JPH0723701B2 - Electronically controlled fuel injection device - Google Patents

Electronically controlled fuel injection device

Info

Publication number
JPH0723701B2
JPH0723701B2 JP60251091A JP25109185A JPH0723701B2 JP H0723701 B2 JPH0723701 B2 JP H0723701B2 JP 60251091 A JP60251091 A JP 60251091A JP 25109185 A JP25109185 A JP 25109185A JP H0723701 B2 JPH0723701 B2 JP H0723701B2
Authority
JP
Japan
Prior art keywords
intake pipe
pipe pressure
fuel injection
acceleration
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60251091A
Other languages
Japanese (ja)
Other versions
JPS62111139A (en
Inventor
宏敏 斗納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP60251091A priority Critical patent/JPH0723701B2/en
Publication of JPS62111139A publication Critical patent/JPS62111139A/en
Publication of JPH0723701B2 publication Critical patent/JPH0723701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の電子制御燃料噴射装置に関する。The present invention relates to an electronically controlled fuel injection device for an internal combustion engine.

内燃機関の状態に応じた最適な燃料噴射量を決定する方
式の一つに、内燃機関の吸気管圧力を計測し、これを一
つのパラメータとして燃料の基本噴射量を求める方式が
知られている。
As one of the methods for determining the optimum fuel injection amount according to the state of the internal combustion engine, a method is known in which the intake pipe pressure of the internal combustion engine is measured and the basic injection amount of fuel is obtained using this as one parameter. .

この方式では。吸気管圧力はスロットル開度が一定であ
っても内燃機関のポンピング作用により絶えず脈動して
いるので、その脈動の影響を受けないようにすることが
必要となる。
With this method. Since the intake pipe pressure is constantly pulsating due to the pumping action of the internal combustion engine even if the throttle opening is constant, it is necessary to prevent it from being affected by the pulsation.

〔従来の技術〕[Conventional technology]

そこで、従来の電子制御燃料噴射装置においては、吸気
管の圧力を検出する圧力センサの出力から脈動成分をカ
ットするフィルタを設け、そのフィルタの出力に現れる
吸気管圧力をそのまま使用して燃料噴射量を決定してい
る。
Therefore, in the conventional electronically controlled fuel injection device, a filter that cuts the pulsating component from the output of the pressure sensor that detects the pressure of the intake pipe is provided, and the intake pipe pressure that appears in the output of the filter is used as it is to inject the fuel. Has been decided.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記のような従来の方法によると、吸気管圧力
が実際には例えば第6図の実線60に示すように変化して
も、検出される吸気管圧力は同図の一点鎖線61に示すも
のとなり、吸気管圧力検出の応答性が悪くなって、加速
時等において算出される燃料噴射量の応答性も損なわれ
る。
However, according to the conventional method as described above, even if the intake pipe pressure actually changes, for example, as shown by the solid line 60 in FIG. 6, the detected intake pipe pressure is shown by the alternate long and short dash line 61 in FIG. As a result, the responsiveness of the intake pipe pressure detection deteriorates, and the responsiveness of the fuel injection amount calculated at the time of acceleration is also impaired.

本発明はこのような従来の欠点を改善したものであり、
その目的は、定常時における脈動の影響を除去しつつ過
渡時における応答性を向上することにある。
The present invention is an improvement over these conventional drawbacks,
The purpose is to improve the responsiveness during transients while eliminating the influence of pulsation during steady times.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記欠点を解消するために、例えば第1図に示
すように、吸気管圧力を高感度で即ち応答性良く検出す
る第1の吸気管圧力検出手段1と、吸気管圧力を低感度
で検出する第2の吸気管圧力検出手段2と、 第1の吸気管圧力検出手段1の検出出力,第2の吸気管
圧力検出手段2の検出出力および吸気管圧力の変動成分
を平均化することにより図示しない判定レベル算出手段
で算出された加減速判定用の判定レベルに基づき加速度
の過渡状態を検出する加減速検出手段3と、 加減速検出手段3の検出結果に基づき加減速の過渡時に
は第1の吸気管圧力検出手段1の検出出力を選択し、定
常状態のときには第2の吸気管圧力検出手段2の検出出
力を選択する選択手段4と、 選択手段4で選択された吸気管圧力検出出力に基づき燃
料噴射量を算出する燃料噴射量算出手段5とを備える。
In order to solve the above-mentioned drawbacks, the present invention is, for example, as shown in FIG. 1, a first intake pipe pressure detecting means 1 for detecting the intake pipe pressure with high sensitivity, that is, a high responsiveness, and an intake pipe pressure with low sensitivity. Detected by the second intake pipe pressure detecting means 2 and the first intake pipe pressure detecting means 1, the detection output of the second intake pipe pressure detecting means 2 and the fluctuation component of the intake pipe pressure are averaged. The acceleration / deceleration detecting means 3 for detecting the transient state of acceleration based on the determination level for acceleration / deceleration determination calculated by the determination level calculating means (not shown), and the acceleration / deceleration transition based on the detection result of the acceleration / deceleration detecting means 3 Selection means 4 for selecting the detection output of the first intake pipe pressure detection means 1 and for the detection output of the second intake pipe pressure detection means 2 in the steady state, and the intake pipe pressure selected by the selection means 4. Fuel injection amount based on detection output And a fuel injection amount calculating means 5 for calculating.

〔作用〕[Action]

内燃機関が定常状態にあるときは、加減速検出手段3は
加減速を検出していないので、選択手段4は検出感度が
低く従って脈動成分の影響がない第2の吸気管圧力検出
手段2の検出出力を選択し、この検出出力に基づき燃料
噴射量が算出される。内燃機関が加速され或いは減速さ
れて過渡状態になると加減速検出手段3でそれが検出さ
れ、選択手段4は高感度な第1の吸気管圧力検出手段の
検出出力を選択するので、燃料噴射量算出手段5では応
答性良く燃料噴射量を決定することができる。
When the internal combustion engine is in a steady state, the acceleration / deceleration detecting means 3 does not detect acceleration / deceleration, so that the selecting means 4 has a low detection sensitivity and therefore the pulsating component does not affect the second intake pipe pressure detecting means 2. The detection output is selected, and the fuel injection amount is calculated based on this detection output. When the internal combustion engine is accelerated or decelerated into a transient state, it is detected by the acceleration / deceleration detection means 3, and the selection means 4 selects the detection output of the highly sensitive first intake pipe pressure detection means. The calculation means 5 can determine the fuel injection amount with good responsiveness.

〔実施例〕〔Example〕

第2図は本発明の実施例の要部ブロック図であり、本発
明を内燃機関の燃料噴射,点火時期,アイドル回転数制
御を行なうエンジン制御装置に適用した場合を示す。
FIG. 2 is a block diagram of an essential part of an embodiment of the present invention, showing a case where the present invention is applied to an engine control device for performing fuel injection, ignition timing, and idle speed control of an internal combustion engine.

同図において、20は吸気管で、そこに圧力センサ21が取
り付けられている。圧力センサ21としては、容量形セン
サ,半導体ピエゾ抵抗形センサ等の各種の方式のものを
採用することができる。圧力センサ21の出力は、フィル
タ29,制御器22の入力インタフェイス23を介してA/D変換
器24に入力され、ここでディジタル量に変換されてマイ
クロプロセッサ(MPU)26に入力される。なお、フィル
タ29は本実施例ではノイズを除去する程度のフィルタで
ある。
In the figure, 20 is an intake pipe, and a pressure sensor 21 is attached thereto. As the pressure sensor 21, various types such as a capacitive sensor and a semiconductor piezoresistive sensor can be adopted. The output of the pressure sensor 21 is input to the A / D converter 24 via the filter 29 and the input interface 23 of the controller 22, where it is converted into a digital amount and input to the microprocessor (MPU) 26. The filter 29 is a filter that removes noise in this embodiment.

入力インタフェイス23には他にクランク角センサ25の出
力及び燃料噴射,点火時期,アイドル回転数制御に必要
な各種センサからの出力が入力され、A/D変換する必要
があるものはA/D変換器24を介して、またその必要のな
いものは直接にMPU26に入力される。
In addition to the output of the crank angle sensor 25 and the outputs from various sensors required for fuel injection, ignition timing, and idle speed control, the input interface 23 receives A / D conversion output. What is not needed is input directly to the MPU 26 via the converter 24.

MPU26は、所定周期でA/D変換器24の出力および入力イン
タフェイス23の出力を読取り、各種の演算を行なって図
示しないインジェクタに加える燃料噴射制御信号a,点火
時期制御信号b,アイドル回転数制御信号cを出力インタ
フェイス27を介して外部回路へ出力する。MPU26に所定
の処理を行なわせる為に必要なプログラム等はメモリ28
に格納されている。
The MPU 26 reads the output of the A / D converter 24 and the output of the input interface 23 at a predetermined cycle, performs various calculations, and applies a fuel injection control signal a, an ignition timing control signal b, and an idle speed to an injector (not shown). The control signal c is output to an external circuit via the output interface 27. The memory 28 stores programs necessary for the MPU26 to perform the specified processing.
It is stored in.

第3図はMPU26が行なう燃料噴射制御処理の一例を示す
フローチャートであり、S1〜S12は各ステップを示す。
以下、第2図および第3図を参照して本実施例の動作を
説明する。
FIG. 3 is a flow chart showing an example of the fuel injection control process performed by the MPU 26, and S1 to S12 show each step.
The operation of this embodiment will be described below with reference to FIGS. 2 and 3.

MPU26は内部タイマ等により例えば2msec毎に割込みがか
けられ、第3図に示す処理を実行する。この処理では、
先ず第2図のA/D変換器24から圧力センサ21の検出圧力
をフィルタ29により濾過した出力PMを読取り、このPMと
直前のPMの平均値PMDとから新たな平均値PMDを算出する
処理から開始する(S1)。この平均値PMDは、平均化係
数(第3図では8)を比較的大きな値とすることにより
脈動の影響を受けない吸気管圧力値を示し、本実施例で
はこのPMDを低感度な吸気管圧力検出値としている。
The MPU 26 is interrupted by an internal timer or the like every 2 msec, for example, and executes the processing shown in FIG. In this process,
First, the output PM obtained by filtering the pressure detected by the pressure sensor 21 with the filter 29 is read from the A / D converter 24 in FIG. 2, and a new average value PMD is calculated from this PM and the average value PMD of the immediately preceding PM. Start from (S1). This average value PMD indicates an intake pipe pressure value that is not affected by pulsation by setting the averaging coefficient (8 in FIG. 3) to a relatively large value. In the present embodiment, this PMD is a low-sensitivity intake pipe pressure value. The pressure detection value is used.

次にMPU26は、今回のPMを2倍した値から今回求めたPMD
は引くことにより過補償した吸気管圧力値PMOSを求める
(S2)。このPMOSを本実施例では高感度な吸気管圧力検
出値としている。
Next, MPU26 calculated the PMD obtained this time from the value obtained by doubling this PM.
By subtracting, the overcompensated intake pipe pressure value PMOS is obtained (S2). In this embodiment, this PMOS is used as a highly sensitive intake pipe pressure detection value.

次にMPU26は、ステップS3〜S9により、加減速判定レベ
ルLVLPMを算出する。これは、今回のPMから一定時間前
或いは一定クランク角前におけるPM値(PMO)を差し引
くことによりPMの変化量DPMを求め(S3)、このDPMと直
前のDPMの平均値MDPMとから新たなDPMの平均値MDPMを求
め(S4)、これに定数k1を乗ずることで求められる。上
記MDPMは脈動成分の平均値に相当するから、加減速判定
レベルLVLPMは、直前の脈動成分の平均値をk1倍にした
値に相当する。なお、ステップS6〜S9は上記求めた加減
速判定レベルLVLPMの上限値をk2に、下限値をk3に制限
するためのものである。また、上記k1〜k3をエンジン回
転数等のエンジンパラメータに応じて変化させるように
しても良い。
Next, the MPU 26 calculates the acceleration / deceleration determination level LVLPM through steps S3 to S9. This is because the PM change amount DPM is obtained by subtracting the PM value (PMO) at a certain time before or at a certain crank angle from this PM (S3), and a new value is calculated from this DPM and the average value MDPM of the immediately preceding DPM. The average value of DPM, MDPM, is calculated (S4), and this is multiplied by a constant k 1 . Since the MDPM corresponds to the average value of the pulsating component, the acceleration / deceleration determination level LVLPM corresponds to the value obtained by multiplying the average value of the immediately preceding pulsating component by k 1 . It should be noted that steps S6 to S9 are for limiting the upper limit value of the acceleration / deceleration determination level LVLPM calculated above to k 2 and the lower limit value thereof to k 3 . Further, the above k 1 to k 3 may be changed according to engine parameters such as engine speed.

MPU26は上述のようにして加減速判定レベルLVLPMを算出
すると、これと、今回求めたPMDとPMOSの差の絶対値〔P
MD−PMOS〕との大小を判別し(S10)、LVLPMが〔PMD−P
MOS〕より大きくなければ、基本噴射量の算出に用いる
吸気管圧力値PMCとしてPMOSを設定し(S12)、そうでな
ければPMDを設定する(S11)。なお、PMCを使用した基
本噴射量の算出は別のステップで実行される。
When the MPU 26 calculates the acceleration / deceleration determination level LVLPM as described above, this and the absolute value of the difference between the PMD and the PMOS obtained this time [P
MD-PMOS] and the size is discriminated (S10), and LVPLM is [PMD-P
MOS], the PMOS is set as the intake pipe pressure value PMC used to calculate the basic injection amount (S12), and the PMD is set otherwise (S11). The calculation of the basic injection amount using the PMC is executed in another step.

第4図は内燃機関が定常状態1→加速状態→定常状態2
→減速状態→定常状態3に推移した際の前記PM,PMD,PMO
Sの変化状態の一例を図示したものである。同図に示す
ように、定常状態1においては、PMDとPMOSとの差は極
めて小さく、またPMの変化量も殆どないことからLVLPM
は最低値k2付近となる。従って、第3図のステップS10
ではYESと判定され、脈動の影響の少ない低感度な吸気
管圧力計測値PMDで基本噴射量が算出される。加速状態
に移行すると、PMOSとPMDの差は急速に増大し、反面PM
の変化量に基づくLVLPMはそれほど大きくならない。従
って、加速状態の早い段階で第3図のステップS10でNO
と判定され、高感度な吸気管圧力計測値PMOSで基本噴射
量が算出され、加速時の応答性が向上する。定常状態2
になると、PMOSとPMDの差が小さくなるので再びPMDに基
づいて噴射量が算出され、減速状態に移行すると再びPM
OSとPMDの差が大きくなるので、加速状態と同様にPMOS
に基づいて噴射量が算出される。そして、定常状態3に
移行すると、再びPMDに従って燃料噴射量が算出され
る。
Fig. 4 shows that the internal combustion engine is in steady state 1 → acceleration state → steady state 2
→ Deceleration state → PM, PMD, PMO when transitioning to steady state 3
It is an illustration of an example of a change state of S. As shown in the figure, in steady state 1, the difference between PMD and PMOS is extremely small, and there is almost no change in PM.
Is near the lowest value k 2 . Therefore, step S10 in FIG.
Then, it is determined to be YES, and the basic injection amount is calculated by the low-sensitivity intake pipe pressure measurement value PMD with little influence of pulsation. When shifting to the acceleration state, the difference between PMOS and PMD increases rapidly, while PM
The LVLPM based on the change of does not become so large. Therefore, in the early stage of acceleration, NO in step S10 of FIG.
Is determined, the basic injection amount is calculated by the highly sensitive intake pipe pressure measurement value PMOS, and the responsiveness during acceleration is improved. Steady state 2
Then, the difference between PMOS and PMD becomes smaller, so the injection amount is calculated again based on PMD, and when the deceleration state is entered, PM
Since the difference between OS and PMD becomes large, the same as in the acceleration state
The injection amount is calculated based on Then, when the steady state 3 is entered, the fuel injection amount is calculated again according to PMD.

上記実施例では、噴射計算に用いる吸気管計測値PMCをP
MDからPMOSに切換える判定レベルLVLPMとして、PMの平
均値にk1を乗じた値を採用したが、PMDとPMOSとの差の
平均値にある定数kを乗じたものを判定レベルとするこ
ともできる。また、PMDとPMOSとの差を判定レベルと比
較して切換えを行なう以外に、PMD又はPMOSが一定時間
或いは一定クランク角度内にある判定レベル以上に変化
したときに切換えるようにしても良い。同様に、PMCのP
MOSからPMDへの切換えを、PMOSの変化量が判定レベルLV
LPM以内となったのちその状態が一定時間経過している
場合とすることもできる。更に、フィルタ29を脈動成分
までも除去する時定数の大きなフィルタとした場合、低
感度な吸気管圧力形測値として燃料噴射計算に用いる量
をPMとしても良い。
In the above embodiment, the intake pipe measured value PMC used for the injection calculation is P
As the decision level LVLPM for switching from MD to PMOS, a value obtained by multiplying the average value of PM by k 1 is adopted, but a value obtained by multiplying the average value of the difference between PMD and PMOS by a constant k may be used as the decision level. it can. Instead of comparing the difference between the PMD and the PMOS with the determination level for switching, the switching may be performed when the PMD or the PMOS changes above a determination level within a certain time or within a certain crank angle. Similarly, P of PMC
When switching from MOS to PMD, the change amount of PMOS is the judgment level LV.
It can also be a case where the state has been within a certain period of time after being within the LPM. Further, when the filter 29 is a filter having a large time constant for removing even pulsating components, the amount used for the fuel injection calculation as the insensitive intake pipe pressure type measured value may be PM.

以上の実施例はMPU26のソフトウェアによるフィルタ処
理により高感度な吸気管圧力計測値と低感度な吸気管圧
力計測値を得たが、例えば第5図に示すように、圧力セ
ンサ21の出力中からノイズを除去するノイズフィルタ50
と、脈動成分を除去する脈動フィルタ51とのフィルタ定
数の異なる二つのフィルタを設け、ノイズフィルタ50か
ら高感度な吸気管圧力計測値を、脈動フィルタ51から低
感度な吸気管圧力計測値を得るように構成することも可
能である。更に、感度の異なる二つの圧力センサを設け
るようにしても良い。
In the above embodiment, a highly sensitive intake pipe pressure measurement value and a low sensitivity intake pipe pressure measurement value were obtained by the filter processing by the software of the MPU 26. For example, as shown in FIG. Noise filter 50 to remove noise
And two filters having different filter constants with the pulsation filter 51 for removing the pulsation component are provided, and the intake pipe pressure measurement value with high sensitivity is obtained from the noise filter 50 and the intake pipe pressure measurement value with low sensitivity is obtained from the pulsation filter 51. It can also be configured as follows. Further, two pressure sensors having different sensitivities may be provided.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、高感度な第1の吸気管
圧力検出手段と、脈動成分の影響を受けない低感度な第
2の吸気管圧力検出手段とを設け、定常状態では第2の
吸気管圧力検出手段の検出出力に基づき燃料噴射量を算
出し、加速や減速の過渡時には第1の吸気管圧力検出手
段の検出出力に基づき燃料噴射量を算出するので、定常
時における脈動の影響を除去しつつ過渡時における応答
性を向上することができる。また、加減速判定用の判定
レベルを吸気管圧力の変動成分を平均化して算出してい
るため、エンジン回転数や負荷等により変動し易い吸気
管圧力のリップル成分による誤判定を生じることなく、
正確に加減速判定を行うことができ、エンジンの状態に
応じた適切な吸気管圧力を正確に選択できる。
As described above, the present invention is provided with the highly sensitive first intake pipe pressure detection means and the low sensitivity second intake pipe pressure detection means that is not affected by the pulsating component, and the second intake pipe pressure detection means is provided in the steady state. The fuel injection amount is calculated on the basis of the detection output of the intake pipe pressure detecting means, and the fuel injection amount is calculated on the basis of the detection output of the first intake pipe pressure detecting means during the transition of acceleration or deceleration. It is possible to improve the responsiveness during a transition while removing the influence. Further, since the judgment level for acceleration / deceleration judgment is calculated by averaging the fluctuation component of the intake pipe pressure, there is no erroneous judgment due to the ripple component of the intake pipe pressure, which tends to fluctuate due to engine speed, load, etc.
Acceleration / deceleration determination can be accurately performed, and an appropriate intake pipe pressure can be accurately selected according to the state of the engine.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成説明図、 第2図は本発明の実施例の要部ブロック図、 第3図はMPU26が行なう燃料噴射制御処理の一例を示す
フローチャート、 第4図は第2図の動作説明図、 第5図は本発明の別の実施例の要部ブロック図および、 第6図は従来の問題点の説明図である。 図において、1は第1の吸気管圧力検出手段、2は第2
の吸気管圧力検出手段、3は加減速検出手段、4は選択
手段、5は燃料噴射量算出手段、20は吸気管、21は圧力
センサ、22は制御器、23は入力インタフェイス、24はA/
D変換器、25はクランク角センサ、26はMPU、27は出力イ
ンタフェイス、28はメモリ、29はフィルタ、50はノイズ
フィルタ、51は脈動フィルタである。
FIG. 1 is an explanatory diagram of the configuration of the present invention, FIG. 2 is a block diagram of a main part of an embodiment of the present invention, FIG. 3 is a flowchart showing an example of fuel injection control processing performed by the MPU 26, and FIG. 4 is FIG. FIG. 5 is a block diagram of a main part of another embodiment of the present invention, and FIG. 6 is an explanatory diagram of a conventional problem. In the figure, 1 is a first intake pipe pressure detecting means, 2 is a second
Intake pipe pressure detection means, 3 acceleration / deceleration detection means, 4 selection means, 5 fuel injection amount calculation means, 20 intake pipe, 21 pressure sensor, 22 controller, 23 input interface, 24 A /
D converter, 25 is a crank angle sensor, 26 is an MPU, 27 is an output interface, 28 is a memory, 29 is a filter, 50 is a noise filter, and 51 is a pulsation filter.

フロントページの続き (56)参考文献 特開 昭57−175217(JP,A) 特開 昭58−28618(JP,A) 特開 昭58−24829(JP,A) 特開 昭57−122136(JP,A) 特開 昭60−156947(JP,A) 特開 昭60−17247(JP,A)Continuation of front page (56) Reference JP-A-57-175217 (JP, A) JP-A-58-28618 (JP, A) JP-A-58-24829 (JP, A) JP-A-57-122136 (JP , A) JP-A-60-156947 (JP, A) JP-A-60-17247 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気管圧力に基づいて前記内燃
機関の燃料噴射量を決定する電子制御燃料噴射装置にお
いて、 前記吸気管圧力を高感度で検出する第1の吸気管圧力検
出手段と、 前記吸気管圧力を低感度で検出する第2の吸気管圧力検
出手段と、 前記吸気管圧力の変動成分を平均化して加減速判定用の
判定レベルを算出する判定レベル算出手段と、 前記第1の吸気管圧力検出手段の検出出力,前記第2の
吸気管圧力検出手段の検出出力および前記判定レベルに
基づき加減速の過渡状態を検出する加減速検出手段と、 該加減速検出手段の検出結果に基づき加減速の過渡時に
は前記第1の吸気管圧力検出手段の検出出力を選択し、
定常状態のときには前記第2の吸気管圧力検出手段の検
出出力を選択する選択手段と、 該選択手段で選択された吸気管圧力検出出力に基づき燃
料噴射量を算出する燃料噴射量算出手段とを具備したこ
とを特徴とする電子制御燃料噴射装置。
1. An electronically controlled fuel injection device for determining a fuel injection amount of an internal combustion engine based on an intake pipe pressure of the internal combustion engine, comprising: first intake pipe pressure detecting means for detecting the intake pipe pressure with high sensitivity. Second intake pipe pressure detecting means for detecting the intake pipe pressure with low sensitivity; determination level calculating means for averaging the fluctuation component of the intake pipe pressure to calculate a determination level for acceleration / deceleration determination; Acceleration / deceleration detection means for detecting a transient state of acceleration / deceleration based on the detection output of the first intake pipe pressure detection means, the detection output of the second intake pipe pressure detection means, and the determination level; and the detection of the acceleration / deceleration detection means. Based on the result, when the acceleration / deceleration is in transition, the detection output of the first intake pipe pressure detecting means is selected,
A selection means for selecting the detection output of the second intake pipe pressure detection means in the steady state, and a fuel injection amount calculation means for calculating the fuel injection amount based on the intake pipe pressure detection output selected by the selection means. An electronically controlled fuel injection device comprising:
JP60251091A 1985-11-08 1985-11-08 Electronically controlled fuel injection device Expired - Fee Related JPH0723701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60251091A JPH0723701B2 (en) 1985-11-08 1985-11-08 Electronically controlled fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60251091A JPH0723701B2 (en) 1985-11-08 1985-11-08 Electronically controlled fuel injection device

Publications (2)

Publication Number Publication Date
JPS62111139A JPS62111139A (en) 1987-05-22
JPH0723701B2 true JPH0723701B2 (en) 1995-03-15

Family

ID=17217504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60251091A Expired - Fee Related JPH0723701B2 (en) 1985-11-08 1985-11-08 Electronically controlled fuel injection device

Country Status (1)

Country Link
JP (1) JPH0723701B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540223A (en) * 1978-09-14 1980-03-21 Hitachi Ltd Engine intake air measuring device
DE3046863A1 (en) * 1980-12-12 1982-07-22 Robert Bosch Gmbh, 7000 Stuttgart ELECTRONICALLY CONTROLLED FUEL MEASURING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
JPS57175217A (en) * 1981-04-22 1982-10-28 Nissan Motor Co Ltd Measuring device for inhaled air quantity of internal combustion engine
JPS5828618A (en) * 1981-07-24 1983-02-19 Toyota Motor Corp Fuel jetting device for internal combustion engine
JPS5824829A (en) * 1981-08-06 1983-02-14 Mazda Motor Corp Device for detecting air intake pressure of engine
JPS58155233A (en) * 1982-03-10 1983-09-14 Mitsubishi Electric Corp Fuel injection device

Also Published As

Publication number Publication date
JPS62111139A (en) 1987-05-22

Similar Documents

Publication Publication Date Title
EP0654594B1 (en) Method of determining transitions from steady state to transient conditions in an internal combustion engine
US4593553A (en) Method for detecting engine knock in internal combustion engines
JPH10110646A (en) Deterioration diagnostic device for oxygen sensor in internal combustion engine
US4930482A (en) Fuel control apparatus for engines
JPS59103930A (en) Control method of internal-combustion engine
US4541382A (en) Method and apparatus for ignition timing control of internal combustion engine
KR930002078B1 (en) Fuel injection device
JPH0750010B2 (en) Knocking detection device abnormality determination device
JPH0575902B2 (en)
JPH0723701B2 (en) Electronically controlled fuel injection device
JPH0584830B2 (en)
JP2754746B2 (en) Fuel injection amount control device for internal combustion engine
JPH04166637A (en) Air-fuel ratio controller of engine
JP2528630B2 (en) Ignition timing control device for internal combustion engine
JPH0555700B2 (en)
JPH0565698B2 (en)
JPS6217657B2 (en)
JP3281574B2 (en) Knock detection method for internal combustion engine
JPS6161012A (en) Output control device of heat wire sensor
JPH0949454A (en) Combustion condition detecting device for internal combustion engine
JPH0469738B2 (en)
JPH0645645Y2 (en) Knock detection device
JPS62153536A (en) Fuel injection controller for internal combustion engine
JPH01106934A (en) Control device for air-fuel ratio of internal combustion engine
JPH01318938A (en) Measuring device for pressure of intake pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees