JP3449430B2 - Fine particle filter media - Google Patents

Fine particle filter media

Info

Publication number
JP3449430B2
JP3449430B2 JP16556093A JP16556093A JP3449430B2 JP 3449430 B2 JP3449430 B2 JP 3449430B2 JP 16556093 A JP16556093 A JP 16556093A JP 16556093 A JP16556093 A JP 16556093A JP 3449430 B2 JP3449430 B2 JP 3449430B2
Authority
JP
Japan
Prior art keywords
filter
fibers
fiber
filter material
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16556093A
Other languages
Japanese (ja)
Other versions
JPH0724231A (en
Inventor
茂樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16556093A priority Critical patent/JP3449430B2/en
Publication of JPH0724231A publication Critical patent/JPH0724231A/en
Application granted granted Critical
Publication of JP3449430B2 publication Critical patent/JP3449430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体または液体中に含
まれるミクロンまたはサブミクロンオーダーの微小な粒
子を除去するための濾過材、および該濾過材を用いたフ
ィルターカートリッジに関し、更に詳しくは、平均粒子
径が0.5〜5.0μmの粒子を長いライフで濾過する
ことが可能な濾過材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter material for removing fine particles of micron or submicron order contained in a gas or liquid, and a filter cartridge using the filter material. The present invention relates to a filter material capable of filtering particles having an average particle diameter of 0.5 to 5.0 μm with a long life.

【0002】[0002]

【従来の技術】従来より濾過材の開発において濾過精度
を高くなるように濾材を設定すると濾過ライフが短くな
り、逆に濾過ライフを長くすると濾過精度が低下すると
いう問題点がありその解決に努力されてきた。
2. Description of the Related Art Conventionally, in the development of a filter medium, if the filter medium is set so that the filter precision is increased, the filter life is shortened, and conversely, if the filter life is lengthened, the filter precision is decreased, and an effort is made to solve the problem. It has been.

【0003】かかる問題を解決し、フィルターの濾過精
度が高く濾過ライフを長くするための工夫として、特開
昭60−216818に記載されたように濾過材の繊維
径を濾過材の深さ方向に変えたり、また実開昭60−2
8009に見られるように繊維の充填密度を深さ方向に
勾配をもたせたり、さらには特開平1−297113に
記載されるように繊維径と平均孔径を同時に深さ方向で
変化させるという方法が取られてきた。
As a device for solving such a problem and increasing the filtration accuracy of the filter and prolonging the filtration life, as described in JP-A-60-216818, the fiber diameter of the filter medium is set in the depth direction of the filter medium. Change, again
No. 8009, the packing density of the fibers is made to have a gradient in the depth direction, and further, as described in JP-A-1-297113, the fiber diameter and the average pore diameter are simultaneously changed in the depth direction. Has been.

【0004】しかしながら、繊維径を変更することは異
なった紡糸条件下でつくられた不織布を何種類も保有す
る事が必要であり、濾材の製造条件の設定変更時のロス
が大きいという問題があった。また、特開昭60−21
6818に見られるように製造条件を変更しつつ濾過材
を濾芯(管状コアー部材)に巻き付けていく方法は、そ
のような問題点を解決できるが紡糸の条件が安定しない
ためにポリマー配管内に流れの変動や不均一を生じポリ
マー滞留時間の斑を生じるためにポリマー粘度の斑が発
生し、オリフィスの孔詰まりを生じたり、紡糸が不安定
化し繊維径の変動や糸切れを生じるという問題点があっ
た。また、充填率の調整には新たな工程の追加が必要で
ありコストを高くするという問題点もあった。さらには
これらの工夫による効果も十分ではなかった。
However, changing the fiber diameter requires holding many kinds of non-woven fabrics made under different spinning conditions, and there is a problem that a large loss occurs when changing the setting of the manufacturing conditions of the filter medium. It was In addition, JP-A-60-21
The method of winding the filter medium around the filter core (tubular core member) while changing the production conditions as shown in 6818 can solve such a problem, but the spinning conditions are not stable, so that the polymer flows into the polymer pipe. Fluctuations and non-uniformity, resulting in uneven polymer retention time, resulting in uneven polymer viscosity, clogging of orifices, unstable spinning, and fluctuations in fiber diameter and yarn breakage. there were. In addition, there is a problem in that a new process is required to adjust the filling rate, which increases the cost. Furthermore, the effect of these measures was not sufficient.

【0005】また、こうした努力にもかかわらず、繊維
径より小さい粒子を濾過精度とライフのバランスが良く
効率的に濾過する方法はよく知られていない。濾過精度
を上げるために充填率を0.4〜0.85程度まで上げ
る方法も知られているがライフを長くするという観点か
らは好ましくなく、また、この様な濾材を積層してもそ
の積層効果が少ないことが知られている。
In spite of such efforts, a method for efficiently filtering particles having a diameter smaller than the fiber diameter with a good balance between filtration accuracy and life is not well known. A method of increasing the filling rate to about 0.4 to 0.85 in order to improve the filtration accuracy is also known, but it is not preferable from the viewpoint of prolonging the life, and even if such a filter medium is laminated, its lamination It is known to be less effective.

【0006】特に、精密濾過膜のプレフィルターとして
用いられる0.5〜5μmの平均粒子径を有する粒子の
濾過においてもライフの改善を望む声が大きかった。ま
た、これらの充填率があまり大きくない濾過材をロール
にまいた状態で保管した際には表層と濾芯側で濾材の充
填率が変わるために、カートリッジを作成した際に濾過
性能がばらつくという問題もあった。
[0006] In particular, even in the filtration of particles having an average particle diameter of 0.5 to 5 µm used as a prefilter for a microfiltration membrane, there has been a great demand for improvement in life. In addition, when these filter materials whose packing ratio is not so large are stored in a roll, the packing ratio of the filter material changes between the surface layer and the filter core side, which causes a problem that the filtering performance varies when the cartridge is made. There was also.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の濾過
材の欠点を解消し、微小粒子の濾過精度が高く、濾過ラ
イフの長い濾過を可能とする濾過材、フィルターカート
リッジを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the drawbacks of the conventional filter media, to provide a filter media and a filter cartridge which have high filtration accuracy for fine particles and enable filtration with a long filtration life.

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題を解
決するために次の手段をとる。すなわち、本発明は、平
均繊維径が1.5μm以上5μm以下の極細繊維が厚さ
方向に10〜40本重ねられた、目付が5g/m 2 以上
40g/m 2 未満の範囲にある繊維集合体よりなり、該
繊維集合体は厚み方向には部分的に繊維相互の接着点が
表層と内層の間に差がないように存在し、該繊維集合体
の最大孔径が28μm〜40μmの範囲にありかつ、該
最大孔径と平均流量孔径の比が1.5〜2.5の範囲に
あり、繊維の充填率が0.05〜0.35の範囲にある
ことを特徴とする微小粒子の濾過材(請求項1)であ
り、また液体通過孔を有する管状コアー部材と、その周
囲に配置せしめられた濾過材層とがその端部において固
定せしめられてなるフィルターカートリッジであって、
該濾過材層は請求項1に記載の濾過材が少なくとも3層
以上巻き付けられたものであることを特徴とするフィル
ターカートリッジ(請求項2)である。
The present invention adopts the following means in order to solve the above problems. That is, according to the present invention, 10-40 superfine fibers having an average fiber diameter of 1.5 μm or more and 5 μm or less are stacked in the thickness direction, and the basis weight is 5 g / m 2 or more
A fiber aggregate in the range of less than 40 g / m 2 ,
In the fiber assembly, the bonding points between the fibers are partially present in the thickness direction.
There is no difference between the surface layer and the inner layer, the maximum pore size of the fiber assembly is in the range of 28 μm to 40 μm, and the ratio of the maximum pore size to the average flow pore size is in the range of 1.5 to 2.5. And a packing ratio of fibers in the range of 0.05 to 0.35, which is a filtering material for fine particles (claim 1), and a tubular core member having a liquid passage hole, and its surroundings. A filter cartridge having a filter material layer disposed on the end of the filter cartridge,
This filter material layer is a filter cartridge (claim 2) in which at least three layers of the filter material according to claim 1 are wound.

【0009】以下に本発明を詳細に説明する。本発明に
使用される濾過材において濾材を形成する極細繊維の平
均径より小さい粒子を高精度で濾過捕集するためには、
繊維径が1.5μmから5μmの間にある極細繊維より
なる濾材を用いる事が必要である。一般に深層濾過に用
いられる繊維は、より細い程好ましく、平均値で5μm
以下、更に好ましくは、3μm以下が好ましい。平均繊
維径が5μm以上では濾過効率を高くする事が困難であ
る。繊維径を小さくするのは好ましいが繊維径が1.5
μmより小さくなるとコアー部材に濾材が押しつけられ
る力で変形して濾材の閉塞が起こる危険性が大きくライ
フが短くなる。また、濾材の製造コストも高くつく。
The present invention will be described in detail below. In order to highly accurately filter and collect particles smaller than the average diameter of the ultrafine fibers forming the filter medium in the filter medium used in the present invention,
It is necessary to use a filter medium composed of ultrafine fibers having a fiber diameter of between 1.5 μm and 5 μm. Generally, the finer the fiber used for depth filtration, the more preferable it is, and the average value is 5 μm.
Hereafter, it is more preferably 3 μm or less. If the average fiber diameter is 5 μm or more, it is difficult to increase the filtration efficiency. It is preferable to reduce the fiber diameter, but the fiber diameter is 1.5
If it is less than μm, the filter material is deformed by the force of being pressed against the core member and the filter material is liable to be clogged, resulting in a shorter life. In addition, the manufacturing cost of the filter medium is high.

【0010】これらの濾過材を構成する極細繊維を製造
する方法として熱可塑性ポリマーを材料とする際には例
えば、複合紡糸法やスパンボンド法、メルトブロー法、
静電紡糸法などがあげられる。これらの方法の中で、ス
パンボンド法やメルトブロー法は後加工工程なしで濾過
材を直接形成できるためコスト的に有利であると考えら
れる。繊維集合体の形態としては織布でも不織布でもよ
いが、不織布の方が繊維がランダムに分散しており濾過
精度を上げるうえで効果的である。繊維の断面形状は円
形でもよいしその他の形状でも良く、場合によっては異
形断面の方がより好ましい。
When a thermoplastic polymer is used as a material for producing the ultrafine fibers constituting these filter materials, for example, a composite spinning method, a spunbond method, a melt blow method,
Electrostatic spinning method and the like can be mentioned. Among these methods, the spunbond method and the melt blow method are considered to be advantageous in terms of cost because the filter medium can be directly formed without a post-processing step. The form of the fiber aggregate may be a woven fabric or a non-woven fabric, but the non-woven fabric is more effective in improving filtration accuracy because the fibers are randomly dispersed. The cross-sectional shape of the fiber may be circular or any other shape, and in some cases, a modified cross-section is more preferable.

【0011】繊維集合体の目付は5〜40g/m2の範
囲にあることが好ましく、更に好ましくは25〜35g
/m2にあることが好ましい。目付が5g/m2より小さ
くなると管状コアー材に繊維集合体を巻き付けるコスト
が上昇したり、加工工程で濾材が何らかの理由で切断さ
れる危険性が増すなどの問題を生じやすい。一方、目付
が40g/m2より大きくなると濾材に巻き付ける際に
シワが入るなどして操業性に問題があることが多い。
The basis weight of the fiber assembly is preferably in the range of 5 to 40 g / m 2 , and more preferably 25 to 35 g.
/ M 2 is preferable. When the basis weight is less than 5 g / m 2 , problems such as an increase in the cost of winding the fiber assembly around the tubular core material and an increase in the risk of the filter material being cut for some reason during the processing step are likely to occur. On the other hand, if the fabric weight is more than 40 g / m 2 , there are many problems in operability, such as wrinkles when wound around the filter medium.

【0012】また、本発明では、極細繊維が深さ方向に
10〜40本重ねられていることが重要である。この深
さ方向での繊維の本数は、目付を繊維構成物質の比重と
繊維径の積で除した以下の式により与えられる。 深さ方向繊維本数=濾過目付(g/m2)/[繊維密度
(g/cm3)×繊維径(μm)]
In the present invention, it is important that 10 to 40 ultrafine fibers are stacked in the depth direction. The number of fibers in the depth direction is given by the following formula in which the basis weight is divided by the product of the specific gravity of the fiber constituent substance and the fiber diameter. Depth direction number of fibers = filtration weight (g / m 2 ) / [fiber density (g / cm 3 ) × fiber diameter (μm)]

【0013】従来、特開昭58−186412にあるよ
うに、深さ方向には繊維の数が多いことが良いとされて
いたが、本発明者らは、深さ方向の繊維本数が40本よ
り大きくなると濾材中での繊維の均質分散が困難になる
ことを明らかとした。特にメルトブロー法により製造さ
れた極細繊維よりなる不織布においては、捕集体に捕集
された繊維が牽引エアージェット流れにより吹き飛ばさ
れないように捕集体下面よりサクションを働かせている
が、繊維層深さが深くなると該繊維層の圧力損失により
繊維を引き取る際、繊維を吹き飛ばないように作用する
吸引力が弱められるためにシートの上部ほどロープ等の
斑が発生するため濾過精度があまり上がらないことを実
験により確認した。また、繊維層が深すぎると濾芯に均
一に巻き付け難くなるという問題を生じる。一方、深さ
方向の繊維本数が小さくなり過ぎることは目付の低下を
意味し、強度等の面で問題を生じ易くなる。
Conventionally, as disclosed in Japanese Patent Laid-Open No. 58-186412, it was considered that the number of fibers in the depth direction should be large, but the present inventors have found that the number of fibers in the depth direction is 40. It has been clarified that it becomes difficult to uniformly disperse the fibers in the filter medium as the size becomes larger. Especially in the non-woven fabric composed of ultrafine fibers produced by the melt-blowing method, suction is made to work from the lower surface of the collector so that the fibers collected in the collector are not blown off by the traction air jet flow, but the fiber layer depth is deep. Then, when the fiber is pulled due to the pressure loss of the fiber layer, the suction force acting to prevent the fiber from being blown off is weakened, and unevenness such as ropes is generated near the top of the sheet, so it is not possible to improve filtration accuracy by experiments. confirmed. Further, if the fiber layer is too deep, there is a problem that it becomes difficult to uniformly wind the fiber layer around the filter core. On the other hand, if the number of fibers in the depth direction is too small, it means that the basis weight is reduced, and problems such as strength tend to occur.

【0014】繊維の充填率については0.05以上0.
35以下であればよい。充填率が0.05より小さくな
ると本発明で目的とする平均繊維径より小さい粒子の高
効率濾過が難しくなる。一方、充填率が0.35より高
くなると濾過精度は若干改善されるが、濾材を積層して
もライフがほとんど変わらず、長い濾過ライフを達成し
がたい。粒子径が濾材の繊維間隙(ポアーサイズ)より
大きい際には、繊維が濾材中で均一に分散した際には、
表層と濾材内部(断面方向)に構造の差がないために大
きな粒子はほとんど濾材の表面でのみ、篩い分け効果に
より濾過されるため、一番上流側にある濾材の表層部分
でケーキ層を形成するために濾過抵抗が著しく増加し、
濾過ライフを短くするという問題点を生じていた。
The filling factor of the fiber is 0.05 or more and 0.
It may be 35 or less. If the filling rate is less than 0.05, it becomes difficult to perform highly efficient filtration of particles smaller than the average fiber diameter, which is the object of the present invention. On the other hand, when the filling rate is higher than 0.35, the filtration accuracy is slightly improved, but even if the filter media are laminated, the life is hardly changed and it is difficult to achieve a long filtration life. When the particle size is larger than the fiber gap (pore size) of the filter medium, when the fibers are uniformly dispersed in the filter medium,
Since there is no difference in structure between the surface layer and the inside of the filter medium (cross-sectional direction), large particles are filtered only on the surface of the filter medium by the sieving effect, so the cake layer is formed on the surface layer of the filter medium on the most upstream side. To significantly increase the filtration resistance,
The problem was that the filtration life was shortened.

【0015】また、産業上の用いられる濾材の濾過対象
粒子のほとんどが多分散であり粒子径の分布が大きいた
めにこれらの問題が顕著となり、濾過材の設計を困難と
してきた。また、濾過の操作条件がその目的により著し
く異なることも濾過対象粒子が捕集される機構を変化さ
せ、更に問題を複雑化してきた。すなわち、多分散粒子
に含まれるサブミクロンの粒子はブラウン拡散による捕
集の割合が大きく、一方ミクロンサイズでは直接さえぎ
りや慣性による寄与が大きいということが、捕集に必要
な繊維径や繊維充填率を変化させ多濾材の一義的な設計
ができないという問題があった。
Further, since most of the particles to be filtered of the filter material used in industry are polydisperse and the particle size distribution is large, these problems become remarkable, which makes the design of the filter material difficult. In addition, the fact that the operating conditions for filtration are significantly different depending on the purpose also changes the mechanism for collecting the particles to be filtered, further complicating the problem. That is, the submicron particles contained in polydisperse particles have a large collection rate by Brownian diffusion, while the micron size has a large contribution due to direct interruption or inertia. However, there was a problem in that the unique design of the multi-filter material could not be changed.

【0016】本発明では濾過対象粒子特性や濾過操作条
件を把握したうえで、それに応じた繊維径や充填率、繊
維分散状態を実現することでより効果的に長いライフ、
高精度を実現することが可能である。
In the present invention, by grasping the characteristics of the particles to be filtered and the filtration operation conditions, and by realizing the fiber diameter, filling rate, and fiber dispersion state corresponding to them, a more effective long life,
High accuracy can be achieved.

【0017】濾過対象の粒子が繊維径より大きい粒子を
多数含み、かつ粒子径の分布が広い多分散系である際に
は、本発明の濾過材を何種類組み合わせて利用し、各濾
材の捕集対象粒子径を予め決定した上で、それに応じた
繊維径、充填率、最大孔径を有する濾過材を対象粒子径
が大きい濾材ほど上流側において積層する事でより効果
的な濾過を実現できる。
When the particles to be filtered include a large number of particles larger than the fiber diameter and are a polydisperse system having a wide distribution of particle diameters, several kinds of the filtering materials of the present invention are used in combination to collect each filtering material. A more effective filtration can be realized by previously determining the collection target particle diameter and then stacking a filter material having a corresponding fiber diameter, filling rate, and maximum pore diameter on the upstream side of the filter material having a larger target particle diameter.

【0018】本発明においては、繊維の分散状態を制御
する事が重要であるが、分散状態を制御する方法の一つ
としては、例えばメルトブロー法においてはポリマーを
吐出するダイと不織布の捕集体の間の距離を変えること
で容易に達成が可能である。適正なダイと捕集体の距離
としては、紡糸の条件や濾過の対象粒子の大きさにより
異なるが、一般的には3〜60cmが好ましく、より好
ましくは10〜30cmの間にあることが好ましい。
In the present invention, it is important to control the dispersed state of the fibers. As one of the methods for controlling the dispersed state, for example, in the melt blow method, a die for discharging a polymer and a collector of a nonwoven fabric are used. This can be easily achieved by changing the distance between them. The appropriate distance between the die and the collector varies depending on the spinning conditions and the size of particles to be filtered, but is generally preferably 3 to 60 cm, and more preferably 10 to 30 cm.

【0019】繊維の分散性の評価は、濾過材の変形を防
いで断面をカットし(例えば液体窒素中でカットしたり
するなどにより)、走査型電子顕微鏡写真でその断面を
観察し繊維が融着してロープ状に複数本の繊維が絡まっ
た箇所の数や融着本数を数えたり、あるいはポロメータ
ーなどで繊維により形成されるポアーのサイズは均一と
なるが、例えば最大孔径(最大ポアーサイズ)と平均流
量孔径(ミーンフローポアー)の比を測定し比較する事
で容易に確認できる。繊維集合体が不織布である場合
は、繊維の形態があまり均一でないことから、測定点を
増やして測定を実施し、少なくとも3点以上の平均値で
評価する事が必要である。
The dispersibility of the fiber is evaluated by preventing the filter material from being deformed and cutting the cross section (for example, by cutting in liquid nitrogen), and observing the cross section with a scanning electron micrograph to melt the fiber. The number of places where multiple fibers are entangled in a rope shape and the number of fused fibers is counted, or the size of the pores formed by the fibers with a porometer is uniform, but for example, the maximum pore diameter (maximum pore size) It can be easily confirmed by measuring and comparing the ratio of the mean flow pore size with the mean flow pore size. When the fiber assembly is a non-woven fabric, since the morphology of the fibers is not so uniform, it is necessary to increase the number of measurement points and perform the measurement, and to evaluate with an average value of at least 3 points.

【0020】最大孔径と平均流量径の比の値は繊維の分
散状態だけでなく、平均繊維径や繊維径分散にも影響さ
れる。平均繊維径が小さいほど、繊維径標準偏差が小さ
いほど好ましく、特に平均繊維径が4μm以下で繊維径
標準偏差が平均繊維径の50%以下、より好ましくは、
35%であることが好ましい。
The value of the ratio between the maximum pore diameter and the average flow rate diameter is influenced not only by the dispersed state of the fibers but also by the average fiber diameter and the fiber diameter dispersion. The smaller the average fiber diameter and the smaller the fiber diameter standard deviation, the more preferable. In particular, the average fiber diameter is 4 μm or less and the fiber diameter standard deviation is 50% or less of the average fiber diameter, and more preferably,
It is preferably 35%.

【0021】0.5〜5μmの粒子を長いライフで濾過
処理を実施するためには孔径の分布を広くするために
は、最大孔径と平均孔径の比が1.5〜2.5の間にあ
ることが重要である。従って、例えばメルトブロウン不
織布では通常問題とされている繊維が束状に集まったロ
ープ状物を意識的に導入するなどの手段により繊維分散
を適度にコントロールすることが必要となる。また、こ
の際の最大孔径は小さすぎると捕集粒子による孔の閉塞
が速くなるため28μmより大きいことが、更に好まし
くは30μmより大きい事が必要である。一方、最大孔
径が40μmより大きくなると濾過精度の低下が顕著と
なる。
In order to carry out filtration treatment of particles of 0.5 to 5 μm with a long life, in order to widen the distribution of pore diameters, the ratio of the maximum pore diameter to the average pore diameter is between 1.5 and 2.5. It is important to be. Therefore, for example, in the meltblown nonwoven fabric, it is necessary to appropriately control the fiber dispersion by means such as intentionally introducing a rope-like material in which fibers are gathered in a bundle, which is usually a problem. If the maximum pore size at this time is too small, the pores will be blocked more quickly by the trapped particles, and therefore it is necessary that the pore size is larger than 28 μm, and more preferably larger than 30 μm. On the other hand, if the maximum pore size is larger than 40 μm, the filtration accuracy will be significantly reduced.

【0022】本発明においては繊維径の分布が狭いこと
が好ましいが、メルトブロー法においては、繊維分布を
小さくする方法として単孔当たりの吐出量を0.01以
上0.75g/分以下にし、牽引流体であるエアーの流
れのノズル幅方向の分布を可能な限り小さくする事で達
成可能であることがわかった。
In the present invention, it is preferable that the fiber diameter distribution is narrow, but in the melt blow method, as a method for reducing the fiber distribution, the discharge amount per single hole is set to 0.01 or more and 0.75 g / min or less, and the traction is performed. It was found that this can be achieved by making the distribution of the air flow, which is a fluid, in the nozzle width direction as small as possible.

【0023】本発明に用いられる濾過材は、従来から用
いられてきたように、繊維径を深さ方向に変更したり、
充填率を深さ方向に変更するなどの方法によりフィルタ
ーカートリッジを構成することも可能である。
The filter material used in the present invention has a fiber diameter changed in the depth direction, as has been used conventionally.
It is also possible to construct the filter cartridge by a method such as changing the filling rate in the depth direction.

【0024】本発明で実施される濾過操作の適正な条件
としては、濾過を線速度0.5〜20cm/分で処理す
ることが好ましい。濾過速度が0.5cm/分より小さ
くなると捕集の機構が変化するためか本発明の効果がラ
イフ改善に十分あらわれなかった。また、濾過速度が低
いことは、濾過処理量の低下を意味し、工業上も余り好
ましくない。一方、20cm/分より大きくなると、本
発明の濾材では濾過精度を十分高くすることができなか
った。
As a proper condition for the filtration operation carried out in the present invention, it is preferable to perform the filtration at a linear velocity of 0.5 to 20 cm / min. When the filtration rate is less than 0.5 cm / min, the effect of the present invention is not sufficiently shown in improving the life, probably because the collecting mechanism changes. In addition, a low filtration rate means a reduction in the amount of filtration treatment, which is not industrially preferable. On the other hand, when it is higher than 20 cm / min, the filtering accuracy of the filter material of the present invention cannot be sufficiently increased.

【0025】また、本発明の濾過材が最も効果的に用い
られる対象の粒子としては、ポリスチレンラテックスな
どの完全に球形に近い粒子だけでなく非球形粒子にも有
用である。血球や細菌等の不定形粒子(外部からの刺激
により変形する粒子)にも大きな効果が認められた。ど
ちらかというとより粒子径分布の大きい多分散粒子の方
がより効果が大きいと考えられる。
As the particles to which the filter material of the present invention is most effectively used, not only particles having a nearly spherical shape such as polystyrene latex but also non-spherical particles are useful. A large effect was also observed on irregular particles such as blood cells and bacteria (particles that are deformed by external stimuli). If anything, polydisperse particles having a larger particle size distribution are considered to be more effective.

【0026】次に、ロール状に巻いて保存された濾材の
性能の巻き内外による差を無くすために、濾過材をカレ
ンダーローラーなどにより線圧で5〜100kgf/c
2の圧力で該不織布構成物質の融点の1/2以下の温
度でプレスすることが好ましい。カレンダー加工処理に
より精度は若干高くなり、ライフが短くなる傾向が認め
られるが、ロールの巻き内外での特性差がなくなり、従
って、濾過特性も差が認められなくなった。カレンダー
を用いる際の線圧は5kgf/cm2より小さいとその
効果が少なくまた、制御が難しく、一方100kgf/
cm2より大きくなると濾材が潰れすぎて、ライフが短
くなり過ぎたり、積層効果が小さいことが明らかとなっ
た。また、カレンダー時の温度としては融点にあまり近
すぎるとシートの表面が融解し濾材の表面で捕集粒子に
よる閉塞のために濾過ライフが短くなるために好ましく
ない。発明者らの経験によると融点の1/2の温度と室
温の間の温度で処理することが好ましい。本発明では、
部分的に加圧変形により弱く接着された場所を濾材に均
一に点在させることが好ましい。この際、特開平3−6
9654にあるようにシートの表面のみに結合点が分散
するのではなく、濾材深さ方向全体に弱く結合されてい
ることが必要である。これは、該特許で述べられている
高いカレンダー処理温度条件で達成するのは極めて困難
である。
Next, in order to eliminate the difference between the inside and the outside of the performance of the filter medium wound and stored in a roll, the filter medium is linearly pressured by a calender roller or the like at 5 to 100 kgf / c.
It is preferable to press at a temperature of ½ or less of the melting point of the nonwoven fabric constituent material under a pressure of m 2 . The calendering process slightly increased the accuracy and tended to shorten the life, but there was no difference in the characteristics between the inside and outside of the roll, and therefore no difference was found in the filtration characteristics. If the linear pressure when using a calender is less than 5 kgf / cm 2 , its effect is small and it is difficult to control, while 100 kgf / cm 2
When it was larger than cm 2, it became clear that the filter medium was crushed too much, the life was too short, and the lamination effect was small. If the temperature at the time of calendering is too close to the melting point, the surface of the sheet will be melted and the surface of the filter material will be clogged with trapped particles to shorten the filtration life, which is not preferable. According to the experience of the inventors, it is preferable to carry out the treatment at a temperature between half the melting point and room temperature. In the present invention,
It is preferable to evenly disperse the weakly adhered portions on the filter medium due to the partial pressure deformation. At this time, JP-A-3-6
It is necessary that the bonding points are not dispersed only on the surface of the sheet as in 9654, but are weakly bonded in the entire depth direction of the filter medium. This is extremely difficult to achieve at the high calendering temperature conditions described in that patent.

【0027】カレンダー処理等により若干通気抵抗が上
昇し、その結果ライフも若干低下するが、カートリッジ
を作成する際にも、その巻きテンションで濾材が変形
し、通気抵抗が大きくなることを考えると、この問題は
あまり重要ない。加工効率を上げるために2枚以上の濾
材を積層して処理することも問題がない。水流交絡法や
熱処理により結合点数を調整しても良い。この様に比較
的低温でカレンダー処理された濾材は壁折り(プリー
ツ)加工して2〜10層積層して利用してもよい。本発
明の濾過材を多孔性のフイルムや膜など他の素材と積層
したり、水流交絡処理やエレクトレット加工処理などの
後加工を施してもその効果に変わりはない。また、顆粒
状あるいは繊維状の活性炭やその他の多孔体より成る層
を途中や前後に設けたりして吸着処理などを同時に行う
事も好ましい形態のひとつである。また、本発明の濾過
材は、その極細繊維特性と適度な流体透過性から保温材
やバクテリアバリア材としても有用である。
Although the ventilation resistance is slightly increased by calendering and the life is also slightly decreased as a result, when the cartridge is made, the filter medium is deformed by the winding tension and the ventilation resistance is increased. This problem is not so important. There is no problem in processing by laminating two or more filter media in order to improve the processing efficiency. The number of bonding points may be adjusted by a hydroentangling method or heat treatment. Such a filter medium calendered at a relatively low temperature may be wall-folded (pleated) to be used by laminating 2 to 10 layers. Even if the filter material of the present invention is laminated with another material such as a porous film or a membrane, or subjected to post-processing such as hydroentangling treatment or electret processing, the effect is the same. Further, it is also one of the preferable modes to perform adsorption treatment at the same time by providing a layer made of granular or fibrous activated carbon or other porous material in the middle or before and after. The filter material of the present invention is also useful as a heat retaining material or a bacterial barrier material because of its ultrafine fiber characteristics and appropriate fluid permeability.

【0028】[0028]

【実施例】【Example】

実施例1〜3、比較例1〜3 以下実施例をあげて、本発明を具体的に説明する。実施
例に記載の特性値は以下の測定法により決定した。 繊維径 繊維の走査型電子顕微鏡写真を倍率1000〜5000
倍で取り、その写真より任意に抽出した200本の繊維
側面の幅を測定し、算術平均により決定した。 繊維充填率 繊維の目付を20cm角の試料を秤量し、1m2あたり
の目付けに換算する。また、該試料の任意の箇所を5箇
所の厚みをJIS L1096に準じ、7g/cm2
荷重下で測定した。目付けをポリマー比重で割った値
を、更に厚みで割り無次元の体積充填率を求めた。 繊維分散状態 コールター社製ポロメーターIIを使用し、ASTMF3
16−86に準じて測定を実施し、最大孔径と平均流量
孔径の比を求めた。 粒子濾過精度及び濾過ライフ JIS11種粒子とJIS8種粒子を質量比で8対2の
比で混合した粒子を0.025g/1分散させた水溶液
を線速度5cm/分で供給し、3分経過後に濾材前後の
液の濁度を測定し、以下の式により捕集効率を求めた。 捕集効率(%)=(1−出口濃度/入口濃度)×100 また、濾過ライフは濾材前後の差圧をディジタルマノメ
ーターで測定して、濾過圧力が5kgf/cm2になる
までの時間を測定して求めた。
Examples 1 to 3 and Comparative Examples 1 to 3 The present invention will be specifically described with reference to Examples. The characteristic values described in the examples were determined by the following measuring methods. Fiber diameter Scanning electron micrograph of fiber with magnification of 1000 to 5000
The width of the side surface of 200 fibers arbitrarily taken from the photograph was measured and determined by arithmetic mean. Fiber filling rate A 20 cm square sample is weighed and the fiber areal weight is converted into a basis weight per 1 m 2 . Further, the thickness of 5 arbitrary points of the sample was measured according to JIS L1096 under a load of 7 g / cm 2 . The value obtained by dividing the basis weight by the specific gravity of the polymer was further divided by the thickness to obtain a dimensionless volume filling rate. Fiber Dispersion State Using Coulter Porometer II, ASTMF3
Measurement was carried out according to 16-86, and the ratio of the maximum pore diameter to the average flow pore diameter was obtained. Particle filtration accuracy and filtration life An aqueous solution in which 0.025 g / 1 of particles obtained by mixing JIS11 seed particles and JIS8 seed particles in a mass ratio of 8: 2 is supplied at a linear velocity of 5 cm / min, and after 3 minutes have elapsed The turbidity of the liquid before and after the filter material was measured, and the collection efficiency was calculated by the following formula. Collection efficiency (%) = (1-outlet concentration / inlet concentration) × 100 Further, as for the filtration life, the differential pressure before and after the filter medium is measured with a digital manometer, and the time until the filtration pressure becomes 5 kgf / cm 2 is measured. I asked.

【0029】メルトフローレイトが300〜1000の
ポリプロピレン樹脂を用い、メルトブロー法により繊維
径が0.8〜6.0μmの極細繊維よりなる目付が30
g/m2の不織布を作成し濾過テストを実施した。結果
を表1に示す。
A polypropylene resin having a melt flow rate of 300 to 1000 is used, and a basis weight of ultrafine fibers having a fiber diameter of 0.8 to 6.0 μm is 30 by a melt blow method.
A nonwoven fabric of g / m 2 was prepared and a filtration test was performed. The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】なお、表1において孔径比は孔径比=最大
孔径/平均孔径で示され、捕集効率は、15枚重ねてJ
IS8種粒子およびJIS11種粒子混合物を捕集する
割合を%で示す。
In Table 1, the pore size ratio is shown by the formula: pore size ratio = maximum pore size / average pore size.
The proportion of the mixture of IS8 seed particles and JIS11 seed particles is shown in%.

【0032】実施例4 実施例2に用いた不織布を1000m巻のロールで用意
し、3ケ月放置したのち、ロールの表層部と芯部をサン
プリングし、カレンダーローラーにより線圧20kgf
/cmで20℃室温状態でプレスした。それぞれについ
て5回の濾過テストを実施したところ、両者とも捕集効
率が95%、ライフが32分であり、2つの結果に有意
差は認められなかった。 比較例4 実施例2に用いた不織布を1000m巻のロールで用意
し、3ケ月放置したのち、ロールを巻き返して、表層部
と芯部をそれぞれ10mずつサンプリングし、それぞれ
について5回の濾過テストを実施したところ、表層部は
実施例1と性能差がなかったが、芯側のサンプルは捕集
効率が89%、ライフが33分と変化し有意差が認めら
れ、濾過性能の差が大きく品質管理上問題となった。
Example 4 The non-woven fabric used in Example 2 was prepared in a roll of 1000 m and left for 3 months, then the surface layer and core of the roll were sampled and the linear pressure was 20 kgf by a calender roller.
/ Cm at 20 ° C. room temperature. When the filtration test was carried out 5 times for each of them, the collection efficiency was 95% and the life was 32 minutes for both, and no significant difference was observed between the two results. Comparative Example 4 The nonwoven fabric used in Example 2 was prepared with a roll of 1000 m and left for 3 months, then the roll was rewound and the surface layer portion and the core portion were sampled 10 m each and a filtration test was performed 5 times for each. As a result, the surface layer part had no difference in performance from Example 1, but the sample on the core side had a significant difference with a collection efficiency of 89% and a life of 33 minutes, showing a significant difference in filtration performance. It became an administrative problem.

【0033】[0033]

【発明の効果】本発明要件を満たす濾材はた制御された
繊維の分散性ゆえにフィルターとして使用した際に、目
的とする微小粒子の濾過精度が高く、さらに濾過ライフ
の長い濾過を可能とし、濾過にかかるコストを大幅に改
善し、その効果は極めて大である。
EFFECTS OF THE INVENTION A filter medium satisfying the requirements of the present invention, when used as a filter because of its controlled dispersibility of fibers, has high filtration accuracy of desired fine particles and enables filtration with a long filtration life. The cost is significantly improved, and the effect is extremely large.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均繊維径が1.5μm以上5μm以下
の極細繊維が厚さ方向に10〜40本重ねられた、目付
が5g/m 2 以上40g/m 2 未満の範囲にある繊維集合
体よりなり、該繊維集合体は厚み方向には部分的に繊維
相互の接着点が表層と内層の間に差がないように存在
し、該繊維集合体の最大孔径が28μm〜40μmの範
囲にありかつ、該最大孔径と平均流量孔径の比が1.5
〜2.5の範囲にあり、繊維の充填率が0.05〜0.
35の範囲にあることを特徴とする微小粒子の濾過材。
1. A basis weight , in which 10 to 40 ultrafine fibers having an average fiber diameter of 1.5 μm or more and 5 μm or less are stacked in the thickness direction.
Of fibers having a weight ratio of 5 g / m 2 or more and less than 40 g / m 2
The fiber assembly is composed of fibers
Mutual adhesion points exist so that there is no difference between the surface layer and the inner layer
And a maximum pore size of the fiber aggregate is in the range of 28μm~40μm and that the ratio of the mean flow pore size and said maximum pore diameter 1.5
.About.2.5, and the filling factor of the fibers is 0.05 to 0.
A filter material for fine particles, which is in the range of 35.
【請求項2】 液体通過孔を有する管状コアー部材と、
その周囲に配置せしめられた濾過材層とがその端部にお
いて固定せしめられてなるフィルターカートリッジであ
って、該濾過材層は請求項1に記載の濾過材が少なくと
も3層以上巻き付けられたものであることを特徴とする
フィルターカートリッジ。
2. A tubular core member having a liquid passage hole,
A filter cartridge in which a filter material layer disposed around the filter material is fixed at an end thereof, and the filter material layer is formed by winding at least three layers of the filter material according to claim 1. A filter cartridge characterized by being present.
JP16556093A 1993-07-05 1993-07-05 Fine particle filter media Expired - Lifetime JP3449430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16556093A JP3449430B2 (en) 1993-07-05 1993-07-05 Fine particle filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16556093A JP3449430B2 (en) 1993-07-05 1993-07-05 Fine particle filter media

Publications (2)

Publication Number Publication Date
JPH0724231A JPH0724231A (en) 1995-01-27
JP3449430B2 true JP3449430B2 (en) 2003-09-22

Family

ID=15814686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16556093A Expired - Lifetime JP3449430B2 (en) 1993-07-05 1993-07-05 Fine particle filter media

Country Status (1)

Country Link
JP (1) JP3449430B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536152A (en) * 1999-02-02 2002-10-29 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Tow filter cartridge
JP4614669B2 (en) * 2004-02-03 2011-01-19 日本バイリーン株式会社 Filter material and filter
JP5037034B2 (en) * 2005-04-26 2012-09-26 日東電工株式会社 Filter filter medium, its production method and method of use, and filter unit
US20080307971A1 (en) * 2005-04-26 2008-12-18 Nitto Denko Corporation Filter Medium, Process for Producing the Same, Method of Use Thereof, and Filter Unit
JP4880934B2 (en) * 2005-07-22 2012-02-22 日本バイリーン株式会社 Laminate and filter media
DE102006021905B4 (en) * 2006-02-27 2011-05-26 BLüCHER GMBH Adsorption filter material with integrated particle and / or aerosol filter function and its use

Also Published As

Publication number Publication date
JPH0724231A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
EP1851046B1 (en) Filtration media for filtering particulate material from gas streams
US4714647A (en) Melt-blown material with depth fiber size gradient
JP5483878B2 (en) Filter media for liquid filtration
RU2412742C2 (en) Single-component one-layer linen blown from melt and device for blowing from melt
EP1819414B1 (en) Filtration media for filtering particulate material from gas streams
JP4785928B2 (en) Agglomerated filter media and method
JP4236284B2 (en) Cylindrical filter
US8187354B2 (en) Filtration media for filtering particulate material from gas streams
JP2013521106A (en) Fine fiber filter medium for fine fibers
JP2010526216A (en) Needle punched nanoweb structure
JP5823205B2 (en) Cartridge filter
JP3449430B2 (en) Fine particle filter media
JP3449429B2 (en) Fine particle filter media
JP3164172B2 (en) Nonwoven fabric and method for producing the same
JP3578229B2 (en) Fine particle filter media
WO2020202899A1 (en) Melt-blown nonwoven fabric for liquid filter, layered body of said melt-blown nonwoven fabric, and liquid filter equipped with layered body
JP3431086B2 (en) Filter cartridge and filtration method
US6749753B1 (en) Filter of high accuracy
JP3373877B2 (en) Nonwoven fabric having pore diameter gradient and method for producing the same
WO2022250057A1 (en) Melt-blow non-woven fabric and filter comprising same
JP2011011168A (en) Liquid filter
JP2001293316A (en) Method for producing unit filter
CN114602245A (en) Laminated sheet for water filtration, cylindrical filter element, and filter kit
JPH04313311A (en) Filter medium and method of filtering
WO2016159794A2 (en) Multilayer, non-woven filter for emulsion separation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

EXPY Cancellation because of completion of term