JPH0469738B2 - - Google Patents
Info
- Publication number
- JPH0469738B2 JPH0469738B2 JP60183437A JP18343785A JPH0469738B2 JP H0469738 B2 JPH0469738 B2 JP H0469738B2 JP 60183437 A JP60183437 A JP 60183437A JP 18343785 A JP18343785 A JP 18343785A JP H0469738 B2 JPH0469738 B2 JP H0469738B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- converter
- deceleration
- intake pipe
- acceleration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001133 acceleration Effects 0.000 claims description 33
- 238000002485 combustion reaction Methods 0.000 claims description 22
- 238000005070 sampling Methods 0.000 claims description 15
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 239000000446 fuel Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000010349 pulsation Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000004043 responsiveness Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- WFGFAPPOWRDEGZ-UHFFFAOYSA-M tributyl(pyren-4-ylmethyl)phosphanium;bromide Chemical compound [Br-].C1=CC=C2C(C[P+](CCCC)(CCCC)CCCC)=CC3=CC=CC4=CC=C1C2=C34 WFGFAPPOWRDEGZ-UHFFFAOYSA-M 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Measuring Fluid Pressure (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、内燃機関の吸気管圧力を計測する装
置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for measuring intake pipe pressure of an internal combustion engine.
内燃機関の状態に応じた最適な燃料噴射量を決
定する方式の一つに、内燃機関の吸気管圧力を計
測し、これを一つのパラメータとして燃料の基本
噴射量を求める方式が知られている。 One known method for determining the optimal fuel injection amount according to the state of the internal combustion engine is to measure the intake pipe pressure of the internal combustion engine and use this as a parameter to determine the basic fuel injection amount. .
この方式では、吸気管圧力はスロツトル開度が
一定であつても内燃機関のポンピング作用により
絶えず脈動しているので、その脈動の影響を受け
ないようにすることが必要となる。 In this system, even if the throttle opening is constant, the intake pipe pressure constantly pulsates due to the pumping action of the internal combustion engine, so it is necessary to prevent it from being affected by the pulsations.
吸気管圧力の脈動による影響を除去する従来の
方式としては、
吸気管と圧力センサとをつなぐパイプの径を
細くして細かな脈動が圧力センサまで伝わらな
いようにし、圧力センサに伝わる圧力が吸気管
圧力の平均値となるようにした方式
第6図に示すように、吸気管1内の圧力を直
接検出する圧力センサ2とA/D変換器3との
間に、脈動成分をカツトするフイルタ4を設け
る方式が知られている。
The conventional method for eliminating the influence of intake pipe pressure pulsations is to reduce the diameter of the pipe that connects the intake pipe and the pressure sensor to prevent small pulsations from reaching the pressure sensor, and to prevent the pressure transmitted to the pressure sensor from reaching the intake pipe. As shown in Fig. 6, a filter is installed between the pressure sensor 2, which directly detects the pressure inside the intake pipe 1, and the A/D converter 3, to cut out pulsating components. A method of providing 4 is known.
しかしながら、一般に吸気管圧力の脈動周波数
はエンジン回転数に比例して大きくなるから、例
えば低回転域における脈動成分をも充分に除去し
得るように方式でパイプ径を充分に細くし、方
式でフイルタ4の時定数を大きくすると、スロ
ツトル開度の急変時における吸気管圧力の変化を
応答性良く検出できず、反対に急変時における応
答性を改善しようと方式でパイプ径を太くし、
方式でフイルタ4の時定数を小さくすると、低
回転域において脈動の影響を除去することが困難
となる。また、一般的に従来の方式、では正
確に吸気管圧力の平均値を求めることは困難であ
り、多少の脈動成分は残存する。
However, in general, the pulsation frequency of intake pipe pressure increases in proportion to the engine speed, so for example, the pipe diameter is made sufficiently thin so that the pulsation component in the low rotation range can be sufficiently removed. If the time constant of 4 is increased, changes in the intake pipe pressure when the throttle opening changes suddenly cannot be detected with good response.On the other hand, in order to improve the response when the throttle opening changes suddenly, the pipe diameter is made thicker.
If the time constant of the filter 4 is made small in this method, it becomes difficult to eliminate the influence of pulsation in the low rotation range. Furthermore, in general, with conventional methods, it is difficult to accurately determine the average value of the intake pipe pressure, and some pulsation components remain.
本発明はこのような従来の欠点を改善したもの
で、その目的は、内燃機関の低回転域から高回転
域までの広い範囲にわたり、シリンダのポンピン
グ作用による脈動成分の影響を受けずに吸気管圧
力の平均値を正確に求めることができ、また、過
渡時の応答性を向上させることにある。 The present invention has improved these conventional drawbacks, and its purpose is to maintain the intake pipe over a wide range of internal combustion engines, from low to high rotational speeds, without being affected by the pulsating components caused by the pumping action of the cylinder. The purpose is to be able to accurately determine the average value of pressure and to improve responsiveness during transient times.
本発明は上記問題点を解決するため、例えば第
1図に示すように、吸気管10内の圧力を検出す
る圧力センサ11と、圧力センサ11の出力をデ
イジタル値に変換するA/D変換器12と、A/
D変換器12の出力をクランク角の所定角毎にサ
ンプリングし、直前の複数個のサンプリング値を
用いて吸気管圧力の平均値を算出する平均値算出
手段13と、前記直前の複数個のサンプリング値
の内の最大値に基づいて設定される加速判定レベ
ルとA/D変換器12の出力とを比較し、A/D
変換器12の出力が前記加速判定レベルを越える
と内燃機関の加速時と判定し、A/D変換器12
の出力が前記加速判定レベル以下の時は内燃機関
の定常状態と判定する加速判定手段14と、前記
複数個のサンプリング値の内の最小値に基づいて
設定される減速判定レベルとA/D変換器12の
出力とを比較し、A/D変換器12の出力が前記
減速判定レベル未満の時には内熱機関の減速時と
判定し、A/D変換器12の出力が前記減速判定
レベル以上の時には内燃機関の定常状態と判定す
る減速判定手段15と、加速判定手段14および
減速判定手段15の判定結果に応じて前記定常状
態の時には平均値算出手段13の出力を選択し、
前記加速時又は減速時には前記加速時又は減速時
と判定してから初期の間のみA/D変換器12の
出力を選択し、その後平均値算出手段13の出力
を選択し、それぞれ前記燃料噴射量の算出に用い
られる吸気管圧力として出力する選択手段16と
を設ける。
In order to solve the above-mentioned problems, the present invention includes a pressure sensor 11 that detects the pressure inside an intake pipe 10, and an A/D converter that converts the output of the pressure sensor 11 into a digital value, as shown in FIG. 12 and A/
an average value calculating means 13 for sampling the output of the D converter 12 at every predetermined crank angle, and calculating an average value of the intake pipe pressure using the plurality of immediately preceding sampling values; The acceleration determination level set based on the maximum value of the values is compared with the output of the A/D converter 12, and the A/D
When the output of the converter 12 exceeds the acceleration determination level, it is determined that the internal combustion engine is accelerating, and the A/D converter 12
an acceleration determining means 14 that determines that the internal combustion engine is in a steady state when the output of the engine is below the acceleration determining level; a deceleration determining level that is set based on the minimum value of the plurality of sampling values; and A/D conversion. When the output of the A/D converter 12 is less than the deceleration determination level, it is determined that the internal heat engine is decelerating, and when the output of the A/D converter 12 is equal to or higher than the deceleration determination level. The deceleration determining means 15 sometimes determines that the internal combustion engine is in a steady state, and the output of the average value calculating means 13 is selected when the internal combustion engine is in the steady state according to the determination results of the acceleration determining means 14 and the deceleration determining means 15,
During the acceleration or deceleration, the output of the A/D converter 12 is selected only during the initial period after it is determined that the acceleration or deceleration is occurring, and then the output of the average value calculation means 13 is selected, and the fuel injection amount is determined respectively. A selection means 16 is provided for outputting the intake pipe pressure used in calculating the intake pipe pressure.
本発明の好ましい実施例においては、例えば4
気筒4サイクル内燃機関の場合、平均値算出手段
13はクランク角の45度毎にA/D変換器12の
出力をサンプリングし、直前の4個のサンプリン
グ値から平均値を算出する。また、このようにす
ると、複数個のサンプリング値の中の最大値はほ
ぼ脈動成分の最大値となり、サンプリング値の中
の最小値はほぼ脈動成分の最小値となり、加速判
定手段14の加速判定レベルにはその最大値に基
づく値が設定され、減速判定手段15の減速判定
レベルにはその最小値に基づく値が設定される。 In a preferred embodiment of the invention, e.g.
In the case of a four-cylinder cylinder internal combustion engine, the average value calculation means 13 samples the output of the A/D converter 12 every 45 degrees of the crank angle, and calculates the average value from the previous four sampling values. In addition, in this case, the maximum value among the plurality of sampling values becomes approximately the maximum value of the pulsating component, and the minimum value among the sampling values approximately becomes the minimum value of the pulsating component, so that the acceleration determination level of the acceleration determining means 14 is set to a value based on the maximum value, and the deceleration determination level of the deceleration determining means 15 is set to a value based on the minimum value.
吸気管10内の圧力は圧力センサ11でアナロ
グ量として検出され、A/D変換器12でデイジ
タル量に変換された後、平均値算出手段13に加
えられ、ここでクランク角信号に基づく内燃機関
の所定の回転位置における複数個のA/D変換値
が蓄積され、この蓄積値から吸気管圧力の平均値
が算出され出力される。
The pressure in the intake pipe 10 is detected as an analog quantity by the pressure sensor 11, converted to a digital quantity by the A/D converter 12, and then added to the average value calculation means 13, where the internal combustion engine is calculated based on the crank angle signal. A plurality of A/D conversion values at a predetermined rotational position are accumulated, and an average value of the intake pipe pressure is calculated from the accumulated values and output.
また、A/D変換器12の出力は平均値算出手
段13と加速判定手段14と減速判定手段15と
に加えられ、加速判定手段14、減速判定手段1
5ではA/D変換値を各々加速判定レベル、減速
判定レベルと比較することにより加速や減速が行
なわれたか否かが判別される、選択手段16は、
加速判定手段14で加速判定されず、且つ減速判
定手段15で減速判定されてない期間、平均値算
出手段13の出力を選択し、加速判定手段14で
加速判定されるか或いは減速判定手段15で減速
判定されると、その後の所定期間だけ上記平均値
に代えてA/D変換器12の出力を選択する。 Further, the output of the A/D converter 12 is applied to the average value calculating means 13, the acceleration determining means 14, and the deceleration determining means 15.
In step 5, the selection means 16 determines whether acceleration or deceleration has been performed by comparing the A/D conversion value with an acceleration determination level and a deceleration determination level, respectively.
During a period when acceleration is not determined by the acceleration determining means 14 and deceleration is not determined by the deceleration determining means 15, the output of the average value calculating means 13 is selected, and whether the acceleration is determined by the acceleration determining means 14 or the deceleration is determined by the deceleration determining means 15. When deceleration is determined, the output of the A/D converter 12 is selected instead of the average value for a predetermined period thereafter.
第2図は本発明の実施例の要部ブロツク図であ
り、本発明を内燃機関の燃料噴射、点火時期、ア
イドル回転数制御を行なうエンジン制御装置に適
用した場合を示す。
FIG. 2 is a block diagram of main parts of an embodiment of the present invention, showing a case where the present invention is applied to an engine control device that controls fuel injection, ignition timing, and idle speed of an internal combustion engine.
同図において、20は吸気管で、そこに圧力セ
ンサ21が装着されている。圧力センサ21とし
ては、容量形センサ、半導体ピエゾ抵抗形センサ
等の各種の方式のものを採用することができる。
本実施例では、圧力センサ21の検出端を吸気管
20に直接挿入するか、或いは太いパイプでつな
ぐかして脈動成分をも検出する構成としている。
圧力センサ21の出力は、制御器22の入力イン
タフエイス23を介してA/D変換器24に入力
され、ここでデイジタル量に変換されてマイクロ
プロセツサ(MPU)26に入力される。なお、
A/D変換器24に入力する前にノイズ程度を除
去するフイルタを通す構成としても良い。 In the figure, 20 is an intake pipe, and a pressure sensor 21 is attached thereto. As the pressure sensor 21, various types of sensors such as a capacitive sensor, a semiconductor piezoresistive sensor, etc. can be used.
In this embodiment, the detection end of the pressure sensor 21 is inserted directly into the intake pipe 20, or connected through a thick pipe, so that pulsation components can also be detected.
The output of the pressure sensor 21 is input to an A/D converter 24 via an input interface 23 of a controller 22, where it is converted into a digital quantity and input to a microprocessor (MPU) 26. In addition,
The signal may be configured to be passed through a filter that removes noise before being input to the A/D converter 24.
入力インタフエイス23には他にクランク角セ
ンサ25の出力及び燃料噴射、点火時期、アイド
ル回転数制御に必要な各種センサからの出力が入
力され、A/D変換する必要があるものはA/D
変換器24を介して、またその必要のないものは
直接にMPU26に入力される。 The input interface 23 also receives the output of the crank angle sensor 25 and outputs from various sensors necessary for fuel injection, ignition timing, and idle speed control, and those that need to be A/D converted are input to the A/D.
Those that are not needed are input to the MPU 26 via the converter 24 and directly to the MPU 26 .
MPU26は、所定周期でA/D変換器24の
出力および入力インタフエイス23の出力を読取
り、各種の演算を行なつて燃料噴射制御信号a、
点火時期制御信号b、アイドル回転数制御信号c
を出力インタフエイス27を介して外部回路へ出
力する。MPU26に所定の処理を行なわせる為
に必要なプログラム等はメモリ28に格納されて
いる。 The MPU 26 reads the output of the A/D converter 24 and the output of the input interface 23 at a predetermined period, performs various calculations, and generates a fuel injection control signal a.
Ignition timing control signal b, idle speed control signal c
is output to the external circuit via the output interface 27. Programs and the like necessary for causing the MPU 26 to perform predetermined processing are stored in the memory 28.
第3図および第4図は4気筒4サイクル内燃機
関におけるMPU26の処理の一例を示すフロー
チヤートであり、第3図は例えば2msec毎に行
なう吸気管圧力処理、第4図はクランク角センサ
25の出力に基づきクランク角の45度毎に行なう
吸気管圧力処理をそれぞれ示す。なお、S1〜
S11、S20〜S30は各ステツプを示す。 3 and 4 are flowcharts showing an example of the processing of the MPU 26 in a 4-cylinder, 4-cycle internal combustion engine. The intake pipe pressure treatment is performed every 45 degrees of crank angle based on the output. In addition, S1~
S11 and S20 to S30 indicate each step.
一般に、吸気管圧力の脈動周波数fは、内燃機
関のシリンダ数をM、エンジン回転数をN(rpm)
とすると、
f=M×N/120
となり、エンジン回転数により変動うるが、脈動
はエンジンの吸気工程と同期したものとなる。即
ち、例えば4気筒エンジンの場合、吸気管圧力の
変化は例えば第5図に示すように、クランク角の
180度に1回の周期で現れる。そこで、例えばク
ランク角の45度毎に吸気管圧力のデイジタル値を
蓄積し、例えば直前の4個の蓄積値の平均を求め
るようにすれば、正確な平均値を得ることが可能
となる。 Generally, the pulsation frequency f of the intake pipe pressure is determined by the number of cylinders in the internal combustion engine being M and the engine speed being N (rpm).
Then, f=M×N/120, which may vary depending on the engine speed, but the pulsation is synchronized with the intake stroke of the engine. That is, in the case of a four-cylinder engine, for example, the change in intake pipe pressure depends on the crank angle, as shown in Figure 5.
It appears once every 180 degrees. Therefore, for example, by accumulating digital values of the intake pipe pressure every 45 degrees of the crank angle and calculating the average of the immediately preceding four accumulated values, it becomes possible to obtain an accurate average value.
次に第2図〜第5図を参照して本実施例の動作
を説明する。 Next, the operation of this embodiment will be explained with reference to FIGS. 2 to 5.
MPU26は内部タイマにより2msec毎に割込
みがかけられ、第3図に示す処理を実行する。こ
の処理では、先ず第2図のA/D変換器24から
圧力センサ21のデイジタル値を読取ることから
開始され、この読み取つたA/D変換値を今回の
A/D変換値PMADとする(S1)。 The MPU 26 is interrupted every 2 msec by an internal timer and executes the processing shown in FIG. In this process, first, the digital value of the pressure sensor 21 is read from the A/D converter 24 shown in FIG. 2, and the read A/D converted value is set as the current A/D converted value PMAD (S1 ).
MPU26は、クランク角センサ25の出力を
監視し、クランク角の45度毎に第4図に示すよう
な処理を行なつている。即ち、クランク角が45度
経過する毎に、MPU内部のカウンタCRNKの値
を+1カウントアツプし、カウントCRNKの値
が3を越えるとカウンタCRNKの値を0に初期
化する処理を経た後(S20〜S22)、カウンタ
CRNKの値が0であれば即ちクランク角が0度
であれば今回のA/D変換値PMADをクランク
角度0度のサンプリング値PM1に設定し、カウ
ンタCRNKの値が1、2、3であれば即ちクラ
ンク角が45度、90度、135度であれば今回のA/
D変換値PMADをクランク角度45度、90度、135
度のサンプリング値PM2,PM3,PM4にそ
れぞれ設定する処理を行つている(S23〜S30)。
なお、クランク角度が180度になるとカウンタ
CRNKの値は0に戻されるので、そのときの
A/D変換値PMADはクランク角度0度のサン
プリング値PM1に再び設定される。 The MPU 26 monitors the output of the crank angle sensor 25 and performs processing as shown in FIG. 4 every 45 degrees of the crank angle. That is, every time the crank angle passes 45 degrees, the value of the counter CRNK inside the MPU is incremented by +1, and when the value of the count CRNK exceeds 3, the value of the counter CRNK is initialized to 0 (S20 ~S22), counter
If the value of CRNK is 0, that is, if the crank angle is 0 degrees, the current A/D conversion value PMAD is set to the sampling value PM1 of the crank angle of 0 degrees, and regardless of the value of counter CRNK is 1, 2, or 3. In other words, if the crank angle is 45 degrees, 90 degrees, or 135 degrees, this A/
D conversion value PMAD is crank angle 45 degrees, 90 degrees, 135
A process is performed to set the sampling values PM2, PM3, and PM4, respectively (S23 to S30).
In addition, when the crank angle reaches 180 degrees, the counter
Since the value of CRNK is returned to 0, the A/D conversion value PMAD at that time is again set to the sampling value PM1 at a crank angle of 0 degrees.
従つて、第5図に示すように吸気管圧力が変化
している場合、クランク角度が0度から135度ま
で経過すると、第5図のA〜D点に示す時点のサ
ンプリング値PM1〜PM4が求まることになり、
MPU26は第3図のステツプS2に示すように、
それらの平均値PMMEANを算出する。また、
第5図のE点まで達すると、B、C、D、E点に
おける4個のサンプリング値から平均が求められ
る。 Therefore, when the intake pipe pressure is changing as shown in Fig. 5, when the crank angle passes from 0 degrees to 135 degrees, the sampling values PM1 to PM4 at the points A to D in Fig. 5 will change. I will be looking for
As shown in step S2 of FIG. 3, the MPU 26
Calculate their average value PMMEAN. Also,
When reaching point E in FIG. 5, the average is calculated from the four sampled values at points B, C, D, and E.
また、MPU26は次のステツプS3、S4におい
て今まで求めた4個のサンプリング値の中の最大
値および最小値を抽出し、これを加速判定レベル
PMMAXおよび減速判定レベルPMMINとし、
それぞれ今回のA/D変換値PMADと比較する
ことより、加速が行なわれたか否か及び減速が行
なわれたか否かを判別する(S5、S6)。 In addition, in the next steps S3 and S4, the MPU 26 extracts the maximum and minimum values of the four sampling values obtained so far, and sets them at the acceleration judgment level.
PMMAX and deceleration judgment level PMMIN,
By comparing each with the current A/D conversion value PMAD, it is determined whether acceleration has been performed and whether deceleration has been performed (S5, S6).
そして、加速或いは減速が検出されると、例え
ば数msec毎にカウントアツプされる内部カウン
タCPMを0にレセツトし(S7)、そのカウタ
CPMが所定の値時間にして例えば200msec程度
経過する迄、基本噴射量の算出に使用する吸気管
圧力値PMTPとして2msec毎に順次求められる
A/D変換値PMADを用い、それ以外の場合つ
まりスロツトル開度が一定している期間と上記過
渡期間以外は吸気管圧力PMTPとしてステツプ
S2で求めた平均値PMMEANを用いる(S9〜
S11)。 When acceleration or deceleration is detected, the internal counter CPM, which counts up every few milliseconds, is reset to 0 (S7), and the counter
Until CPM reaches a predetermined value time, for example, about 200 msec, the A/D conversion value PMAD, which is sequentially obtained every 2 msec, is used as the intake pipe pressure value PMTP used to calculate the basic injection amount. Except for the period when the opening is constant and the above transient period, the intake pipe pressure is set as PMTP.
Use the average value PMMEAN obtained in S2 (S9~
S11).
従つて、例えば第5図のE点以降に示すように
スロツトル弁が急激に開かれ今回のA/D変換値
PMADが加速判定レベルPMMAXを越えると、
ステツプS5で加速の判定が為され、それから所
定時間だけはA/D変換値PMADにより燃料の
基本噴射量が算出され、所定時間経過するとステ
ツプS2で求まる平均値PMMEANも加速に応じ
て増大し、また内燃機関も充分加速しているの
で、再び平均値を用いて基本噴射量が算出されれ
ば応答性を損なわずに計算制度も高めることがで
きる。 Therefore, for example, as shown after point E in Figure 5, the throttle valve is suddenly opened and the current A/D conversion value is
When PMAD exceeds the acceleration judgment level PMMAX,
Acceleration is determined in step S5, and then the basic injection amount of fuel is calculated using the A/D conversion value PMAD for a predetermined period of time, and when the predetermined period of time has elapsed, the average value PMMEAN determined in step S2 also increases in accordance with the acceleration. Furthermore, since the internal combustion engine is sufficiently accelerated, if the basic injection amount is calculated again using the average value, the accuracy of calculation can be improved without impairing responsiveness.
以上の実施例では、45度のクランク角度毎に圧
力センサ21のデイジタル化された出力をサンプ
リングしたが、他の角度毎にサンプリングする構
成としても良い。また、加速判定レベル、減速判
定レベルとして直前にサンプリングされた複数個
のサンプリング値の最大値、最小値そのものを使
用したが、多少のレベル変更を施したものを各判
定レベルとすることもできる。更に、加速、減速
を検出した後所定時間だけ平均値に代えてA/D
変換値PMADを用いる方法として、時間で規定
する以外にクランク角度で規定することも可能で
ある。 In the above embodiment, the digitized output of the pressure sensor 21 was sampled at every crank angle of 45 degrees, but a configuration may be adopted in which sampling is carried out at every other angle. Furthermore, although the maximum and minimum values of the plurality of sampling values sampled just before are used as the acceleration determination level and the deceleration determination level, each determination level may be a value with some level changes. Furthermore, after detecting acceleration and deceleration, the A/D is used instead of the average value for a predetermined period of time.
As a method of using the converted value PMAD, it is also possible to specify it by crank angle in addition to specifying it by time.
以上説明したように、本発明は、圧力センサの
出力をデイジタル値に変換するA/D変換器の出
力のクランク角信号とを入力する平均値算出手段
により、クランク角の所定角度毎にサンプリング
された直前の複数個のA/D変換値から吸気管圧
力の平均値を算出しているので、低回転域でも高
回転域でも同じクランク角度内で正確な平均値が
求まり、これは従来の方式においてフイルタ4
の時定数を低回転域で大きくし高回転域で小さく
した状態と等価になり、内燃機関の低回転域から
高回転域までの広い範囲にわたり、シリンダのポ
ンピング作用による脈動成分の影響を受けずに吸
気管圧力の平均値を応答性良く検出することが可
能となる。
As explained above, in the present invention, the output of the pressure sensor is sampled at every predetermined angle of the crank angle by means of an average value calculating means that inputs the crank angle signal of the output of the A/D converter that converts the output of the pressure sensor into a digital value. Since the average value of the intake pipe pressure is calculated from the most recent A/D conversion values, an accurate average value can be obtained within the same crank angle in both the low and high rotation ranges, which is different from the conventional method. filter 4
This is equivalent to increasing the time constant in the low rotation range and decreasing it in the high rotation range, and it is not affected by the pulsation component due to the pumping action of the cylinder over a wide range from the low rotation range to the high rotation range of the internal combustion engine. It becomes possible to detect the average value of intake pipe pressure with good responsiveness.
また、加速判定手段、減速判定手段、これらの
判定結果に応じて平均値算出手段の出力とA/D
変換器の出力の内から例えば燃料噴射量の算出に
用いる吸気管圧力を選択する選択手段を設ける構
成によれば、加速、減速の過渡時における応答性
及び計測精度を共に向上させることができる効果
がある。 In addition, the output of the acceleration determination means, the deceleration determination means, and the output of the average value calculation means and the A/D according to the results of these determinations are
According to the configuration in which a selection means is provided for selecting, for example, the intake pipe pressure used for calculating the fuel injection amount from among the outputs of the converter, it is possible to improve both responsiveness and measurement accuracy during transitions of acceleration and deceleration. There is.
第1図は本発明の構成説明図、第2図は本発明
の実施例の要部ブロツク図、第3図および第4図
は4気筒の内燃機関におけるMPU26の処理の
一例を示すフローチヤート、第5図は吸気管圧力
の変化の一例を示す線図および、第6図は従来例
の構成図である。
図において、10,20は吸気管、11,21
は圧力センサ、12,24はA/D変換器、13
は平均値算出手段、14は加速判定手段、15は
減速判定手段、16は基本噴射量算出手段、17
は選択手段、22は制御器、23は入力インタフ
エイス、25はクランク角センサ、26はMPU、
27は出力インタフエイス、28はメモリであ
る。
FIG. 1 is an explanatory diagram of the configuration of the present invention, FIG. 2 is a block diagram of main parts of an embodiment of the present invention, and FIGS. 3 and 4 are flowcharts showing an example of processing of the MPU 26 in a four-cylinder internal combustion engine. FIG. 5 is a diagram showing an example of changes in intake pipe pressure, and FIG. 6 is a configuration diagram of a conventional example. In the figure, 10, 20 are intake pipes, 11, 21
is a pressure sensor, 12 and 24 are A/D converters, 13
14 is an acceleration determining means; 15 is a deceleration determining means; 16 is a basic injection amount calculating means; 17
is a selection means, 22 is a controller, 23 is an input interface, 25 is a crank angle sensor, 26 is an MPU,
27 is an output interface, and 28 is a memory.
Claims (1)
吸気管圧力を計測する装置において、 吸気管圧力を検出する圧力センサと、 該圧力センサの出力をデイジタル値に変換する
A/D変換器と、 該A/D変換器の出力をクランク角の所定角度
毎にサンプリングし、直前の複数個のサンプリン
グ値に基づいて吸気管圧力の平均値を算出する平
均値算出手段と、 前記直前の複数個のサンプリング値の内の最大
値に基づいて設定される加速判定レベルと前記
A/D変換器の出力とを比較し、前記A/D変換
器の出力が前記加速判定レベルを越えると内燃機
関の加速時と判定し、前記A/D変換器の出力が
前記加速判定レベル以下の時は内燃機関の定常状
態と判定する加速判定手段と、 前記直前の複数個のサンプリング値の内の最小
値に基づいて設定される減速判定レベルと前記
A/D変換器の出力とを比較し、前記A/D変換
器の出力が前記減速判定レベル未満の時には内燃
機関の減速時と判定し、前記A/D変換器の出力
が前記減速判定レベル以上の時には内燃機関の定
常状態と判定する減速判定手段と、 前記加速判定手段および前記減速判定手段の判
定結果に応じて前記定常状態の時には前記平均値
算出手段の出力を選択し、前記加速時又は減速時
には前記加速時又は減速時と判定してから初期の
間のみ前記A/D変換器の出力を選択し、その後
前記平均値算出手段の出力を選択し、それぞれ前
記燃料噴射量の算出に用いられる吸気管圧力とし
て出力する選択手段とを具備したことを特徴とす
る内燃機関の吸気管圧力計測装置。[Claims] 1. A device for measuring intake pipe pressure used for calculating the fuel injection amount of an internal combustion engine, comprising: a pressure sensor that detects the intake pipe pressure; and A that converts the output of the pressure sensor into a digital value. a /D converter; and an average value calculation means that samples the output of the A/D converter at every predetermined crank angle and calculates an average value of the intake pipe pressure based on the plurality of immediately preceding sampling values; An acceleration determination level set based on the maximum value of the plurality of immediately preceding sampling values is compared with the output of the A/D converter, and the output of the A/D converter exceeds the acceleration determination level. acceleration determination means for determining that the internal combustion engine is in a steady state when the output of the A/D converter exceeds the acceleration determination level; The output of the A/D converter is compared with the deceleration determination level set based on the minimum value of the deceleration determination level, and when the output of the A/D converter is less than the deceleration determination level, it is determined that the internal combustion engine is decelerating. deceleration determining means for determining that the internal combustion engine is in a steady state when the output of the A/D converter is equal to or higher than the deceleration determining level; Sometimes, the output of the average value calculation means is selected, and during the acceleration or deceleration, the output of the A/D converter is selected only during the initial period after determining that the acceleration or deceleration is occurring, and then the average value calculation is performed. An intake pipe pressure measuring device for an internal combustion engine, comprising selection means for selecting an output of the means and outputting the selected output as an intake pipe pressure used for calculating the fuel injection amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18343785A JPS6243531A (en) | 1985-08-21 | 1985-08-21 | Apparatus for measuring pressure of suction pipe of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18343785A JPS6243531A (en) | 1985-08-21 | 1985-08-21 | Apparatus for measuring pressure of suction pipe of internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6243531A JPS6243531A (en) | 1987-02-25 |
JPH0469738B2 true JPH0469738B2 (en) | 1992-11-09 |
Family
ID=16135753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18343785A Granted JPS6243531A (en) | 1985-08-21 | 1985-08-21 | Apparatus for measuring pressure of suction pipe of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6243531A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2612386B2 (en) * | 1991-07-12 | 1997-05-21 | 株式会社ユニシアジェックス | Supercharging pressure detection device for supercharged internal combustion engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57125336A (en) * | 1981-01-27 | 1982-08-04 | Nippon Denso Co Ltd | Measurement of engine suction pressure |
JPS5824829A (en) * | 1981-08-06 | 1983-02-14 | Mazda Motor Corp | Device for detecting air intake pressure of engine |
JPS58166235A (en) * | 1982-03-26 | 1983-10-01 | Mitsubishi Electric Corp | Jetting apparatus of fuel of internal combustion engine |
JPS5912331A (en) * | 1982-06-23 | 1984-01-23 | ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Detector for periodically varied quantity of internal combustion engine |
JPS6061638A (en) * | 1983-09-14 | 1985-04-09 | Honda Motor Co Ltd | Measurement of inside pressure of suction pipe |
-
1985
- 1985-08-21 JP JP18343785A patent/JPS6243531A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57125336A (en) * | 1981-01-27 | 1982-08-04 | Nippon Denso Co Ltd | Measurement of engine suction pressure |
JPS5824829A (en) * | 1981-08-06 | 1983-02-14 | Mazda Motor Corp | Device for detecting air intake pressure of engine |
JPS58166235A (en) * | 1982-03-26 | 1983-10-01 | Mitsubishi Electric Corp | Jetting apparatus of fuel of internal combustion engine |
JPS5912331A (en) * | 1982-06-23 | 1984-01-23 | ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Detector for periodically varied quantity of internal combustion engine |
JPS6061638A (en) * | 1983-09-14 | 1985-04-09 | Honda Motor Co Ltd | Measurement of inside pressure of suction pipe |
Also Published As
Publication number | Publication date |
---|---|
JPS6243531A (en) | 1987-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0654594B1 (en) | Method of determining transitions from steady state to transient conditions in an internal combustion engine | |
CZ297026B6 (en) | Method for detecting misfires in internal combustion engine, apparatus for making the same, and vehicle comprising such apparatus | |
JPS639679A (en) | Control of ignition timing of internal combustion engine | |
JPH0545890B2 (en) | ||
US5214958A (en) | Misfiring detecting apparatus for an internal combustion device | |
US20200264023A1 (en) | Air flow rate measuring device and air flow rate measuring system | |
US4643152A (en) | Method for controlling the fuel supply of an internal combustion engine | |
JPS59103930A (en) | Control method of internal-combustion engine | |
JP2636025B2 (en) | A device that processes the measurement signal of the air-fuel ratio sensor | |
US6334094B1 (en) | Engine speed calculation apparatus | |
JPH0469738B2 (en) | ||
US6411917B1 (en) | Engine speed calculating apparatus | |
JP2754746B2 (en) | Fuel injection amount control device for internal combustion engine | |
EP0162470A2 (en) | A method for controlling the fuel supply of an internal combustion engine | |
JP2793729B2 (en) | Engine fuel injection amount control device | |
JPH0718355B2 (en) | Fuel injection amount control method for internal combustion engine | |
JP2551396B2 (en) | Fuel injection amount control method for internal combustion engine | |
JPS62214326A (en) | Knock detecting method | |
JPH01116262A (en) | Fuel injection quantity control system for internal combustion engine | |
JPH07122417B2 (en) | Method for detecting air pressure in intake pipe of internal combustion engine | |
FR2656379A1 (en) | DEVICE FOR CONTROLLING AND / OR REGULATING THE FUEL ASSAY AND / OR THE IGNITION ANGLE OF AN INTERNAL COMBUSTION ENGINE. | |
JP2543577Y2 (en) | Internal combustion engine rotational speed measurement device | |
JPS5896174A (en) | Ignition timing controller for internal-combustion engine | |
JP3017868B2 (en) | Engine control device | |
JPH034849B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |