JPH07234235A - Velocity measuring apparatus for submerged navigating body - Google Patents

Velocity measuring apparatus for submerged navigating body

Info

Publication number
JPH07234235A
JPH07234235A JP6025538A JP2553894A JPH07234235A JP H07234235 A JPH07234235 A JP H07234235A JP 6025538 A JP6025538 A JP 6025538A JP 2553894 A JP2553894 A JP 2553894A JP H07234235 A JPH07234235 A JP H07234235A
Authority
JP
Japan
Prior art keywords
speed
velocity
inertial
corrected
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6025538A
Other languages
Japanese (ja)
Other versions
JP2733598B2 (en
Inventor
Akira Murakami
彰 村上
Shoji Nonaka
正二 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP6025538A priority Critical patent/JP2733598B2/en
Publication of JPH07234235A publication Critical patent/JPH07234235A/en
Application granted granted Critical
Publication of JP2733598B2 publication Critical patent/JP2733598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance velocity measuring accuracy by reducing the effects of integral errors. CONSTITUTION:A velocity measuring apparatus 1 comprises an inertial device 11 and a velocity measuring portion 13, the inertial device 11 comprising a gyrocope 7, an accelerometer 6 and an inertia data computing part 10, the velocity measuring portion 13 comprising a first 14 and second 15 velocity measuring part and a traveling state judging part 16. The inertia data computing part 10 computes an inertial velocity V1 from both acceleration and angular velocity and, using as a reference value the corrected inertial velocity VI inputted from the first velocity correcting part 14, computes the velocity VI through further correction during each steady-state traveling period. The first velocity correcting part 14 outputs the inertial velocity VI to the outside during each acceleration/deceleration period, and computes an inertial velocity VI' through correction during each steady-state traveling period by using as a reference value a corrected mechanical velocity VP' inputted from the second velocity correcting part 15. The second velocity correcting part 15 computes the mechanical velocity VP=K'N by correcting a mechanical velocity VP=KN (K is a coefficient and N is the rotation speed of a propulsion device) using the inertial velocity VI during each steady-state traveling period, and outputs the mechanical velocity VP' to the outside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は水中航走体用速度計測
装置に関し、特に計測誤差の低減、つまり精度の向上に
係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a speed measuring device for underwater vehicles, and more particularly to reducing measurement error, that is, improving accuracy.

【0002】[0002]

【従来の技術】従来のこの種の速度計測装置としては、
水中航走体の推進機の回転速度より航走体速度を計測す
るものと、慣性装置を設けて、推進方向の加速度を計測
し、これを積分して速度を求めるものとが存在する。 (a)推進機の回転速度より航走体速度を計測する装置 図4に示すように、水中航走体2は尾部に取付けられた
スクリューなどの推進機3をモータ4で回転駆動し、そ
して得られた推進機発生推力Tによって航走している。
従来の速度算定過程を図4,図5を参照して説明する。
2. Description of the Related Art As a conventional speed measuring device of this type,
There are those that measure the speed of the running body from the rotational speed of the propulsion unit of the underwater vehicle, and those that measure the acceleration in the propulsion direction by providing an inertial device and integrate it to obtain the speed. (A) A device for measuring the speed of the running body from the rotational speed of the propulsion device. As shown in FIG. 4, the underwater vehicle 2 rotationally drives a propulsion device 3 such as a screw attached to the tail by a motor 4, and It is sailing by the obtained thrust T generated by the propulsion machine.
A conventional speed calculation process will be described with reference to FIGS.

【0003】 はじめに、推進機3の回転速度NをN
* に設定して、回転始動すると、航走体2は初期推力T
=To で加速される。 航走体2の速度Vが上昇して行くと、速度Vに反比
例して推力Tが下がる。即ち、 T∝1/V …………… (1) 一方、航走抵抗Fは速度Vの自乗に比例して増加する。
即ち、 F∝V2 …………… (2) 航走体2の加速度A,質量をMとすれば A=(T−F)/M …………… (3) の関係式が成立する。
First, the rotation speed N of the propulsion unit 3 is set to N
When set to * and starting rotation, the propulsion body 2 will have an initial thrust T
= Accelerated at To. As the speed V of the vehicle 2 increases, the thrust T decreases in inverse proportion to the speed V. That is, T∝1 / V (1) On the other hand, the running resistance F increases in proportion to the square of the speed V.
That is, F∝V 2 ………… (2) If the acceleration A and mass of the vehicle 2 are M, then the relational expression of A = (TF) / M ………… (3) is established. To do.

【0004】 図5のPo 点において発生推力Tと航
走抵抗Fとが等しくなると、そのとき(3)式より加速
度A=0となり、航走体2の速度Vは一定となる。この
TとFとの平衡点Po におけるT,F,VをそれぞれT
* ,F* ,V* で表すと、 F* =T* …………… (4) F* =k1 * *2(k1 * :比例定数) …………… (5) T* =k2 * *2(k2 * :比例定数) …………… (6) の各式が成立する。(5),(6)式を(4)に代入し
て、 k1 * *2 =k2 * *2 ∴ V* =(k2 * /k1 * 1/2 * …………… (7) となる。ここで、 (k2 * /k1 * 1/2 =K* …………… (8) と置けば V* =K* * …………… (9) と表せる。(9)式のように推進機回転速度から求めた
航走体速度(機械的速度と言う)に添字(サフィック
ス)Pをつけることにすると、 VP * =K* * …………… (9′) 定数K* は推力T* と抵抗F* とが平衡し、加速度A=
0のとき、つまり航走体速度Vが定速度VP * に等しい
ときの値であり、加減速の有る場合は速度Vに応じて変
化する。しかし、加減速の有る場合の機械速度VP を求
める際はノミナル値K(例えばK=K* と仮定)を用い
て、近似的に VP ≒KN …………… (10) より求めている。
When the generated thrust T becomes equal to the running resistance F at the point Po in FIG. 5, then the acceleration A = 0 from the equation (3), and the speed V of the running body 2 becomes constant. T, F, and V at the equilibrium point Po of T and F are T
When expressed by * , F * , and V * , F * = T * …………… (4) F * = k 1 * V * 2 (k 1 * : proportional constant) …………… (5) T * = k 2 * N * 2 : each formula (k 2 * proportional constant) ............ (6) is established. Substituting equations (5) and (6) into (4), k 1 * V * 2 = k 2 * N * 2 ∴V * = (k 2 * / k 1 * ) 1/2 N * ……… (7) Here, if we put (k 2 * / k 1 * ) 1/2 = K * ……………… (8), we can express V * = K * N * ………… (9). As shown in equation (9), if we add a suffix (suffix) P to the vehicle speed (called mechanical speed) obtained from the propulsion machine speed, V P * = K * N * …………… (9 ') The constant K * is equal to the thrust T * and the resistance F *, and the acceleration A =
It is a value when it is 0, that is, when the speed V of the vehicle is equal to the constant speed V P * , and it changes according to the speed V when acceleration / deceleration is present. However, when the mechanical speed V P in the case of acceleration / deceleration is obtained, the nominal value K (for example, K = K * is assumed) is used, and it is approximately obtained from V P ≈KN ………… (10) There is.

【0005】(b−1) プラットフォーム型の慣性装
置 図6Aに示すように水平安定台(プラットフォーム)5
上に3軸方向の加速度計6とジャイロスコープ(以下ジ
ャイロと言う)7が設置されている。ジャイロ7で航走
体2の回転動揺及び地球レート(自転角速度)を検出
し、それらの検出信号に対応した信号でサーボアンプ8
を介してサーボモータ9を制御して安定水平台5を水平
に保つ。加速度計6で検出された航走体の加速度A(A
X ,AY ,AZ )を演算部10で積分して速度VI (V
IX,VIY,VIZ)を得る。即ち、 VI (VIX,VIY,VIZ)=∫A(AX ,AY ,AZ )dt …………… (11) 図6Aではピッチ方向の動揺のみを示しているが、実際
には3軸方向の動揺が存在する。
(B-1) Platform-type inertial device As shown in FIG. 6A, a horizontal stabilizer (platform) 5
A triaxial accelerometer 6 and a gyroscope (hereinafter referred to as a gyro) 7 are installed on the top. The gyro 7 detects the rotational fluctuation and the earth rate (rotational angular velocity) of the moving body 2, and the servo amplifier 8 outputs signals corresponding to the detected signals.
The servo motor 9 is controlled via the to keep the stable horizontal base 5 horizontal. Acceleration A of the vehicle detected by accelerometer 6 (A
X , A Y , A Z ) are integrated by the calculation unit 10 to obtain the velocity V I (V
IX , V IY , V IZ ). That is, V I (V IX , V IY , V IZ ) = ∫A (A X , A Y , A Z ) dt (11) In FIG. 6A, only the fluctuation in the pitch direction is shown. In reality, there is shaking in the three axis directions.

【0006】 (b−2) ストラップダウン型の慣性装置 プラットフォーム型では、水平安定台を機械的に水平に
保持して、その上の加速度を検出するのに対して、スト
ラップダウン型の場合は、水平安定台を用いないで、機
体に直接取付けられたジャイロ7で得られた3軸方向の
角速度ω(ωx,ωy ,ωz )を用いて、演算部10で機
体座標系(x,y,z)を局地水平座標系(X,Y,
Z)に変換するための座標変換行列〔C〕を求め、更に
この行列〔C〕を加速度計6の検出した機体座標系での
加速度A(AX ,Ay ,AZ )に乗算して、局地水平座
標系での加速度に変換し、その変換した加速度を積分し
て局地水平座標での速度VI (VIX,VIY,VIZ)を得
ている。即ち、 VI (VIX,VIY,VIZ)=∫〔C〕A(AX ,Ay ,AZ )dt …………… (12) 慣性装置で求めた速度VI を慣性速度と呼び、前記機械
的速度VP と区別する。
(B-2) Strap-down type inertial device In the platform type, the horizontal stabilizer is held mechanically horizontally and the acceleration above it is detected, whereas in the case of the strap-down type, Using the angular velocities ω (ω x, ω y , ω z ) in the three-axis directions obtained by the gyro 7 directly attached to the aircraft without using the horizontal stabilizer, the arithmetic unit 10 uses the aircraft coordinate system (x, y, z) is the local horizontal coordinate system (X, Y,
Z), a coordinate transformation matrix [C] is obtained, and this matrix [C] is further multiplied by the acceleration A ( AX , Ay , AZ ) in the body coordinate system detected by the accelerometer 6. , V i (V IX , V IY , V IZ ) in the local horizontal coordinate is obtained by converting the acceleration into the local horizontal coordinate system and integrating the converted acceleration. That is, V I (V IX , V IY , V IZ ) = ∫ [C] A (A X , A y , A Z ) dt (12) The velocity V I obtained by the inertial device is the inertial velocity. To distinguish it from the mechanical velocity V P.

【0007】[0007]

【発明が解決しようとする課題】従来の推進機3の回転
速度Nから機械的速度VP を求める方式では、 発進時などの速度が変化している場合では、図7に
示すよう、航速体2には質量Mがあるため推進機回転数
Nの立ち上がりより遅れて真の速度Vが上がることによ
り、V≠VP =KN(Kはノミサル値で、例えばK=K
* )となり、大きな算定誤差となる。
In the conventional method for obtaining the mechanical speed V P from the rotational speed N of the propulsion unit 3, when the speed is changing at the time of starting, as shown in FIG. Since 2 has a mass M, the true speed V rises later than the rise of the propulsion machine speed N, so that V ≠ V P = KN (K is a nominal value, for example, K = K
* ), Which is a large calculation error.

【0008】 推進力Tと抗力Fが釣り合い、終速度
に安定した期間では、V≒VP * =KN* となるが、K
はもともと縮小模型での試験等で求められたもので実機
のものと一致しない場合があり、また、製品個々のばら
つきがある。そのため、速度算定誤差が発生する。ま
た、慣性装置により速度を求める方式では、 加速度計信号に含まれる誤差が積分され時間と共に
速度誤差が大きくなる。
In a period in which the propulsive force T and the drag force F are balanced and stable at the final speed, V≈V P * = KN * , but K
Originally, it was obtained by tests on a reduced model and may not match the actual model, and there are variations among products. Therefore, a speed calculation error occurs. Further, in the method of obtaining the velocity by the inertial device, the error contained in the accelerometer signal is integrated and the velocity error increases with time.

【0009】 ジャイロ信号ωが誤差を持つ場合は、
安定水平台または演算部内での仮想的な水平面が真の水
平に保持されないこと、また座標変換行列に誤差をも
ち、重力カップリング分を積分してしまうことにより時
間と共に速度誤差が大きくなる。といった欠点がある。
この発明の目的はこれらの欠点を除去し、従来より誤差
の小さい、つまり精度の高い速度データを得る速度計を
提供することにある。
When the gyro signal ω has an error,
The speed error increases with time because the virtual horizontal plane in the stable horizontal base or the arithmetic unit is not kept true, and the coordinate transformation matrix has an error and the gravity coupling component is integrated. There are drawbacks such as.
An object of the present invention is to eliminate these drawbacks, and to provide a speedometer that obtains speed data with a smaller error, that is, higher accuracy than in the past.

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

(1)請求項1の発明は、ジャイロスコープ、加速度計
及び慣性データ演算部より成る慣性装置と、第1,第2
速度補正部及び走行状態判定部より成る速度計測部とか
ら構成される水中航走体用速度計測装置である。前記ジ
ャイロスコープは、3軸方向の回転角速度ωを検出する
ものである。前記加速度計は、前記3軸方向の加速度A
を検出するものである。前記慣性データ演算部は、前記
加速度A及び角速度ωとから水中航走体の速度(慣性速
度と言う)VI を演算して、前記第1速度補正部に入力
すると共に、各定常走行期間において、前記第1速度補
正部より入力される補正された慣性速度VI ′をリファ
レンス値として更に補正した慣性速度VI を演算するも
のである。
(1) The invention according to claim 1 is an inertial device including a gyroscope, an accelerometer, and an inertial data calculation unit;
It is a speed measuring device for underwater vehicles comprising a speed measuring unit including a speed correcting unit and a running state determining unit. The gyroscope detects the rotational angular velocity ω in the three axis directions. The accelerometer measures acceleration A in the three-axis directions.
Is to detect. The inertia data calculation unit calculates the velocity (referred to as inertial velocity) V I of the underwater vehicle from the acceleration A and the angular velocity ω and inputs the velocity V I to the first velocity correction unit, and in each steady traveling period. The corrected inertial velocity V I ′ input from the first velocity correction unit is used as a reference value to calculate the corrected inertial velocity V I.

【0011】前記走行状態判定部は、前記加速度A及び
角速度ωまたは水中航走体の推進機関部で得られる増減
速信号(dN/dt;Nは推進機の回転速度)より水中
航走体の増減速期間と定常走行期間とを判別して、その
判別信号を前記第1,第2速度補正部に入力するもので
ある。前記第1速度補正部は、各加減速期間において前
記慣性データ演算部より入力される前記慣性速度VI
装置外部に出力し、各定常走行期間において、前記第2
速度補正部で得られる補正した機械的速度VP ′(前記
回転速度Nより求めた速度を機械的速度と言い、VP
表す)をリファレンス値として更に補正した慣性速度V
I ′を演算して、前記慣性データ演算部に入力するもの
である。
The running state determination unit determines the underwater vehicle from the acceleration A and the angular velocity ω or the acceleration / deceleration signal (dN / dt; N is the rotational speed of the propulsion machine) obtained from the propulsion engine section of the underwater vehicle. The acceleration / deceleration period and the steady running period are discriminated and the discrimination signal is inputted to the first and second speed correction sections. The first speed correction unit outputs the inertial speed V I input from the inertial data calculation unit to the outside of the device during each acceleration / deceleration period, and the second speed during each steady running period.
The inertial velocity V further corrected by using the corrected mechanical velocity V P ′ obtained by the velocity correction unit (the velocity obtained from the rotational velocity N is referred to as a mechanical velocity and represented by V P ).
By calculating the I ', and inputs the inertial data operation unit.

【0012】前記第2速度補正部は、各定常走行期間に
おいて、前記機械的速度VP =KN(Kは係数)を、前
記慣性速度VI を用いて補正した機械的速度VP ′を演
算して、装置外部に出力するものである。 (2)請求項2の発明では、前記(1)項記載の水中航
走体用速度計測装置において、前記第2速度補正部がi
番目(i=1,2,3…)の定常走行期間の最初の時点
i * において、前記慣性速度VI (ti * )と前記回
転速度N(ti * )から、補正した係数Ki ′=V
I (ti * )/N(ti * )を求め、その係数Ki ′を
用いて各定常走行期間における前記補正した機械的速度
P ′=Ki′Nを演算する。
[0012] The second speed correction unit, during each steady running period
The mechanical speed VP= KN (K is a coefficient)
Inertial velocity VIMechanical velocity V corrected usingPPlay ′
It is calculated and output to the outside of the device. (2) In the invention of claim 2, the underwater navigation according to (1) above.
In the velocity measuring device for a running body, the second velocity correction unit is
The first time point of the second (i = 1, 2, 3 ...) Steady state running period
ti *Where the inertial velocity VI(Ti *) And the above times
Rolling speed N (ti *), The corrected coefficient Ki′ = V
I(Ti *) / N (ti *), The coefficient Ki
Using the corrected mechanical speed in each steady running period
VP′ = KiCalculate'N.

【0013】(3)請求項3の発明では、前記(1)項
記載の水中航走体用速度計測装置において、前記第2速
度補正部が、1番目の定常走行期間の最初の時点t1 *
において、慣性速度VI (t1 * )と回転速度N(t1
* )から、補正した係数K1′=VI (t1 * )/N
(t1 * )を求め、その係数K1 ′を共通に用いて、各
定常走行期間における前記補正した機械的速度VP ′=
1 ′Nを演算する。
(3) In the invention of claim 3, in the speed measuring device for underwater vehicle according to claim (1), the second speed correction unit is the first time point t 1 of the first steady running period. *
, The inertial velocity V I (t 1 * ) and the rotation velocity N (t 1
From *), corrected coefficient K 1 '= V I (t 1 *) / N
(T 1 * ) is calculated, and the coefficient K 1 ′ is used in common, and the corrected mechanical speed V P ′ = in each steady running period.
Calculate K 1 ′ N.

【0014】(4)請求項4の発明では、前記(1)乃
至(3)項のいずれかに記載の水中航走体用速度計測装
置において、前記慣性データ演算部が、航走体の姿勢
角、方位角または位置を演算して外部に出力できる。
(4) According to the invention of claim 4, in the speed measuring device for underwater vehicle according to any one of the items (1) to (3), the inertial data calculation unit is provided for the attitude of the vehicle. The angle, azimuth, or position can be calculated and output to the outside.

【0015】[0015]

【実施例】本発明の一実施例を水中航走体の自動操縦装
置に応用した図1の場合について説明する。慣性装置1
1は、直行3軸のジャイロ7,加速度計6を持ち、これ
らから得られる角速度ω,加速度Aを演算部10で計算
することにより姿勢角(ピッチ角θ,ロール角φ)、方
位角ψ,速度VI ,位置P等を計算する。推進機関部1
2は、推進機軸の回転速度Nを検出し、またこれを調節
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the case of FIG. 1, which is applied to an automatic piloting system for underwater vehicles. Inertial device 1
Reference numeral 1 has a gyro 7 having three orthogonal axes and an accelerometer 6, and an angular velocity ω and an acceleration A obtained from them are calculated by a calculation unit 10, whereby a posture angle (pitch angle θ, roll angle φ), an azimuth angle ψ, Calculate velocity V I , position P, etc. Promotion Department 1
2 detects and also adjusts the rotational speed N of the thruster shaft.

【0016】速度計測部13は、以下の14,15,1
6により構成され、精度の高い速度データVT を出力す
ることができる。第1速度補正部14は慣性装置11よ
り得た慣性速度VI を、推進機回転数Nより得た機械的
速度VP =KN(Kはノミサル値)を補正した速度
P ′を基準に更に補正してVI ′を得る。また慣性速
度VI をスイッチSW2 ,SW3 に出力する。第2速度
補正部15は機械的速度V P を、慣性速度VI を基準に
補正して、VP ′=K′Nを得る。走行状態判定部16
は慣性装置11より得られる加速度A及び角速度ωまた
は機関部12からの回転の増減の変化dN/dtより増
減速期間と定常走行期間とを判定して判定信号Saを出
力する。
The speed measuring unit 13 includes the following 14, 15, 1
Speed data V with high accuracyTOutput
You can The first speed correction unit 14 is the inertial device 11.
Inertial velocity V obtainedIIs obtained from the propulsion machine rotation speed N.
Speed VP= Speed corrected for KN (K is the nomisal value)
VPFurther correction based on ′IGet ′. Also inertial speed
Degree VISwitch SW2, SW3Output to. Second speed
The correction unit 15 determines the mechanical speed V PThe inertial velocity VIBased on
Correct, VPWe obtain ′ = K′N. Running state determination unit 16
Is the acceleration A and the angular velocity ω obtained from the inertial device 11.
Is larger than the change dN / dt of the increase / decrease in rotation from the engine section 12.
The judgment signal Sa is output by judging the deceleration period and the steady running period.
Force

【0017】誘導計算部17はあらかじめセットされた
航走コースもしくは外部よりコントロールされる信号と
自己が得ている姿勢角(ピッチ角θ,ロール角φ)、方
位角ψ,位置P,速度VT により操舵信号Sbを発生す
る。走行状態判定信号Sa(図2A)により制御され
て、スイッチSW1 乃至SW 3 はそれぞれ図2のB,
C,Dに示すようにオン/オフ制御される。定常走行期
間にはスイッチSW1 がオンとされ、第2速度補正部1
5から補正された機械的速度VP ′が第1速度補正部1
4に入力される。第1速度補正部14ではVP ′をリフ
ァレンス値として慣性装置より入力される慣性速度VI
を補正し、その補正した速度VI ′を慣性データ演算部
10に入力する。慣性データ演算部10では、補正され
た慣性速度VI ′をリファレンス値として、更に補正し
た慣性速度VI を演算し、これによりVI の積分誤差が
時間と共に増加しないようにしている。
The guidance calculator 17 is preset
With signals controlled from the cruise course or from outside
Attitude angle (pitch angle θ, roll angle φ) obtained by self
Position angle ψ, position P, speed VTGenerates a steering signal Sb
It Controlled by the traveling state determination signal Sa (Fig. 2A)
Switch SW1To SW 3Are respectively B and B in FIG.
On / off control is performed as indicated by C and D. Steady running period
Switch SW in between1Is turned on, and the second speed correction unit 1
Mechanical speed V corrected from 5P′ Is the first speed correction unit 1
4 is input. In the first speed correction unit 14, VPRiff
Inertial velocity V input from the inertial device as an offset valueI
Is corrected, and the corrected speed VI′ Is the inertial data calculation unit
Enter in 10. In the inertia data calculation unit 10, it is corrected
Inertial velocity VI′ Is used as a reference value for further correction
Inertial velocity VITo calculate VIThe integration error of
I try not to increase with time.

【0018】加減速期間には、スイッチSW2 がオンと
され、第1速度補正部14から慣性速度VI (t)が第
2速度補正部15に入力される。第2速度補正部15で
は速度VI (t)を回転速度検出部12aより入力され
る回転速度N(t)で割算し、走行状態判定信号Saが
オンからオフに立下った時点t=t* の商VI (t*
/N(t* )を補正された定数K′として得、定常走行
期間でこの定数K′を用いて速度補正した速度VP
(t)=K′N(t)を求めて、速度補正部14及びス
イッチSW3 の接点b−cを通じて誘導計算部17に入
力する。
During the acceleration / deceleration period, the switch SW 2 is turned on, and the inertia speed V I (t) is input from the first speed correction unit 14 to the second speed correction unit 15. In the second speed correction unit 15, the speed V I (t) is divided by the rotation speed N (t) input from the rotation speed detection unit 12a, and the time t = when the running state determination signal Sa falls from ON to OFF. Quotient of t * V I (t * )
/ N (t *) 'as a, the constant K in the steady running period' constant K that has been corrected velocity V P of the speed corrected using the '
(T) = K′N (t) is calculated and input to the guidance calculation unit 17 through the speed correction unit 14 and the contact bc of the switch SW 3 .

【0019】スイッチSW3 は増減速期間には接点a側
に切替えられて、計測装置の出力速度VT として慣性速
度VI が誘導計算部17へ入力される。なお、慣性デー
タ演算部10と第1速度補正部14とを1つに合体する
こともできる。その場合、合体した部にカルマンフィル
タ等の状態推定フィルタを用いて速度データのみなら
ず、姿勢角、方位角、位置等のデータを補正することも
できる。
The switch SW 3 is switched to the contact a side during the acceleration / deceleration period, and the inertial velocity V I is input to the guidance calculator 17 as the output velocity V T of the measuring device. It should be noted that the inertia data calculation unit 10 and the first speed correction unit 14 can be combined into one. In that case, a state estimation filter such as a Kalman filter may be used for the combined portion to correct not only the velocity data but also the data such as the attitude angle, the azimuth angle, and the position.

【0020】第1速度補正部14が判定信号Saに同期
して、加減速期間に慣性速度VI を外部に出力し、また
第2速度補正部15が判定信号Saに同期して、定常走
行期間に、補正された機械的速度VP ′を外部に出力す
ることができるので、スイッチSW3 を省略してもよ
い。また第1,第2速度補正部14,15は判定信号S
aに基づいて、互いに相手側が必要とする期間に速度V
I またはVP ′を供給するようにしたり、或いは常時速
度データを供給し、そのデータを使用する側が必要な期
間に適宜取り込むことができるので、スイッチSW1
SW2 を省略してもよい。
The first speed correction unit 14 outputs the inertial speed V I to the outside during the acceleration / deceleration period in synchronization with the determination signal Sa, and the second speed correction unit 15 synchronizes with the determination signal Sa to perform steady running. Since the corrected mechanical speed V P ′ can be output to the outside during the period, the switch SW 3 may be omitted. In addition, the first and second speed correction units 14 and 15 use the determination signal S
Based on a, the speed V is calculated during the period required by the other side.
I or V P ′ can be supplied, or speed data can always be supplied and the data can be fetched in a necessary period by the side using the switch SW 1 ,
SW 2 may be omitted.

【0021】次に図1の動作を図3に示す航走体速度の
時間的な変化特性を例にして更に詳細に説明しよう。 発進時は慣性装置11による推進軸方向の慣性速度
I を正しいとし、V T =VI を外部に出力する。 スタートしてからの経過時間または加速度の変動ま
たは推進機関部12より得られる増減速信号dN/dt
によって一定の速度となったと判断した時点t 1 * で、 VP (t1 * )=KN(t1 * ) …………… (13) より求めるVP (t1 * )よりも精度の良い慣性速度V
I (t1 * )を正しいとし、 VI (t1 * )=K1 ′N(t1 * )≡VP ′(t1 * ) … (14) と置いて、補正したノミナル値K1 ′ K1 ′=VI (t1 * )/N(t1 * ) …………… (15) を求める。
Next, the operation of FIG.
Let us explain this in more detail by taking the time-varying characteristic as an example. When starting, the inertial speed of the propulsion axis by the inertial device 11
VIIs correct and V T= VIIs output to the outside. Elapsed time from start or fluctuation of acceleration
Or acceleration / deceleration signal dN / dt obtained from the propulsion engine unit 12
Time t when it is determined that the speed has become constant due to 1 *Then VP(T1 *) = KN (t1 *) …………… (13) V found fromP(T1 *), Which is more accurate than)
I(T1 *) Is correct, VI(T1 *) = K1′ N (t1 *) ≡ VP′ (T1 *) ... (14), corrected nominal value K1′ K1′ = VI(T1 *) / N (t1 *) …………… (15) is requested.

【0022】 以後、回転数変動の少ない定常走行時
では補正されたK1 ′と推進機回転数Nから得られる、 VP ′=K1 ′N …………… (16) を正しいとして、これを出力する(VT =VP ′)。ま
た慣性装置より得られる速度VI はそのまゝでは誤差が
増大するので、VP ′をリファレンス値として補正した
I ′を慣性データ演算部10に入力する。
After that, during steady-state running with a small fluctuation of the rotation speed, V P ′ = K 1 ′ N (16) obtained from the corrected K 1 ′ and the rotation speed N of the propulsion machine is correct, and This is output (V T = V P ′). Further, since the error of the velocity V I obtained from the inertial device increases until then, V I ′ corrected by using V P ′ as a reference value is input to the inertial data calculation unit 10.

【0023】 増減速があった場合はVI を正しいと
しVT =VI を出力する。 2番目に定常走行になったと判断した時点t2 *
は、と同様に VP (t2 * )=KN(t2 * ) …………… (17) より求めるVP (t2 * )よりも精度のよいVI (t2
* )を正しいものとし、 VI (t2 * )=K2 ′N(t2 * )=VP ′(t2 * ) …………… (18) と置いて、補正したノミナル値K2 ′ K2 ′=VI (t2 * )/N(t2 * ) …………… (19) を求める。
If acceleration / deceleration has occurred, V I is correct and V T = V I is output. At time t 2 * is determined that the steady driving Second, similarly to V P (t 2 *) = KN (t 2 *) obtained from ............... (17) V P (t 2 *) More accurate than V I (t 2
* ) Is correct, and the corrected nominal value K is set by setting V I (t 2 * ) = K 2 ′ N (t 2 * ) = VP ′ (t 2 * ) ... (18) 2 ′ K 2 ′ = V I (t 2 * ) / N (t 2 * ) …………… (19) is calculated.

【0024】しかし、係数K′は航走体2と推進機3の
寸法、形状が変化しないので、時間的に一定と考えられ
るので、で(15)式より求めた補正したノミナル値
1′をこれからも使用することにしての処理を省略
し、演算を簡単化することもできる。 (イ)第2速度補正部15は、回転数変動の少ない
2番目の定常走行時では、(イ)補正されたK2 ′と推
進機回転数Nから得られる VP ′=K2 ′N …………… (20) を正しいとして、これを出力する(VT =VP ′)。
[0024] However, the coefficient K 'is the dimension of Kohashikarada 2 and propulsion units 3, the shape does not change, it is considered that the time constant, in (15) the nominal value was corrected calculated from the equation K 1' Can be omitted and the calculation can be simplified. (A) The second speed correction unit 15 obtains V P ′ = K 2 ′ N obtained from (a) the corrected K 2 ′ and the propulsion machine rotation speed N during the second steady running in which the rotation speed fluctuation is small. ……………… Assuming that (20) is correct, this is output (V T = V P ′).

【0025】(ロ)或いは、で求めた補正したノミナ
ル値K1 ′を毎回使用することにして、 VP ′=K1 ′N …………… (21) を求めて出力する。また、慣性装置より得られる速度V
I は定常走行期間に誤差が増大するので、第1速度補正
部14はVP ′をリファレンス値として補正したVI
を求めて慣性データ演算部10に入力する。
(B) Alternatively, the corrected nominal value K 1 ′ obtained in step ( 1 ) is used every time to obtain and output V P ′ = K 1 ′ N (21). Also, the velocity V obtained from the inertial device
Since the error of I increases during the steady running period, the first speed correction unit 14 corrects V I ′ corrected using V P ′ as a reference value.
Is input to the inertial data calculation unit 10.

【0026】[0026]

【発明の効果】 従来は速度出力VT として、推進機の回転速度Nよ
り算定した機械的速度VP =KNを用いていたので増減
速時には、航走体2の真の速度Vが自身の質量の存在に
よって推進機回転数Nの変化よりかなり遅れるために大
きな演算誤差が発生したが、この発明では増減速時には
慣性装置11の検出速度VI を速度出力VT としている
ので、算定誤差が大幅に軽減される。
EFFECT OF THE INVENTION Conventionally, since the mechanical speed V P = KN calculated from the rotational speed N of the propulsion machine is used as the speed output V T , the true speed V of the running body 2 is its own during acceleration / deceleration. Due to the existence of the mass, a large calculation error occurred because it was considerably delayed from the change of the propulsion machine rotation speed N. However, in the present invention, since the detected speed V I of the inertial device 11 is the speed output V T , the calculation error is caused. Significantly reduced.

【0027】 従来は、定常走行時における速度出力
T もVP =KNより求めていたが、もともと定数Kは
縮小模型を試験して求めたものであり、実機との間に誤
差があり、更に各航走体ごとにばらつきが存在する。こ
れらの理由によって定常走行時にもかなりの速度算定誤
算が存在した。しかし、この発明では、慣性装置の検出
した加速度信号Aまた及び角速度ωは推進機関部12よ
り得られる増減速信号dN/dtとから増減速時と定常
走行時とを判別し、前者より後者に切り替わった時点t
* の慣性速度VI (t* )と回転速度N(t* )から補
正された係数K′=VI (t* )/N(t* )を各航走
体ごとに求め、このK′を用いて定常走行時の速度出力
T =VP ′=K′Nを求めている。従って従来の定数
K自身のもつ誤差に起因する算定誤差をなくすことがで
きる。
Conventionally, the velocity output V T during steady running was also obtained from V P = KN, but originally the constant K was obtained by testing a reduced model, and there was an error with the actual machine, Furthermore, there are variations for each of the vehicles. For these reasons, there was a considerable speed calculation error even during steady driving. However, in the present invention, the acceleration signal A and the angular velocity ω detected by the inertial device are distinguished from the acceleration / deceleration signal dN / dt obtained from the propulsion engine unit 12 during acceleration / deceleration and during steady running, and the former is changed to the latter. Point t when switching
* The inertial velocity V I (t *) and the rotation speed N (t *) from the corrected coefficients K 'determined = V I (t *) / N a (t *) for each Wataru Hashikarada, the K' Is used to determine the speed output V T = V P ′ = K′N during steady running. Therefore, the calculation error caused by the error of the conventional constant K itself can be eliminated.

【0028】慣性装置により速度を求める従来の方式
では、加速度計出力やジャイロ出力に含まれる誤差も一
緒に積分されるため、積分誤差が時間と共に増大する欠
点があったが、この発明では、比較的短時間の増減速時
にのみ慣性速度VI を用いるようにしたので、積分誤差
はかなり軽減される。しかも慣性速度VI は、比較的長
時間の定常走行時において、補正された速度出力VT
P ′=K′Nをリファレンス値として補正された慣性
速度VI ′に一致するように慣性装置が補正演算を実行
しているので、従来のような時間と共に増大する積分誤
差が除去された状態にある。従って、増減速時になれば
いつでも慣性速度VI を速度出力VT に用いることがで
き、しかもそれ以前の積分誤差の影響のない精度の高い
データが得られる。
In the conventional method for obtaining the velocity by the inertial device, the error contained in the accelerometer output and the gyro output is also integrated, so that there is a drawback that the integration error increases with time. Since the inertial velocity V I is used only during acceleration / deceleration for a relatively short time, the integration error is considerably reduced. Moreover, the inertial speed V I is corrected by the corrected speed output V T =
Since the inertial device performs the correction calculation so as to match the corrected inertial velocity V I ′ with V P ′ = K′N as the reference value, the integration error that increases with time as in the conventional case is removed. Is in a state. Therefore, the inertial velocity V I can be used as the velocity output V T at any time during acceleration / deceleration, and highly accurate data without the influence of the previous integration error can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の要部の動作波形図。FIG. 2 is an operation waveform diagram of a main part of FIG.

【図3】図1における要部の検出速度の時間的変化を示
す図。
FIG. 3 is a diagram showing a temporal change in the detection speed of a main part in FIG.

【図4】水中航走体に作用する推力Tと抵抗Fの原理的
な説明図。
FIG. 4 is a principle explanatory diagram of thrust T and resistance F acting on the underwater vehicle.

【図5】図4の推力T及び抵抗Fの走行速度Vに対する
変化特性を示す図。
5 is a diagram showing a change characteristic of the thrust T and the resistance F of FIG. 4 with respect to a traveling speed V.

【図6】慣性装置を水中航走体に搭載して速度を検出す
る従来例の原理的な説明図。
FIG. 6 is a principle explanatory view of a conventional example in which an inertial device is mounted on an underwater vehicle to detect speed.

【図7】推進機回転数N及び航走体の真の速度Vの時間
tに対する変化の一例を示す図。
FIG. 7 is a diagram showing an example of changes in the propulsion machine rotation speed N and the true speed V of the running body with respect to time t.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ジャイロスコープ、加速度計及び慣性デ
ータ演算部より成る慣性装置と、第1,第2速度補正部
及び走行状態判定部より成る速度計測部とから構成され
る水中航走体用速度計測装置であって、 前記ジャイロスコープは、3軸方向の回転角速度ωを検
出するものであり、 前記加速度計は、前記3軸方向の加速度Aを検出するも
のであり、 前記慣性データ演算部は、前記加速度A及び角速度ωと
から水中航走体の速度(慣性速度と言う)VI を演算し
て、前記第1速度補正部に入力すると共に、各定常走行
期間において、前記第1速度補正部より入力される補正
された慣性速度VI ′をリファレンス値として更に補正
した慣性速度VI を演算するものであり、 前記走行状態判定部は、前記加速度A及び角速度ωまた
は水中航走体の推進機関部で得られる増減速信号(dN
/dt;Nは推進機の回転速度)より水中航走体の増減
速期間と定常走行期間とを判別して、その判別信号を前
記第1,第2速度補正部に入力するものであり、 前記第1速度補正部は、各加減速期間において前記慣性
データ演算部より入力される前記慣性速度VI を装置外
部に出力し、各定常走行期間において、前記第2速度補
正部で得られる補正した機械的速度VP ′(前記回転速
度Nより求めた速度を機械的速度と言い、VP で表す)
をリファレンス値として更に補正した慣性速度VI ′を
演算して、前記慣性データ演算部に入力するものであ
り、 前記第2速度補正部は、各定常走行期間において、前記
機械的速度VP =KN(Kは係数)を、前記慣性速度V
I を用いて補正した機械的速度VP ′を演算して、装置
外部に出力するものであることを特徴とする、 水中航走体用速度計測装置。
1. An underwater vehicle speed including an inertial device including a gyroscope, an accelerometer, and an inertial data calculation unit, and a speed measurement unit including first and second speed correction units and a running state determination unit. A measuring device, wherein the gyroscope detects a rotational angular velocity ω in three axis directions, the accelerometer detects an acceleration A in the three axis directions, and the inertia data calculation unit , V of the underwater vehicle (referred to as inertial velocity) V I is calculated from the acceleration A and the angular velocity ω and input to the first velocity correction unit, and the first velocity correction is performed in each steady traveling period. The corrected inertial velocity V I ′ input from the section is used as a reference value to calculate the corrected inertial velocity V I. The traveling state determination unit calculates the acceleration A and the angular velocity ω or the underwater vehicle. Guess Acceleration and deceleration signal obtained by the engine unit (dN
/ Dt; N is the rotational speed of the propulsion unit) and determines the acceleration / deceleration period of the underwater vehicle and the steady running period, and inputs the determination signal to the first and second speed correction units, The first speed correction unit outputs the inertial speed V I input from the inertial data calculation unit to the outside of the device during each acceleration / deceleration period, and the correction obtained by the second speed correction unit during each steady running period. Mechanical speed V P ′ (speed obtained from the rotation speed N is called mechanical speed and is represented by V P ).
Is further used as a reference value to calculate an inertial speed V I ′, which is input to the inertial data calculation unit. The second speed correction unit, in each steady traveling period, mechanical speed V P = Let KN (K is a coefficient) be the inertial velocity V
An underwater vehicle speed measuring device, characterized in that it calculates a mechanical speed V P ′ corrected using I and outputs it to the outside of the device.
【請求項2】 請求項1記載の水中航走体用速度計測装
置において、前記第2速度補正部がi番目(i=1,
2,3…)の定常走行期間の最初の時点ti *におい
て、前記慣性速度VI (ti * )と前記回転速度N(t
i * )から、補正した係数Ki ′=VI (ti * )/N
(ti * )を求め、その係数Ki ′を用いて各定常走行
期間における前記補正した機械的速度VP ′=Ki ′N
を演算することを特徴とする。
2. The underwater vehicle speed measurement device according to claim 1, wherein the second speed correction unit is i-th (i = 1,
2, 3 ...) At the first time point t i * of the steady traveling period, the inertial speed V I (t i * ) and the rotational speed N (t
From i * ), the corrected coefficient K i ′ = V I (t i * ) / N
(T i * ) is calculated, and the corrected mechanical speed V P ′ = K i ′ N in each steady running period is calculated using the coefficient K i ′.
Is calculated.
【請求項3】 請求項1記載の水中航走体用速度計測装
置において、前記第2速度補正部が、1番目の定常走行
期間の最初の時点t1 * において、慣性速度VI (t1
* )と回転速度N(t1 * )から補正した係数K1 ′=
I (t1 *)/N(t1 * )を求め、その係数K1
を共通に用いて、各定常走行期間における前記補正した
機械的速度VP ′=K1 ′Nを演算することを特徴とす
る。
3. The underwater vehicle speed measuring device according to claim 1, wherein the second speed correction unit is configured to inertial speed V I (t 1) at a first time point t 1 * of a first steady running period.
* ) And the rotational speed N (t 1 * ) corrected coefficient K 1 ′ =
V I (t 1 * ) / N (t 1 * ) is obtained and its coefficient K 1
Is commonly used to calculate the corrected mechanical speed V P ′ = K 1 ′ N in each steady running period.
【請求項4】 請求項1乃至3のいずれかに記載の水中
航走体用速度計測装置において、前記慣性データ演算部
が、航走体の姿勢角、方位角または位置を演算して外部
に出力できることを特徴とする。
4. The underwater vehicle speed measuring device according to claim 1, wherein the inertial data calculation unit calculates an attitude angle, an azimuth angle, or a position of the vehicle and outputs the data to the outside. It is characterized by being able to output.
JP6025538A 1994-02-23 1994-02-23 Underwater vehicle speed measurement device Expired - Fee Related JP2733598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6025538A JP2733598B2 (en) 1994-02-23 1994-02-23 Underwater vehicle speed measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6025538A JP2733598B2 (en) 1994-02-23 1994-02-23 Underwater vehicle speed measurement device

Publications (2)

Publication Number Publication Date
JPH07234235A true JPH07234235A (en) 1995-09-05
JP2733598B2 JP2733598B2 (en) 1998-03-30

Family

ID=12168787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6025538A Expired - Fee Related JP2733598B2 (en) 1994-02-23 1994-02-23 Underwater vehicle speed measurement device

Country Status (1)

Country Link
JP (1) JP2733598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224863A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Position attitude control device and method for underwater traveling vessel
JP2012180024A (en) * 2011-03-02 2012-09-20 Ihi Corp Method and apparatus for automatically confirming operation of underwater sailing body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068838B1 (en) * 2010-07-19 2011-09-30 국방과학연구소 Apparatus and method for processing output signal error in accelerometer
KR101068837B1 (en) * 2010-07-19 2011-09-30 국방과학연구소 Apparatus and method for correcting output signal error in accelerometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224863A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Position attitude control device and method for underwater traveling vessel
JP4563209B2 (en) * 2005-02-18 2010-10-13 株式会社日立製作所 Position and orientation control apparatus and position and orientation control method for underwater vehicle
JP2012180024A (en) * 2011-03-02 2012-09-20 Ihi Corp Method and apparatus for automatically confirming operation of underwater sailing body

Also Published As

Publication number Publication date
JP2733598B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US7254998B2 (en) Method for determining drag characteristics of aircraft and system for performing the method
JP4321554B2 (en) Attitude angle detection device and attitude angle detection method
JP4447791B2 (en) Aircraft attitude determination apparatus having a gyrometer and an accelerometer
JPH09304091A (en) Navigator
EP1856478A2 (en) Methods and systems utilizing true airspeed to improve vertical velocity accuracy
JPH07234235A (en) Velocity measuring apparatus for submerged navigating body
JP3436722B2 (en) Control device
JP4517258B2 (en) Underwater vehicle and its direction and attitude angle detection method
JP2913122B2 (en) Strap down gyro device
JP2843904B2 (en) Inertial navigation system for vehicles
US6085149A (en) Integrated inertial/VMS navigation solution
JPH0611354A (en) Method and equipment for setting initial coordinate values of inertia detecting means of moving body
JPH11295335A (en) Detecting apparatus for position of moving body
RU2003105730A (en) METHOD OF STABILIZING ON THE ROLL OF AN INERTIAL PLATFORM FOR RAPID FACILITIES AND THE STABILIZED BY THE ROLL INERTIAL PLATFORM
JP3919911B2 (en) Azimuth and orientation reference device
JP6632727B2 (en) Angle measuring device
JP2003139536A (en) Declinometer and azimuth measuring method
JPH06201863A (en) Strapped-down attitude detection apparatus
JP3189026B2 (en) Aircraft attitude control device
JP7388522B1 (en) Yaw rate control device, yaw rate control method and program
JPH06207830A (en) Apparatus and method for measuring shape of roadway
JP2888271B2 (en) Unmanned flying object attitude control device
JPS5927199A (en) Automatic steering system of missile
JPH0843423A (en) Method and device for detecting acceleration and the like
JPH05248882A (en) Inertia device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees