速度を2m/分
とした以外は実施例1と同様にして不織布を得、またフ
ィルター性能評価試験を行なった。
Comparative Example 3 A nonwoven fabric was obtained in the same manner as in Example 1, except that the single hole discharge amount was 0.05 g for 7 minutes, the pressure of the traction fluid was 0.5 kg/cm2, and the net moving speed was 2 m/min. A filter performance evaluation test was also conducted.

比較例4 紡糸温度を285℃、牽引流体温度を285℃とした以
外は実施例2と同様の方法で不織布を得、同様にしてフ
ィルター性能評価試験を行なった。
Comparative Example 4 A nonwoven fabric was obtained in the same manner as in Example 2, except that the spinning temperature was 285°C and the pulling fluid temperature was 285°C, and a filter performance evaluation test was conducted in the same manner.

比較例5 紡糸温度を275℃、単孔吐出量を0.05g/分、牽
引流体の温度を275℃、圧力を2.0kg/cm2、
ネット移動速度を2m/分に設定した以外は実施例2と
同様にして不織布を得た後、同様にしてフィルター性能
評価試験を行なった。
Comparative Example 5 The spinning temperature was 275°C, the single hole discharge rate was 0.05 g/min, the traction fluid temperature was 275°C, the pressure was 2.0 kg/cm2,
A nonwoven fabric was obtained in the same manner as in Example 2, except that the net moving speed was set to 2 m/min, and then a filter performance evaluation test was conducted in the same manner.

比較例6 ノズル群の配列をネット移動方向に対して直角に4本並
べて配置し、ネット移動速度を3m/分に設定し、且つ
紡糸温度を270℃、単孔吐出量を0.03g/分、牽
引流体温度を270℃に設定した以外は実施例2と同様
にして不織布を得た後、同様にしてフィルター性能評価
試験を行なった。
Comparative Example 6 Four nozzle groups were arranged perpendicular to the net movement direction, the net movement speed was set to 3 m/min, the spinning temperature was 270°C, and the single hole discharge rate was 0.03 g/min. A nonwoven fabric was obtained in the same manner as in Example 2, except that the traction fluid temperature was set at 270° C., and then a filter performance evaluation test was conducted in the same manner.

結果を第1表に一括して示す。The results are summarized in Table 1.

第1表の結果より次の様に考えることができる。From the results in Table 1, the following can be considered.

実施例1,2:本発明の規定要件をすべて満足する実施
例であり、何れも高い粒子 捕捉率が得られているほか、経時的 な通液速度の低下も少なく、濾過効 率の持続性も優れていることが分か る。
Examples 1 and 2: These are examples that satisfy all the specified requirements of the present invention, and in both cases, a high particle capture rate is obtained, there is little decrease in liquid passage rate over time, and the filtration efficiency is sustainable. I know it's excellent.

比較例1:実施例1に比べてメルトブロ一時の牽引流体
温度を10℃高めただけで あるにもかかわらず、不織布の縦・ 横収縮率は異常に高く、また繊維の 初期引張抵抗も極端に低くなってい る。その結果、熱処理後の自由空間 が小さくなり過ぎて通過抵抗が増大 し、通液速度が低下している。しか もta維の初期引張抵抗度が低いため 不織布の抗圧縮性が乏しく、濾過時 の圧縮力で不織布の自由空間は押し 潰されてペーパ状となり、60分後 の通液速度は10分後の通液速度の 115以下にまで減少している。
Comparative Example 1: Although the traction fluid temperature during melt blowing was only increased by 10°C compared to Example 1, the longitudinal and transverse shrinkage rates of the nonwoven fabric were abnormally high, and the initial tensile resistance of the fibers was also extremely high. It's getting lower. As a result, the free space after heat treatment becomes too small, increasing the passage resistance and reducing the liquid passage rate. Moreover, since the initial tensile resistance of the TA fibers is low, the nonwoven fabric has poor compression resistance, and the free space of the nonwoven fabric is crushed by the compressive force during filtration, making it paper-like. The liquid passing rate has decreased to 115 or less.

比較例2.6=メルトブロ一時における紡出ノズル群を
直列配置とし、縦・横マイ クロ波強度比を1.5超とした比較例 であり、不織布内に形成された自由 空間のサイズが不均一で広い分布幅 を有しているため粒子捕捉率が非常 に悪い。
Comparative Example 2.6 = Comparative example in which the spinning nozzle group during melt blowing was arranged in series and the longitudinal/lateral microwave intensity ratio was over 1.5, and the size of the free space formed in the nonwoven fabric was non-uniform. Since the particles have a wide distribution width, the particle capture rate is very poor.

比較例3:メルトブロ一時の牽引流体圧力を低めに設定
し、単繊維径を規定値より も太くした比較例であり、不織布内 の自由空間が大きすぎるため粒子捕 捉率が極端に低い。
Comparative Example 3: This is a comparative example in which the traction fluid pressure during melt blowing was set low and the single fiber diameter was made thicker than the specified value, and the free space within the nonwoven fabric was too large, so the particle capture rate was extremely low.

比較例4:メルトブロ一時の紡糸温度及び牽引流体温度
を高めに設定して得た、縦 ・横収縮率が大きく且つ!a維の初期 引張抵抗の低い不織布の例であり、 熱処理時の収縮により自由空間が狭 小化しているため通液抵抗が高く、 また繊維の初期引張抵抗も低く抗圧 縮力が乏しいため濾過時の圧縮力で 自由空間は更に狭小化して通液抵抗 が更に高まり、短時間で目詰りを起 こして濾過不能となっている。
Comparative Example 4: Large longitudinal and transverse shrinkage ratios obtained by setting the spinning temperature and traction fluid temperature higher during melt blowing. This is an example of a nonwoven fabric with a low initial tensile resistance of the A fibers.The free space is narrowed due to shrinkage during heat treatment, so the resistance to liquid passage is high.The initial tensile resistance of the fibers is also low, and the anti-compressive force is poor, so it is difficult to use during filtration. The compression force further narrows the free space, further increasing the resistance to liquid passage, and clogging occurs in a short period of time, making filtration impossible.

比較例5:紡糸時の単孔吐出量を多めに設定し、単繊維
径を太めにした比較例で あるが、同時に繊維径斑が著しく且 つ縦・横収縮率も大きくなっている ため粒子捕捉率が非常に悪い。
Comparative Example 5: This is a comparative example in which the single hole discharge rate during spinning was set to a larger value and the single fiber diameter was made thicker, but at the same time, the unevenness of the fiber diameter was significant and the vertical and horizontal shrinkage rates were also large, making it difficult to capture particles. The rate is very poor.

[発明の効果] 本発明は以上の様に構成されており、不織布の縦・横収
縮率及び縦・横マイクロ波強度比を特定すると共に、構
成繊維の径を特定することによフて、特にフィルター材
料として優れた性能を有する不織布を提供し得ることに
なった。この不織布は優れた細孔特性と自由空間の均一
性を有しているので、血液等の体液用フィルターや各種
工業用フィルター、空気清浄化用フィルター等のほか、
保温材、細菌用培地、衛生材料として幅広く活用するこ
とができる。
[Effects of the Invention] The present invention is configured as described above, and by specifying the longitudinal and transverse shrinkage rates and the longitudinal and transverse microwave intensity ratios of the nonwoven fabric, as well as the diameter of the constituent fibers, In particular, it has become possible to provide a nonwoven fabric that has excellent performance as a filter material. This nonwoven fabric has excellent pore characteristics and free space uniformity, so it can be used as a filter for body fluids such as blood, various industrial filters, air purification filters, etc.
It can be widely used as a heat insulator, bacterial culture medium, and sanitary material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で採用したメルトブロー法を示す要部平
面略図、第2図は紡出ノズル部の要部断面図、第3図は
フィルター性能評価試験法を示すフロー図である。 1・・・紡出ノズル群   2・・・ネット3・・・ロ
ーラ       4・・・サクション部7・・・オリ
フィス孔   8・・・牽引流体供給口代理人  弁理
士 浅 草 栄三”H”Lt’、6、炉?・−− 一二トー″
FIG. 1 is a schematic plan view of the main part showing the melt blowing method adopted in the example, FIG. 2 is a sectional view of the main part of the spinning nozzle section, and FIG. 3 is a flow chart showing the filter performance evaluation test method. 1... Spinning nozzle group 2... Net 3... Roller 4... Suction part 7... Orifice hole 8... Traction fluid supply port agent Patent attorney Eizo Asakusa "H"Lt' , 6. Furnace?・−− 12 to”

Claims (3)

【特許請求の範囲】[Claims] (1)単繊維径が3μm以下の合成繊維からなり、16
0℃における縦方向及び横方向の乾熱収縮率が夫々15
%以下で且つ 縦方向透過マイクロ波強度 で与えられる値が1.5 横方向透過マイクロ波強度 以下であることを特徴とする不織布。
(1) Made of synthetic fibers with a single fiber diameter of 3 μm or less,
The dry heat shrinkage rate in the longitudinal and transverse directions at 0°C is 15 each.
% or less, and the value given by the transmitted microwave intensity in the longitudinal direction is 1.5% or less, and the value given by the transmitted microwave intensity in the horizontal direction is 1.5% or less.
(2)不織布を構成する単繊維の初期引張抵抗が15g
/デニール以上である特許請求の範囲第1項に記載の不
織布。
(2) The initial tensile resistance of the single fibers that make up the nonwoven fabric is 15g.
/denier or more.
(3)合成繊維がメルトブロー法によって得られたもの
である特許請求の範囲第1又は2項に記載の不織布。
(3) The nonwoven fabric according to claim 1 or 2, wherein the synthetic fiber is obtained by a melt blowing method.
JP62000304A 1987-01-05 1987-01-05 Nonwoven fabric Pending JPS63175156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62000304A JPS63175156A (en) 1987-01-05 1987-01-05 Nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000304A JPS63175156A (en) 1987-01-05 1987-01-05 Nonwoven fabric

Publications (1)

Publication Number Publication Date
JPS63175156A true JPS63175156A (en) 1988-07-19

Family

ID=11470161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000304A Pending JPS63175156A (en) 1987-01-05 1987-01-05 Nonwoven fabric

Country Status (1)

Country Link
JP (1) JPS63175156A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175157A (en) * 1987-01-05 1988-07-19 東洋紡績株式会社 Nonwoven fabric
JP2001029390A (en) * 2000-01-01 2001-02-06 Asahi Chem Ind Co Ltd Sheet for throw-away sanitary material
JP2001040565A (en) * 2000-01-01 2001-02-13 Asahi Chem Ind Co Ltd Sheet for disposable sanitary material
US7591954B2 (en) 2002-12-02 2009-09-22 Asahi Kasei Medical Co., Ltd. Method for removing leukocytes, leukocyte-removing filter and utilization thereof
WO2015056603A1 (en) 2013-10-18 2015-04-23 株式会社カネカ Novel cell separation filter material and filter obtained by layering same
KR20170025188A (en) 2015-08-27 2017-03-08 주식회사 효성 Nonwoven webs for blood filters including polyketone and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365471A (en) * 1976-11-22 1978-06-10 Asahi Chemical Ind Nonnwoven fabric and producing method
JPS54147276A (en) * 1978-05-09 1979-11-17 Asahi Chemical Ind Nonnwoven fabric and production
JPS63175157A (en) * 1987-01-05 1988-07-19 東洋紡績株式会社 Nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365471A (en) * 1976-11-22 1978-06-10 Asahi Chemical Ind Nonnwoven fabric and producing method
JPS54147276A (en) * 1978-05-09 1979-11-17 Asahi Chemical Ind Nonnwoven fabric and production
JPS63175157A (en) * 1987-01-05 1988-07-19 東洋紡績株式会社 Nonwoven fabric

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175157A (en) * 1987-01-05 1988-07-19 東洋紡績株式会社 Nonwoven fabric
JP2001029390A (en) * 2000-01-01 2001-02-06 Asahi Chem Ind Co Ltd Sheet for throw-away sanitary material
JP2001040565A (en) * 2000-01-01 2001-02-13 Asahi Chem Ind Co Ltd Sheet for disposable sanitary material
US7591954B2 (en) 2002-12-02 2009-09-22 Asahi Kasei Medical Co., Ltd. Method for removing leukocytes, leukocyte-removing filter and utilization thereof
EP1582228B1 (en) 2002-12-02 2016-04-13 Asahi Kasei Medical Co., Ltd. Method of removing leukocytes, leukocyte-removing filter and utilization thereof
WO2015056603A1 (en) 2013-10-18 2015-04-23 株式会社カネカ Novel cell separation filter material and filter obtained by layering same
US10478537B2 (en) 2013-10-18 2019-11-19 Kaneka Corporation Cell separation filter material and filter obtained by layering same
KR20170025188A (en) 2015-08-27 2017-03-08 주식회사 효성 Nonwoven webs for blood filters including polyketone and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101432325B1 (en) Fibrous web comprising microfibers dispersed among bonded meltspun fibers
US6090731A (en) High density nonwoven filter media
KR101151139B1 (en) Medical filter material and, utilizing the same, extracorporeal circulation column and blood filter
US6197709B1 (en) Meltblown composites and uses thereof
JP7220235B2 (en) METHOD FOR MANUFACTURING NONWOVEN FABRIC WITH IMPROVED FILTRATION PERFORMANCE
JPH1190135A (en) Pleated filter
JP6572072B2 (en) Nonwoven fabric and air filter using the same
JPS63175156A (en) Nonwoven fabric
JP4083951B2 (en) Cylindrical filter
JP7299316B2 (en) Meltblown nonwoven fabric, filter, and method for producing meltblown nonwoven fabric
JPH08158231A (en) Fluoropolymer sheet formed by fiber,to which confounding processing by water is conducted,and manufacture thereof
CN107530607A (en) Filter
JP2797482B2 (en) Nonwoven fabric with good uniformity
WO1996037276A1 (en) Filter matrix
JPH05220313A (en) Filter
JPH05295645A (en) Nonwoven fabric and its production
CN111364163B (en) Beaded polyacrylonitrile fiber filter element and preparation method and application thereof
JP3578229B2 (en) Fine particle filter media
JP2545889B2 (en) Melt blown nonwoven
JP4464433B2 (en) Cylindrical filter
JP2003220310A (en) Electret filter medium and method for producing the same
JPS63175157A (en) Nonwoven fabric
JP2008057053A (en) Method for producing nonwoven fabric
JP2513852B2 (en) Method for manufacturing non-woven structure
JP3421846B2 (en) Method for filtering suspension containing concrete or stone sludge