JPH0724098B2 - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPH0724098B2
JPH0724098B2 JP60272179A JP27217985A JPH0724098B2 JP H0724098 B2 JPH0724098 B2 JP H0724098B2 JP 60272179 A JP60272179 A JP 60272179A JP 27217985 A JP27217985 A JP 27217985A JP H0724098 B2 JPH0724098 B2 JP H0724098B2
Authority
JP
Japan
Prior art keywords
film
magnetic recording
magnetic
recording medium
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60272179A
Other languages
Japanese (ja)
Other versions
JPS62132218A (en
Inventor
晴夫 粟野
直樹 本多
利一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60272179A priority Critical patent/JPH0724098B2/en
Publication of JPS62132218A publication Critical patent/JPS62132218A/en
Publication of JPH0724098B2 publication Critical patent/JPH0724098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性薄膜の厚み方向に沿う磁化によってその
記録を行う、いわゆる垂直磁気記録媒体に関する。
Description: TECHNICAL FIELD The present invention relates to a so-called perpendicular magnetic recording medium that performs recording by magnetization along the thickness direction of a magnetic thin film.

〔発明の概要〕[Outline of Invention]

本発明は、垂直磁気記録媒体において、基体上に炭素も
しくは炭化物よりなる下地膜を介してCo−Crよりなる磁
性薄膜を形成することによって、磁性薄膜の磁気特性
(垂直磁界異方性、垂直方向保磁力)を向上せしめるよ
うにしたものである。
According to the present invention, in a perpendicular magnetic recording medium, a magnetic thin film made of Co--Cr is formed on a substrate via an undercoating film made of carbon or carbide, so that the magnetic characteristics of the magnetic thin film (vertical magnetic field anisotropy, vertical direction The coercive force) is improved.

〔従来の技術〕[Conventional technology]

近年、高密度磁気記録方式として垂直磁気記録方式が注
目を浴び、盛んに研究、開発が行われている。この垂直
磁気記録方式で用いられる垂直磁気記録媒体の磁性層と
してはCo−Cr膜が知られている(特開昭58−141435
号)。
In recent years, a perpendicular magnetic recording method has been attracting attention as a high-density magnetic recording method, and research and development have been actively conducted. A Co-Cr film is known as a magnetic layer of a perpendicular magnetic recording medium used in this perpendicular magnetic recording system (Japanese Patent Laid-Open No. 141435/1983).
issue).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、Co−Cr膜について理想的な垂直記録を実現す
るためには、その磁気特性として大きな垂直磁気異方性
が必要である。現在得られている垂直磁気異方性より
も、さらに大きな異方性を有するCo−Cr膜が得られれ
ば、より一層理想的な垂直磁気記録が可能となる。しか
し、現在までのところ、垂直磁気異方性を大きくする技
術は開発されていない。特にリングヘッドを用いて垂直
磁気記録を行う場合には、垂直磁気異方性の大きい磁気
記録媒体が不可欠で、現在の磁気記録媒体よりも、さら
に垂直磁気異方性が大きい磁気記録媒体が必要である。
By the way, in order to realize ideal perpendicular recording on a Co—Cr film, a large perpendicular magnetic anisotropy is required as its magnetic property. If a Co-Cr film having anisotropy larger than that of the perpendicular magnetic anisotropy obtained at present is obtained, more ideal perpendicular magnetic recording becomes possible. However, to date, no technique has been developed for increasing the perpendicular magnetic anisotropy. In particular, when performing perpendicular magnetic recording using a ring head, a magnetic recording medium having a large perpendicular magnetic anisotropy is indispensable, and a magnetic recording medium having a larger perpendicular magnetic anisotropy is required than the current magnetic recording medium. Is.

また、Co−Cr膜について、その垂直方向保持力は垂直磁
気記録の再生出力を決定するため、能力のある磁気ヘッ
ドに対しては保磁力が大きい程望ましい。しかし、Co−
Cr膜において垂直方向保磁力をさらに大きくする方法は
未だ見出されていない。特に磁気記録媒体の基板として
耐熱性に劣る高分子フィルムを用いる場合は、Co−Cr膜
作成時に基板の温度を低く保つ必要があり、出来上がっ
たCo−Cr膜の垂直方向保磁力は小さくなってしまう。こ
の場合Co−Cr膜の垂直方向保磁力を高める技術は未だ無
い状態であった。
In addition, since the perpendicular coercive force of the Co—Cr film determines the reproduction output of perpendicular magnetic recording, a larger coercive force is desirable for a magnetic head having the capability. However, Co-
A method for further increasing the perpendicular coercive force in the Cr film has not been found yet. Especially when using a polymer film with poor heat resistance as the substrate of the magnetic recording medium, it is necessary to keep the temperature of the substrate low at the time of forming the Co-Cr film, and the perpendicular coercive force of the finished Co-Cr film becomes small. I will end up. In this case, there is still no technology for increasing the vertical coercive force of the Co-Cr film.

本発明は、上述の点に鑑み、垂直磁気異方性及び垂直方
向保磁力が共に大きい垂直磁気記録媒体を提供するもの
である。
In view of the above points, the present invention provides a perpendicular magnetic recording medium having both large perpendicular magnetic anisotropy and perpendicular coercive force.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第1図に示すように、非磁性の基体(1)上
に炭化物膜もしくは膜厚30Å〜80Åの炭素(C)膜より
なる下地膜(2)を形成し、この下地膜(2)上にCo−
Crよりなる磁性薄膜(3)を形成して垂直磁気記録媒体
を構成する。
According to the present invention, as shown in FIG. 1, a base film (2) made of a carbide film or a carbon (C) film having a film thickness of 30Å to 80Å is formed on a non-magnetic substrate (1). 2) Co-on top
A magnetic thin film (3) made of Cr is formed to form a perpendicular magnetic recording medium.

非磁性基体(1)の素材としては、ポリエチレンテレフ
タレート等のポリエステル類、ポリエチレン,ポリプロ
ピレン等のポリオレフィン類、セルローストリアセテー
ト,セルロースダイアセテート,セルロースアセテート
ブチレート等のセルロース誘導体、ポリ塩化ビニル,ポ
リ塩化ビニリデン等のビニル系樹脂、ポリカーボネー
ト,ポリイミド,ポリアミドイミド等のプラスチック、
アルミニウム合金、チタン合金等の軽金属、アルミナガ
ラス等のセラミック等が挙げられる。この非磁性基体の
形態としては、フィルム,シート,ディスク,カード,
ドラム等のいずれでもよい。
Examples of materials for the non-magnetic substrate (1) include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, cellulose derivatives such as cellulose triacetate, cellulose diacetate and cellulose acetate butyrate, polyvinyl chloride, polyvinylidene chloride and the like. Vinyl resins, plastics such as polycarbonate, polyimide, polyamide-imide,
Examples include light metals such as aluminum alloys and titanium alloys, and ceramics such as alumina glass. The form of this non-magnetic substrate is film, sheet, disk, card,
It may be a drum or the like.

下地膜(2)の炭化物としては、SiC,TiC,NbC,HfC,ZrC,
TaC,Ta3C等が挙げられる。
Carbides of the base film (2) include SiC, TiC, NbC, HfC, ZrC,
TaC, Ta 3 C and the like can be mentioned.

また、下地膜(2)の膜厚としては、炭素膜の場合には
前述のように30Å〜80Åであり、炭化物膜の場合には20
Å〜200Åとすることができる。
The thickness of the base film (2) is 30Å to 80Å in the case of a carbon film, and 20 in the case of a carbide film, as described above.
It can be Å ~ 200Å.

下地膜(2)や磁性薄膜(3)は真空蒸着法、スパッタ
リング法等の真空薄膜形成技術により連続膜として形成
される。
The base film (2) and the magnetic thin film (3) are formed as a continuous film by a vacuum thin film forming technique such as a vacuum evaporation method or a sputtering method.

〔作用〕[Action]

炭化物膜もしくは膜厚30Å〜80Åの炭素膜よりなる下地
膜を形成すると、この下地膜の影響でこの上に被着され
るCo−Crよりなる磁性薄膜の垂直磁気異方性が向上し、
また垂直方向保持力が大きくなる。
When a base film made of a carbide film or a carbon film having a film thickness of 30Å to 80Å is formed, the perpendicular magnetic anisotropy of the magnetic thin film made of Co--Cr deposited thereon is improved by the influence of the base film,
Also, the vertical holding force is increased.

炭素膜の場合、第2図に示すように膜厚が30Åより薄く
なると垂直方向保持力Hc(⊥)が低下し、膜厚が80Åよ
り厚くなると膜固有の垂直異方性エネルギーKuが低下す
る。
In the case of carbon film, as shown in Fig. 2, the vertical coercive force Hc (⊥) decreases when the film thickness is less than 30Å, and the vertical anisotropy energy Ku unique to the film decreases when the film thickness is greater than 80Å. .

〔実施例〕 以下、本発明を実験結果に基づいて説明する。[Examples] Hereinafter, the present invention will be described based on experimental results.

実施例1 厚さ12μmのベースフィルム上に先ずスパッタリング法
により炭素(C)下地膜を厚さ30Å被着形成する。この
ときの条件は下記の通りである。
Example 1 First, a carbon (C) undercoating film having a thickness of 30Å is formed on a base film having a thickness of 12 μm by a sputtering method. The conditions at this time are as follows.

Ar分圧:3×10-3Torr RFパワー:150W 基板水冷 ターゲットと基板間距離:60mm ターゲット:炭素(C) 次に炭素下地膜上にスパッタリング法で厚さ0.5μmのC
o−Cr磁性薄膜を被着形成する。このときの条件は下記
の通りである。
Ar partial pressure: 3 × 10 -3 Torr RF power: 150W Substrate water-cooled Target-substrate distance: 60mm Target: Carbon (C) Next, 0.5μm thick C on carbon underlayer by sputtering method
Deposit an o-Cr magnetic thin film. The conditions at this time are as follows.

Ar分圧:3×10-3Torr RFパワー:150W 基板水冷 ターゲットと基板間距離:60mm ターゲット:Coターゲット上にCrペレットを面積比で19
%置いたもの このようにて垂直磁気記録媒体を作成した。
Ar partial pressure: 3 × 10 -3 Torr RF power: 150 W Substrate water cooling Target-substrate distance: 60 mm Target: Co Target area of Cr pellets is 19 mm
% Perpendicular magnetic recording medium was prepared in this manner.

実施例2 実施例1において、炭素下地膜の膜厚を60Åとして垂直
磁気記録媒体を作成した。
Example 2 In Example 1, a perpendicular magnetic recording medium was prepared with the carbon underlayer film having a thickness of 60 Å.

実施例3 実施例1において、炭素下地膜に代えてSiCターゲット
を用い厚さ200ÅのSiC下地膜を形成して垂直磁気記録媒
体を作成した。
Example 3 In Example 1, a SiC target film having a thickness of 200 Å was formed in place of the carbon underlayer film to form a perpendicular magnetic recording medium.

比較例 下地膜を形成せずにベースフィルム上に直接厚さ0.5μ
mのCo−Cr磁性薄膜を実施例1の条件で被着形成し、垂
直磁気記録媒体を作成した。
Comparative example 0.5μ thickness directly on the base film without forming a base film
A Co-Cr magnetic thin film of m was deposited under the conditions of Example 1 to prepare a perpendicular magnetic recording medium.

上記各例の垂直磁気記録媒体について、その磁気特性
(実効的異方性磁界Hkeff、垂直方向保磁力Hc(⊥))
をVSM(振動磁束計)を用いて測定した。その結果を次
表に示す。
Magnetic characteristics (effective anisotropic magnetic field Hkeff, perpendicular coercive force Hc (⊥)) of the perpendicular magnetic recording media of the above examples
Was measured using a VSM (vibrating magnetometer). The results are shown in the table below.

この表より、炭素(C)又はSiCにより下地膜によってC
o−Cr磁性薄膜の垂直磁気異方性及び垂直方向保磁力を
著しく向上するのが認められる。なお、炭化物の下地膜
としてSiCの他、TiC,NbC,HfC,ZrC,TaC,Ta3Cによる下地
膜の場合にも同様にCo−Cr磁性薄膜の垂直磁気異方性及
び垂直方向保磁力の向上が認められている。
From this table, carbon (C) or SiC is used to form C
It is recognized that the perpendicular magnetic anisotropy and the perpendicular coercive force of the o-Cr magnetic thin film are remarkably improved. Incidentally, in the case of an underlayer made of TiC, NbC, HfC, ZrC, TaC, Ta 3 C as well as SiC as an underlayer of carbide, the perpendicular magnetic anisotropy and the perpendicular coercive force of the Co--Cr magnetic thin film are similarly measured. Improvement is recognized.

一方、第2図〜第4図に炭素下地膜厚に対するCo−Cr磁
性薄膜の磁性及び結晶性についての測定結果を示す。
On the other hand, FIGS. 2 to 4 show the measurement results of the magnetism and crystallinity of the Co—Cr magnetic thin film with respect to the carbon underlayer thickness.

第2図は炭素下地膜厚を変えたときの膜固有の垂直異方
性エネルギーKu(曲線I)と垂直方向保磁力Hc(⊥)
(曲線II)の変化を示し特性図である。
Figure 2 shows the vertical anisotropy energy Ku (curve I) and vertical coercive force Hc (⊥) peculiar to the film when the carbon underlayer thickness is changed.
It is a characteristic view which shows the change of (curve II).

第3図は炭素下地膜厚を変えたときのトルクメータによ
る膜固有の異方性磁界Hk(曲線III)とVSMによる実効的
異方性磁界Hkeff(曲線IV)の変化を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing changes in the anisotropy field Hk (curve III) inherent to the film by the torque meter and the effective anisotropy field Hkeff (curve IV) by the VSM when the carbon underlayer thickness is changed. .

第4図は炭素下地膜厚を変えたときトルクメータによる
膜固有の異方性磁界Hk(曲線V)と分散角Δθ50(曲線
VI)の変化を示す特性図である。
Figure 4 shows the anisotropy field Hk (curve V) and dispersion angle Δθ 50 (curve
FIG. 6 is a characteristic diagram showing changes in VI).

この第2図〜第4図より炭素下地膜の膜厚が30Åにおい
て、Co−Cr磁性薄膜の垂直方向保磁力Hc(⊥)、実効的
異方性磁界Hkeff、垂直異方性エネルギーKuが下地膜が
ない場合に比して各々50%,15%,6%,増加されるのが
認められる。
From FIGS. 2 to 4, the perpendicular coercive force Hc (⊥), the effective anisotropy magnetic field Hkeff, and the perpendicular anisotropy energy Ku of the Co-Cr magnetic thin film are lower when the film thickness of the carbon underlayer is 30Å. It can be seen that it is increased by 50%, 15%, and 6%, respectively, compared with the case without the formation.

この様に炭素もしくは炭化物の下地膜によってCo−Cr磁
性薄膜の垂直磁気異方性及び垂直方向保磁力が向上する
理由としては次のことが考えられる。即ち、例えば炭素
は少量でCrの融点を下げる。このため少量の炭素はCrの
偏析を促進し、Co−Cr膜の結晶粒界の相互作用を断ち、
孤立粒子性を増進することによって磁気特性が向上す
る。又、炭化物例えばSiCの場合は、SiCの結晶性がCo−
Cr膜の初期成長層の結晶性を向上させることによって磁
気特性が向上する。
The reason why the perpendicular magnetic anisotropy and the perpendicular coercive force of the Co—Cr magnetic thin film are improved by the carbon or carbide underlayer is considered as follows. That is, for example, a small amount of carbon lowers the melting point of Cr. Therefore, a small amount of carbon promotes the segregation of Cr, interrupts the interaction of the grain boundaries of the Co-Cr film,
The magnetic properties are improved by enhancing the isolated particle property. In the case of carbides such as SiC, the crystallinity of SiC is Co-
The magnetic characteristics are improved by improving the crystallinity of the initial growth layer of the Cr film.

〔発明の効果〕〔The invention's effect〕

本発明においては、炭化物膜もしくは膜厚30Å〜80Åの
炭素膜による下地膜を形成した後、Co−Cr磁性薄膜を形
成しているので、垂直磁気異方性及び垂直方向保磁力が
共に大きい垂直磁気記録媒体が得られるものであり、垂
直磁気記録の実用化を促進し得るものである。
In the present invention, since the Co-Cr magnetic thin film is formed after forming the underlayer film of the carbide film or the carbon film having a film thickness of 30Å to 80Å, the perpendicular magnetic anisotropy and the perpendicular coercive force are both high perpendicular. A magnetic recording medium can be obtained, which can promote the practical application of perpendicular magnetic recording.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用した垂直磁気記録媒体の構成を示
す要部の拡大図、第2図は炭素下地膜の膜厚と垂直方向
保磁力Hc(⊥)及び膜固有の垂直異方性エネルギーKuの
関係を示す特性図、第3図は炭素下地膜の膜厚と異方性
磁界Hk,Hkeffの関係を示す特性図、第4図は炭素下地膜
の膜厚と異方性磁界Hk及び分散角Δθ50の関係を示す特
性図である。 (1)は基体、(2)は炭素又は炭化物よりなる下地
膜、(3)はCo−Cr磁性薄膜である。
FIG. 1 is an enlarged view of a main part showing a structure of a perpendicular magnetic recording medium to which the present invention is applied, and FIG. 2 is a film thickness of a carbon underlayer, a vertical coercive force Hc (⊥), and a vertical anisotropy peculiar to the film. FIG. 3 is a characteristic diagram showing the relationship between the energy Ku, FIG. 3 is a characteristic diagram showing the relationship between the thickness of the carbon underlayer and the anisotropic magnetic fields Hk and Hkeff, and FIG. 4 is the thickness of the carbon underlayer and the anisotropic magnetic field Hk. FIG. 7 is a characteristic diagram showing a relationship between the dispersion angle Δθ 50 and the dispersion angle Δθ 50 . (1) is a substrate, (2) is a base film made of carbon or carbide, and (3) is a Co-Cr magnetic thin film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】a.基体上に炭化物膜もしくは膜厚30Å〜80
Åの炭素膜よりなる下地膜を形成し、 b.前記下地膜上にCo−Crよりなる磁性薄膜を形成して成
る垂直磁気記録媒体。
1. A carbide film or film thickness of 30Å to 80 on a substrate
A perpendicular magnetic recording medium in which a base film made of a carbon film of Å is formed, and b. A magnetic thin film made of Co--Cr is formed on the base film.
JP60272179A 1985-12-03 1985-12-03 Perpendicular magnetic recording medium Expired - Fee Related JPH0724098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272179A JPH0724098B2 (en) 1985-12-03 1985-12-03 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272179A JPH0724098B2 (en) 1985-12-03 1985-12-03 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS62132218A JPS62132218A (en) 1987-06-15
JPH0724098B2 true JPH0724098B2 (en) 1995-03-15

Family

ID=17510181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272179A Expired - Fee Related JPH0724098B2 (en) 1985-12-03 1985-12-03 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0724098B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231420A (en) * 1986-03-31 1987-10-12 Konika Corp Magnetic recording medium
JP2003187418A (en) * 2001-12-13 2003-07-04 Fuji Electric Co Ltd Magnetic recording medium, manufacturing method therefor, and magnetic recording device using the magnetic recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220129A (en) * 1985-07-18 1987-01-28 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS6246423A (en) * 1985-08-23 1987-02-28 Matsushita Electric Ind Co Ltd Vertical recording medium

Also Published As

Publication number Publication date
JPS62132218A (en) 1987-06-15

Similar Documents

Publication Publication Date Title
US6387483B1 (en) Perpendicular magnetic recording medium and manufacturing process therefor
US6020060A (en) Magnetic recording medium, process for producing the same and magnetic disk device
US6071607A (en) Magnetic recording medium and magnetic disk device
JP2991672B2 (en) Magnetic recording media
JPH0724098B2 (en) Perpendicular magnetic recording medium
JPH087250A (en) Magnetic recording medium and magnetic storage device using this medium
US5496606A (en) Magnetic recording medium
Honda et al. Low‐temperature sputter deposition of high‐coercivity Co‐Cr films for perpendicular recording
JPH07244831A (en) Manufacture of magnetic recording medium
JPH056738B2 (en)
EP0178685B1 (en) Perpendicular magnetic recording medium and method of making same
JPH10149526A (en) Magnetic recording medium
JP3041273B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3582435B2 (en) Perpendicular magnetic recording medium
JP2777594B2 (en) Magnetic film
Sonobe et al. Composite perpendicular recording medium consisting of CoCrPt with large H/sub k/spl perp//and CoCr with positive inter-particle interaction
JP2001250222A (en) Magnetic recording medium, its producing method and magnetic recorder using the method
JPH0430083B2 (en)
JP3971584B2 (en) Magnetic recording medium and magnetic storage device using the same
JP2725506B2 (en) Magnetic recording media
JP2725502B2 (en) Magnetic recording media
JP2760906B2 (en) Magnetic recording medium and method of manufacturing the same
Ouchi et al. Perpendicular magnetic recording media
JP2000113442A (en) Magnetic recording medium
JPH1011735A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees