JPH0611354A - Method and equipment for setting initial coordinate values of inertia detecting means of moving body - Google Patents

Method and equipment for setting initial coordinate values of inertia detecting means of moving body

Info

Publication number
JPH0611354A
JPH0611354A JP17076492A JP17076492A JPH0611354A JP H0611354 A JPH0611354 A JP H0611354A JP 17076492 A JP17076492 A JP 17076492A JP 17076492 A JP17076492 A JP 17076492A JP H0611354 A JPH0611354 A JP H0611354A
Authority
JP
Japan
Prior art keywords
inertial
moving
detection means
missile
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17076492A
Other languages
Japanese (ja)
Other versions
JP3162187B2 (en
Inventor
Hiroshi Takagi
博 高木
Shinsuke Matsumoto
信介 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Precision Co Ltd filed Critical Mitsubishi Precision Co Ltd
Priority to JP17076492A priority Critical patent/JP3162187B2/en
Publication of JPH0611354A publication Critical patent/JPH0611354A/en
Application granted granted Critical
Publication of JP3162187B2 publication Critical patent/JP3162187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To set initial coordinate values of navigation of an inertia detecting means of a moving body by a method wherein motion of shaking, rotation or the like is given to a moving body from a moving parent body, the motion is detected by the inertia detecting means of the moving body and the moving parent body and a detected value of the moving body is corrected with the detected value of the moving parent body used as a reference. CONSTITUTION:Acceleration is given to an inertial navigation system (MINS) 18 of a missile by shaking or rotating a missile launcher 10 intentionally, and this acceleration is detected by an accelerometer which the MINS 18 has. An inertial navigation system (SINS) 12 is installed in the vicinity of the center of shaking or rotation of the launcher and it can measure the acceleration of the launcher precisely. Based on a detected value of the SINS 12, accordingly, an acceleration vector at the time of roll to be detected at the position of the MINS 18 can be obtained by computation precisely from the relative positional relationship between the SINS 12 and the MINS 18. Three orthogonal coordinate axes of acceleration vectors of the SINS 12 and the MINS 18 thus obtained are compared and a difference value of each coordinate axis is set correctively in the MINS 18 as a corrective value for the MINS 18 and stored therein as an initial coordinate value. Using as references the coordinate values thus obtained, the missile 16 can fly to a target point correctly from a warship 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航法座標系内を移動す
る移動体に搭載された慣性検出手段(通常はジャイロス
コープや加速度計を具備した慣性航法装置からなり、慣
性航法に必要な位置、速度、加速度、角度、角速度、角
加速度等の物理量を検出する検出手段である)の初期座
標値を設定する方法と装置に関し、特に、ミサイルのよ
うな飛翔体から成る移動物体が船舶や、航空機等の母体
(これも航法座標系内を移動するので移動母体と言う)
から飛翔する場合における当該移動体に搭載された慣性
検出手段の座標軸(x軸、y軸、z軸の3軸系)の初期
値、具体的にはノーススレーブ局地水平座標系(X:
北、Y:東、Z:鉛直方向下側)を基準の航法座標系と
したとき、同基準航法座標に対する当該移動物体側の座
標軸であるx軸、y軸、z軸の初期の角度関係を検知
し、初期値として設定すれば、移動体は基準航法座標系
内で移動し、航行することができることに鑑みて、所望
時間における移動体側の座標系の初期値設定を短時間内
に行う方法と装置に関するのもである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inertial detecting means (usually an inertial navigation device equipped with a gyroscope and an accelerometer) mounted on a moving body which moves in a navigation coordinate system. , A velocity, acceleration, angle, angular velocity, angular acceleration, etc.) is a detection means for detecting a physical quantity) and a method and apparatus for setting initial coordinate values, particularly, a moving object such as a missile is a ship, A mother body of an aircraft (also called a moving mother body because it also moves in the navigation coordinate system)
Initial values of the coordinate axes (three-axis system of x-axis, y-axis, and z-axis) of the inertial detection means mounted on the moving body when flying from, specifically, the north slave local horizontal coordinate system (X:
When north, Y: east, Z: vertically downward) is used as a reference navigation coordinate system, the initial angular relationship of the x-axis, y-axis, and z-axis, which are the coordinate axes on the moving object side, with respect to the reference navigation coordinate A method for performing initial value setting of the coordinate system on the moving body side at a desired time within a short time in view of the fact that the moving body can move and navigate within the reference navigation coordinate system if detected and set as the initial value. And the device.

【0002】[0002]

【従来の技術】例えば、ミサイルを移動体の例にとる
と、ミサイルは一般に、電源投入後から発射するまでの
時間ができる限り短時間であることが望ましいために、
ミサイル内の慣性航法装置は、航法のため各種センサ
(ジャイロや加速度計等)の駆動系モータの回転数ラン
アップを含めたウォームアップと座標系の初期値の設定
を素早く行う必要があることは従来から認識されてい
る。
2. Description of the Related Art For example, taking a missile as an example of a moving body, it is generally desirable that the time from power-on to launch is as short as possible.
For the inertial navigation system in the missile, it is necessary to quickly set the warm-up including the rotational speed run-up of the drive system motor of various sensors (gyro, accelerometer, etc.) and the initial value of the coordinate system for navigation. It has been recognized from the past.

【0003】[0003]

【発明が解決しようとする課題】従来、地球の自転に伴
う方向変位をジャイロにより検出する所謂、ジャイロコ
ンパシングを使用して方位(航法座標系空間において北
に対する水平面内の角度)を、又地球重力に対する方向
変位を加速度計により検出する所謂、レベリングを使用
して2軸(水平面)の角度をそれぞれ得ていたが、移動
体の動きが全くない場合でも初期値設定に数分〜数十分
を要し(移動体の動きがある場合には、この数倍)、ま
た、精度も良くなかった。特に方位に就いてはこの傾向
が著しかった。
Conventionally, so-called gyro-compassing, which detects the directional displacement due to the rotation of the earth by a gyro, is used to determine the azimuth (the angle in the horizontal plane to the north in the navigation coordinate system space) and the earth. The angle of two axes (horizontal plane) was obtained using so-called leveling, which detects the directional displacement with respect to gravity, using the so-called leveling, but even if there is no movement of the moving body, it takes several minutes to several tens of minutes to set the initial value. (It is several times this when there is a movement of the moving body), and the accuracy was not good. Especially in the direction, this tendency was remarkable.

【0004】また、移動母体に基準となる慣性航法装置
を設けている場合は、上述の方法で航法空間における基
準航法座標系に関する移動母体、例えば、船の座標値は
得られるが、目的とするミサイルに搭載された慣性装置
の座標系と船の座標系との関係を定めることが、ミサイ
ル搭載の慣性装置が具備するセンサの入力軸とミサイル
を船に取付ける取付部との角度が決めにくい等の理由に
より構造的に難しいという問題がある。依って、本発明
の目的は、上述した従来の技術が遭遇した問題点を解決
せんとするものである。
Further, when an inertial navigation device serving as a reference is provided on the moving base, the coordinate values of the moving base, for example, the ship, with respect to the reference navigation coordinate system in the navigation space can be obtained by the above-mentioned method, but it is intended. Determining the relationship between the coordinate system of the inertial device mounted on the missile and the coordinate system of the ship makes it difficult to determine the angle between the input shaft of the sensor of the inertial device mounted on the missile and the mounting part for mounting the missile on the ship. There is a problem that it is structurally difficult for the reason. Therefore, the object of the present invention is to solve the problems encountered by the above-mentioned conventional techniques.

【0005】[0005]

【課題を解決するための手段】本発明は上述の発明の目
的に鑑み、慣性航法に必要な物理量や慣性力を検出する
慣性検出手段を有した移動体を移動母体に取付けて、そ
こから基準航法座標系内で航行させるとき、その移動体
に移動母体側から動揺又は回転等の動作を意図的に付与
してその動作を移動体と移動母体の夫々の慣性検出手段
により検出し、移動母体側の検出値を基準にして移動体
側の検出値を補正し、移動体の慣性検出手段の航法座標
における初期座標値を設定するよにするものである。
In view of the above-mentioned object of the present invention, a moving body having an inertial detecting means for detecting a physical quantity or inertial force necessary for inertial navigation is attached to a moving mother body, and then a reference is provided from there. When navigating in the navigation coordinate system, a motion such as shaking or rotation is intentionally given to the moving body from the moving mother side, and the motion is detected by the inertia detecting means of each of the moving body and the moving mother, The detection value on the moving body side is corrected on the basis of the detection value on the side, and the initial coordinate value in the navigation coordinates of the inertial detection means of the moving body is set.

【0006】すなわち、本発明によれば、慣性航法デー
タ検出用の第1の慣性検出手段を有した移動母体に搭載
され、その移動母体から分離移動する移動体の慣性航法
データ検出用の第2の慣性検出手段の基準航法座標の初
期座標値を設定する方法において、上記移動体が分離移
動するまえに上記基準航法座標内で生じた上記移動母体
の動作による加速度データを該移動母体が有する上記第
1の慣性検出手段により検出し、同時に上記移動体が有
する上記第2の慣性検出手段により上記移動母体の動作
による加速度データを検出し、上記基準航法座標におけ
る上記第1、第2の両慣性検出手段相互間の相対的位置
偏差の既知量から上記第2の慣性検出手段により検出す
べき上記動作による加速度データを演算データとして演
算し、前記演算データに対する上記第2の慣性検出手段
により実際に検出した上記加速度データの差分を演算
し、これより上記航法座標における初期座標値を求めて
上記第2の慣性検出手段に記憶させるようにした移動体
の慣性手段の初期座標値設定方法が提供される。
That is, according to the present invention, a second inertial navigation data detecting unit for a moving body mounted on a moving mother body having a first inertial detecting means for detecting inertial navigation data and moving separately from the moving mother body. In the method for setting the initial coordinate value of the reference navigation coordinate of the inertia detection means, the moving mother body has acceleration data generated by the movement of the moving mother body within the reference navigation coordinate before the moving body separates and moves. The first inertial detecting means detects the acceleration data due to the movement of the moving mother body by the second inertial detecting means of the moving body, and simultaneously detects the first and second inertial points in the reference navigation coordinates. From the known amount of relative position deviation between the detection means, the acceleration data by the above-mentioned motion to be detected by the second inertial detection means is calculated as calculation data, and the calculation data is calculated. A mobile body that calculates the difference between the acceleration data actually detected by the second inertial detection means with respect to the data, obtains the initial coordinate value in the navigation coordinates from this, and stores the initial coordinate value in the second inertial detection means. An initial coordinate value setting method for the inertial means is provided.

【0007】本発明によれば、また、移動母体に具備さ
れ、該移動母体に発生した基準航法座標内における回転
運動による加速度データを検出する第1の慣性検出手段
と、上記移動母体上に搭載されて該移動母体から分離移
動可能な移動体に具備される共に上記移動母体に発生し
た回転運動に伴う上記移動体の回転運動による加速度デ
ータを検出する第2の慣性検出手段と、上記第1慣性検
出手段と上記第2慣性検出手段との基準航法座標におけ
る相対的位置の差の既知量から上記第2の慣性検出手段
で検出した該移動体の回転運動に伴う加速度データの補
正値を演算する演算手段と、上記演算手段の演算した補
正値に基づいた上記第2の慣性検出手段の航法座標の補
正値を上記第2の慣性検出手段に上記基準航法座標にお
ける初期値として設定する補正手段とを具備して構成さ
れ、移動体が移動母体から分離移動する前に上記第2慣
性検出手段に関する基準航法座標内における初期座標値
の設定をおこなう移動体の慣性手段の初期座標値設定装
置が提供される。以下、本発明を添付図面に示す実施例
に基づいて、更に詳細に説明する。
According to the present invention, there is further provided a first inertial detecting means, which is provided on the moving mother body and detects acceleration data due to a rotational motion within the reference navigation coordinates generated on the moving mother body, and is mounted on the moving mother body. A second inertial detection means that is provided on a movable body that can be separated from the movable mother body, and that detects acceleration data due to the rotational movement of the movable body that accompanies the rotational movement that occurs in the movable mother body; A correction value of acceleration data associated with the rotational movement of the moving body detected by the second inertial detection means is calculated from the known amount of the relative position difference between the inertial detection means and the second inertial detection means in the reference navigation coordinates. And a correction value of the navigation coordinates of the second inertial detection means based on the correction value calculated by the calculation means as an initial value in the reference navigation coordinates in the second inertial detection means. And an initial coordinate of the inertial means of the moving body for setting the initial coordinate value in the reference navigation coordinates for the second inertial detection means before the moving body separates from the moving base body. A value setting device is provided. Hereinafter, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings.

【0008】[0008]

【実施例】本発明を、移動母体を形成するミサイル発射
艦に搭載され、そこから発射されるミサイルを移動体と
する実施例に適用する場合に就いて図面を参照して説明
する。添付図面において、図1は、本発明の適用実施例
としてミサイルの慣性航法装置(以下、これをMINSと呼
称する)の初期座標値設定装置を構成する慣性航法装置
(以下、これをSINSと呼称する)を備えたミサイル発射
艦の略示機構図であり、図2は、同ミサイル発射艦のミ
サイル発射塔部分を拡大図示したIIーII矢視図、図3
は、移動母体であるミサイル発射艦の慣性航法装置、つ
まり、MINSと移動体であるミサイルの慣性航法装置、つ
まり、MINSとの内部構成と信号送受信経路とを示したブ
ロック図、図4は、基準航法座標系を説明する図、図5
は、移動母体であるミサイル発射艦にローリングが与え
られたときに、移動体であるミサイルの慣性航法装置で
あるMINSに作用する加速度を図解する説明図、図6は、
基準航法座標における実測加速度と演算加速度との関係
及び差値を説明する説明図、図7と図8は、基準航法座
標におけるMINSの初期座標値を設定するプロセスのフロ
ーチャート、図9は、移動母体を航空機、移動体を空対
空或いは空対艦ミサイル等とした場合の慣性航法装置の
配置、構成を示した略示図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case where the present invention is applied to an embodiment in which a missile launched from a missile launching ship forming a moving mother body is used as a moving body will be described with reference to the drawings. In the accompanying drawings, FIG. 1 shows an inertial navigation system (hereinafter referred to as SINS) which constitutes an initial coordinate value setting device of a missile inertial navigation system (hereinafter referred to as MINS) as an application example of the present invention. FIG. 2 is an enlarged view of a missile launcher equipped with a missile launcher, and FIG.
Is a block diagram showing the inertial navigation system of the missile launching ship, which is a moving body, that is, the MINS and the inertial navigation system of the missile that is a moving body, that is, the internal configuration and the signal transmission / reception path with the MINS, and FIG. Figure explaining the standard navigation coordinate system, Figure 5
Is an explanatory diagram illustrating the acceleration acting on the MINS which is the inertial navigation system of the missile which is a moving body when rolling is given to the missile launcher which is a moving body.
FIG. 7 and FIG. 8 are flow charts of the process of setting the initial coordinate values of MINS in the standard navigation coordinates, and FIG. 9 is the moving matrix. 2 is a schematic diagram showing the arrangement and configuration of an inertial navigation device when the vehicle is an aircraft and the moving body is an air-to-air or air-to-ship missile.

【0009】さて、図1、図2において、ミサイル発射
艦10は艦内にSINS12を有し、ノーススレーブ局地水
平座標系(X;北方向、Y;東方向、Z;局地鉛直方
向)を基準航法座標系として同航法座標内をSINS12で
航法データを検出しながら航行する。上記SINS12は、
そのx,y,z軸を直交3座標軸として有し、ミサイル
発射艦10内の定位置に搭載、保持されている。また、
ミサイル発射艦10のミサイル発射塔14には移動体と
してのミサイル16がミサイル発射艦10から分離移
動、つまり、目的地点へ向けて飛翔可能に搭載され、同
ミサイル16にはMINS18が格納、搭載されている。こ
のMINS18もxm,ym,zmの直交3座標軸を有し、
ミサイル発射塔14に搭載、固定されているときは、MI
NS18の上記直交座標軸の原点とSINS12の直交座標軸
の原点との艦上における相対的位置差のデータは航法座
標内の既知データとしてミサイル発射艦10の設計、製
作時点から把握されている。
1 and 2, the missile launch ship 10 has a SINS 12 in the ship and has a north slave local horizontal coordinate system (X: north direction, Y: east direction, Z: local vertical direction). SINS 12 navigates within the same navigation coordinates as the standard navigation coordinate system while detecting navigation data. The above SINS12 is
It has the x, y, and z axes as three orthogonal coordinate axes, and is mounted and held at a fixed position in the missile launch ship 10. Also,
In the missile launch tower 14 of the missile launch ship 10, a missile 16 as a moving body is mounted separately from the missile launch ship 10 so that the missile 16 can fly to a destination, and the missile 16 stores and mounts a MINS 18. ing. This MINS 18 also has three orthogonal coordinate axes of xm, ym and zm,
When mounted on the missile launch tower 14 and fixed, MI
The data of the relative position difference on the ship between the origin of the orthogonal coordinate axes of NS18 and the origin of the orthogonal coordinate axes of SINS12 is known as known data in the navigation coordinates from the time of designing and manufacturing the missile launch ship 10.

【0010】本発明の基本的技術思想は、ミサイル発射
艦10を意図的に動揺または回転させ、(例えば、ロー
リングさせるが、海上における波動の影響で自然発生す
る動揺を意図的に利用してもよい)MINS18に加速度を
加え、この加速度を同MINS18が有する加速度計(図示
なし)により検出する。この場合に、MINS内のジャイロ
(図示なし)を使用してローリングの角速度を検知し、
上記加速度計の場合と同様の手順でMINS18の初期座標
値を設定する方法もあるが、加速度計の方が計測できる
ようになるまでの準備時間がジャイロより格段に短い。
つまり、加速度計ではジャイロの場合におけるジャイロ
回転駆動用モータのランアップ時間に相当する始動準備
時間が無く、電源を入れたら直ちに計測可能であり、故
に、短時間で初期値を得る目的には有利である。
The basic technical idea of the present invention is to intentionally rock or rotate the missile launch ship 10 (for example, to roll the missile launch ship 10 but to intentionally use the rocking that naturally occurs due to the influence of waves at sea). Good) An acceleration is applied to the MINS 18, and this acceleration is detected by an accelerometer (not shown) included in the MINS 18. In this case, the gyro (not shown) in MINS is used to detect the angular velocity of rolling,
There is also a method of setting the initial coordinate values of the MINS 18 in the same procedure as in the case of the accelerometer, but the accelerometer requires a much shorter preparation time than the gyro.
In other words, the accelerometer has no start preparation time equivalent to the run-up time of the gyro rotation drive motor in the case of a gyro, and measurement can be performed immediately after turning on the power. Therefore, it is advantageous for the purpose of obtaining the initial value in a short time. Is.

【0011】他方、上述のように、ミサイル発射艦10
には船を航法座標系で目的地点から他の目的地点へ航行
する場合の航法基準装置としてSINS12が搭載されてお
り、かつ、ミサイル発射艦10のSINS12は、実際に
は、高精度を保つため、艦の運動による加速度外乱の少
ない重心付近及び/又は動揺・回転中心付近に設置さ
れ、艦の角速度を精度良く、測定できるようにしている
ので、このSINS12の検出値によりMISN18の位置で検
出されるべきローリング時の加速度ベクトルをSINS1
2、MINS18間の相対位置関係から演算により精度良く
得ることができる。このミサイル発射艦10のSINS12
で演算により得られる加速度データは、元々船舶航法の
高精度を保証するように製造されているSINS12の精度
上から、ミサイル16自体のMINS18の検出値から得ら
れる加速度データに比べて格段に精度が高く、十分にミ
サイル16のMINS18の初期座標値設定の基準として使
えるものである(以下、基準加速度ベクトルと言う)。
On the other hand, as described above, the missile launch ship 10
Is equipped with SINS12 as a navigation reference device for navigating a ship from a destination to another destination in the navigation coordinate system, and the SINS12 of the missile launcher 10 is actually designed to maintain high accuracy. Since it is installed near the center of gravity and / or near the center of sway / rotation where there is little acceleration disturbance due to the motion of the ship so that the angular velocity of the ship can be measured with high accuracy, the value detected by this SINS12 is detected at the position of MISN18. SINS1 is the acceleration vector during rolling.
2. It can be obtained with high accuracy by calculation from the relative positional relationship between the MINS 18. SINS 12 of this missile launch ship 10
The acceleration data obtained by the calculation is much more accurate than the acceleration data obtained from the detection value of the MINS 18 of the missile 16 itself because of the accuracy of the SINS 12 which was originally manufactured to guarantee the high accuracy of ship navigation. It is high and can be used sufficiently as a reference for setting the initial coordinate value of the MINS 18 of the missile 16 (hereinafter referred to as reference acceleration vector).

【0012】こうして得た基準加速度ベクトルの直交3
座標軸に対し、ミサイル16のMINS18で検出した加速
度ベクトルの直交3座標軸を比較し、その各座標軸にお
ける差値をMINS18の補正値として当該MINS18内に補
正設定し、初期座標値として記憶させれば、その初期座
標値を基準にしてミサイル16はミサイル発射艦10か
ら飛翔する際に、設定される飛翔目的点までの航法デー
タを利用して正確に目的地点まで飛翔することができる
のである。なお、第1図に示した艦のローリングは艦の
前後軸をX方向(北)に向けてローリングした場合の例
を示したものである。
Orthogonal 3 of the reference acceleration vector thus obtained
If the three orthogonal coordinate axes of the acceleration vector detected by the MINS 18 of the missile 16 are compared with the coordinate axes, and the difference value in each coordinate axis is corrected and set in the MINS 18 as the correction value of the MINS 18, and stored as the initial coordinate value, When the missile 16 flies from the missile launch ship 10 based on the initial coordinate values, it can accurately fly to the destination using the navigation data up to the set flight destination. The rolling of the ship shown in FIG. 1 is an example in which the longitudinal axis of the ship is rolling in the X direction (north).

【0013】ここで、図3を参照すると、SINS12とMI
NS18との内部構成及びその通信経路がブロック図によ
り示されている。同図3に示すように、ミサイル発射艦
10のSINS12は慣性検出部30、演算処理部(CPU)3
2、データメモリとプログラムメモリとを有したメモリ
部34、信号インターフェイス36とを有して構成さ
れ、また、ミサイル16のMINS18も同様に慣性検出部
40、演算処理部(CPU)42、データメモリとプログラ
ムメモリとを有したメモリ部44、信号インターフェイ
ス6とを有して構成され、両信号インターフェイス3
6、46が相互に信号授受が可能なように接続された通
信経路を有している。そして、各慣性検出部30、40
からは夫々の対応の演算処理部32、42へ航法データ
としての角速度や加速度等の計測データが入力される構
成にある。故に上述した航法データの実測と演算とを実
行することができるのである。
Referring now to FIG. 3, SINS 12 and MI
The internal structure of the NS 18 and its communication path are shown by a block diagram. As shown in FIG. 3, the SINS 12 of the missile launch ship 10 includes an inertia detection unit 30 and an arithmetic processing unit (CPU) 3
2, a memory unit 34 having a data memory and a program memory, and a signal interface 36, and the MINS 18 of the missile 16 similarly has an inertial detection unit 40, an arithmetic processing unit (CPU) 42, and a data memory. And a program interface, and a memory unit 44 having a program memory and a signal interface 6.
Reference numerals 6 and 46 have communication paths connected to each other so that signals can be exchanged. Then, each inertial detection unit 30, 40
In this configuration, measurement data such as angular velocity and acceleration as navigation data are input to the corresponding arithmetic processing units 32 and 42. Therefore, the above-mentioned actual measurement and calculation of the navigation data can be executed.

【0014】さて、図4に示すように、基準航法座標系
を便宜的にSINS12の航法座標系(X:北方向、Y:東
方向、Z:重力方向)と、MINS18の航法座標系(x:
北方向、y:東方向、z:重力方向)とに分けて考察す
ると、上述したミサイル発射艦10に発生したX軸を回
転軸としたローリングは、SINS12にもMINS18にも同
効果として作用するので、図4のX軸、x軸回りに同時
に作用する角速度ωsであると解することができる。
As shown in FIG. 4, the navigation coordinate system of SINS 12 (X: north direction, Y: east direction, Z: gravity direction) and the navigation coordinate system of MINS 18 (x :
Considering it separately in the north direction, y: east direction, and z: gravity direction, the rolling with the X axis as the rotation axis generated in the missile launch ship 10 acts on both SINS 12 and MINS 18 with the same effect. Therefore, it can be understood that the angular velocities ω s act simultaneously around the X axis and the x axis in FIG. 4.

【0015】このような角速度ωs の影響を考察する
と、図5は、ミサイル発射艦10に上記ローリングが発
生した場合に同艦10のミサイル発射塔14に停止して
いるミサイル16のMINS18に作用する加速度αcを図
解している。即ち、 αc =aωs 2 Sin ωs t ・・・( 1 ) ωs : ローリング周波数 2a : 弦の長さ 2 Φ: ローリング角度 なる(1)式が成立することが分かる。従って、この図
5の図解から、 αc =h×Φ×ωs 2 Sin ωs t ・・・(2) (hは、SINS12とMINS18とのミサイル発射艦10上
における高さ位置の差異を示す。)の等式(2)が成立
することが理解できる。
Considering the influence of such angular velocity ω s , FIG. 5 shows that when the rolling occurs in the missile launch ship 10, it acts on the MINS 18 of the missile 16 stopped in the missile launch tower 14 of the missile launch ship 10. The acceleration α c is illustrated. That, α c = aω s 2 Sin ω s t ··· (1) ω s: rolling frequency 2a: the chord length 2 [Phi: it can be seen that the rolling angle is (1) is established. Thus, the illustration of FIG. 5, α c = h × Φ × ω s 2 Sin ω s t ··· (2) (h is the difference in height on the missile ship 10 between SINS12 and MINS18 It can be understood that the equation (2) of (shown) holds.

【0016】ここで、上記(2)の等式の右辺側にある
〔Φ×ωS 2 Sin ωs t 〕は、SINS12の慣性検出部3
0の実測データに基づいて演算処理部32で演算するこ
とに依って得られるデータである。また、上記(2)式
の「h」は、SINS12のメモリ部34に既知のデータと
して予め記憶されている相対的位置の差のデータであ
る。故に、(2)式の左辺側の加速度αc の値は、SINS
12により、計測データに基づき演算で得られる値であ
る。他方、ミサイル16のMINS18の慣性検出部40に
よる実測した加速度をαmとすると、基準航法座標で
は、本来一致すべきものである。
[0016] Here, the (2) in right side of equation [Φ × ω S 2 Sin ω s t ] is the inertial sensor 3 of SINS12
This is data obtained by the calculation in the calculation processing unit 32 based on the measured data of 0. Further, “h” in the above equation (2) is relative position difference data stored in advance as known data in the memory unit 34 of the SINS 12. Therefore, the value of acceleration α c on the left side of equation (2) is SINS.
12 is a value obtained by calculation based on the measurement data. On the other hand, if the acceleration measured by the inertial detection unit 40 of the MINS 18 of the missile 16 is α m , the reference navigation coordinates should be the same.

【0017】従って、図6に示すように、αC とαm
が一致すべきときに、SINS12の演算処理部32で比較
したとき、両者の間に差値ΔΦ0 、Δx0 が有れば、MI
NS18の3軸系に就き、その航法座標系の3軸に対する
2軸の補正量としてΔΦ0 、Δx0 からXm,Zmの2
軸の初期値を求め、ま同様に艦10のピッチング入力
(図1、図2参照)を用いて補正量を求め、これにより
例えば、Xm,Ymの2軸の初期値を求め、求めた2組
の初期値から究極的にXm,Ym,Zmの初期座標値を
求めて、MINS18のメモリ部44のデータメモリに記憶
させて初期座標値の設定処理を終了するのである。
Therefore, as shown in FIG. 6, when α C and α m should match, when the arithmetic processing unit 32 of the SINS 12 compares them, there are difference values ΔΦ 0 and Δx 0 between them. For example, MI
As for the NS18 3-axis system, the correction amounts of the 2-axis relative to the 3-axis of the navigation coordinate system are ΔΦ 0 , Δx 0 to Xm, Zm 2
The initial values of the axes are obtained, and similarly, the correction amount is obtained using the pitching input of the ship 10 (see FIGS. 1 and 2), and thus the initial values of the two axes of Xm and Ym are obtained and obtained. Ultimately, the initial coordinate values of Xm, Ym, and Zm are obtained from the initial values of the set, stored in the data memory of the memory unit 44 of the MINS 18, and the setting process of the initial coordinate values is completed.

【0018】なお、図7は、上述したローリング等がミ
サイル発射艦10に発生又は付与されたとき、SINS12
とMINS18とにより実際の計測を行うと共にSINS12の
演算処理部32で演算を実行し、MINS18の座標3軸の
初期座標値設定の過程を説明したフローチャートであ
る。同フローチャートではMINS18の各2組の軸に関し
てそれぞれ座標値を求め、最終的に座標3軸の初期座標
値の設定を完了させる演算処理過程をステップ〜に
説明しているものである。
FIG. 7 shows SINS 12 when the above-described rolling or the like is generated or imparted to the missile launch ship 10.
3 is a flowchart for explaining the process of setting the initial coordinate values of the three coordinate axes of the MINS 18 by performing actual measurement by the MINS 18 and the MINS 18 and performing the calculation by the calculation processing unit 32 of the SINS 12. In the flowchart, the calculation processing steps for obtaining the coordinate values for each of the two sets of axes of the MINS 18 and finally completing the setting of the initial coordinate values for the coordinate three axes are described in steps 1 to 3.

【0019】なお、本発明においては、ミサイル発射艦
10の船としての剛性は構造上、十分に高く、変形(正
確にはSINS12とミサイル18との相対的変形)は必要
精度を得るためには、無視し得る値と考えるが、もし無
視できない場合には、その変形量を測定する測定手段、
例えば、レーザ光による測距、測角手段を設け、この測
定手段の測定結果による補正を上述したMINS18に関す
る基準加速度ベクトルの演算過程で加算演算することに
より、本発明か適用可能となる。
In the present invention, the rigidity of the missile launcher 10 as a ship is structurally sufficiently high, and the deformation (to be exact, the relative deformation between the SINS 12 and the missile 18) is required to obtain the required accuracy. , A value that can be ignored, but if it cannot be ignored, a measuring means for measuring the amount of deformation,
For example, the present invention can be applied by providing distance measuring and angle measuring means by laser light and performing addition calculation in the calculation process of the reference acceleration vector regarding the MINS 18 described above by correction based on the measurement result of the measuring means.

【0020】なお、図8は、移動母体が航空機であり、
移動体が同航空機に装填された空対空もしくは空対艦ミ
サイル等である実施例を示している。すなわち、地球重
力圏を航行する航空機の場合には、ノーススレーブ局地
水平座標系を基準航法座標系とすることが可能であり、
この場合も、航空機100 に具備された慣性検出手段103
と、当該航空機の翼101 に装着されたミサイル102 に具
備された慣性検出手段105 を夫々SINS、MINSとして通信
路104 で接続した構成にすれば、図1から図8に基づく
上述の説明による初期座標値の設定方法がそのまま適用
可能であることは言うまでもない。
In FIG. 8, the moving body is an aircraft,
An example is shown in which the moving body is an air-to-air or air-to-ship missile loaded on the same aircraft. That is, in the case of an aircraft navigating in the earth's gravity zone, it is possible to use the north slave local horizontal coordinate system as the reference navigation coordinate system,
Also in this case, the inertial detection means 103 provided in the aircraft 100
If the inertia detecting means 105 provided on the missile 102 mounted on the wing 101 of the aircraft are connected by the communication path 104 as SINS and MINS, respectively, the initial stage according to the above description based on FIGS. It goes without saying that the coordinate value setting method can be applied as it is.

【0021】[0021]

【発明の効果】本発明は、基準航法座標系におき、慣性
航法に必要な物理量や加速度データを検出する慣性検出
手段を有した移動体を移動母体に取付けて、そこから基
準航法座標系内で航行させるとき、その移動体に移動母
体側から動揺又は回転等の動作を意図的に付与又は発生
した動作を意図的に利用してその動作を移動体と移動母
体の夫々の慣性検出手段により検出し、移動母体側の加
速度データと移動体側の加速度データを比較、演算し、
移動体の慣性検出手段の基準航法座標における初期座標
値を設定するようにしたユニークな慣性検出手段の初期
座標値の設定が可能になり、しかも移動体の移動開始直
前にランアップ時間、つまり、準備時間の極めて短い加
速度計を水平方向の初期値設定ばかりでなく、方位の初
期値の設定に利用すると、慣性検出手段の初期座標値設
定の所要時間を格段に短縮することができるのである。
According to the present invention, a moving body having an inertial detecting means for detecting a physical quantity and acceleration data necessary for inertial navigation is attached to a moving base body in the reference navigation coordinate system, and then, in the reference navigation coordinate system. When navigating in, the motion is intentionally applied to the moving body from the moving mother side or the generated motion is intentionally used, and the motion is detected by the inertia detecting means of each of the moving body and the moving mother. Detect, compare and calculate the acceleration data on the moving body side and the acceleration data on the moving body side,
It becomes possible to set the initial coordinate value of the unique inertial detection means that sets the initial coordinate value in the reference navigation coordinates of the inertial detection means of the moving body, and moreover, the run-up time immediately before the start of the movement of the moving body, that is, If an accelerometer having a very short preparation time is used not only for setting the initial value of the horizontal direction but also for setting the initial value of the azimuth, the time required for setting the initial coordinate value of the inertial detecting means can be significantly shortened.

【0022】この結果、移動体は移動開始直前の短時間
の間に内蔵した慣性航法装置等の慣性検出手段の基準航
法座標における初期座標値を完了させ得るから、移動後
は基準航法座標系で目的位置までの移動精度が著しく向
上される効果をえることができる。即ち、例えば、ミサ
イル発射艦からミサイルを発射するとき、発射直前に予
め内蔵する慣性航法装置の初期座標値が正確に設定され
ているから、ミサイルの目的地点への到達及び命中精度
が大幅に向上されることになる。
As a result, since the moving body can complete the initial coordinate value in the reference navigation coordinates of the inertial detection means such as the inertial navigation device incorporated within a short time immediately before the start of movement, after the movement, the reference navigation coordinate system is used. It is possible to obtain the effect of significantly improving the movement accuracy to the target position. That is, for example, when launching a missile from a missile launcher, the initial coordinate values of the built-in inertial navigation system are set accurately just before launch, so that the missile reaches the destination point and the accuracy of the hit is greatly improved. Will be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の適用実施例としてミサイルの慣性航法
装置(MINS)の初期座標値設定装置を構成する慣性航法
装置(SINS) を備えたミサイル発射艦の略示機構図であ
る。
FIG. 1 is a schematic mechanical diagram of a missile launcher equipped with an inertial navigation system (SINS) that constitutes an initial coordinate value setting device of an inertial navigation system (MINS) for a missile as an application example of the present invention.

【図2】同ミサイル発射艦のミサイル発射塔部分を拡大
図示したIIーII矢視図である。
FIG. 2 is an enlarged view of the missile launching tower of the missile launching ship, taken along line II-II.

【図3】移動母体であるミサイル発射艦の慣性航法装
置、つまり、MINSと移動体であるミサイルの慣性航法装
置、つまり、MINSとの内部構成と信号送受信経路とを示
したブロック図である。
FIG. 3 is a block diagram showing an inertial navigation device of a missile launching ship that is a mobile host, that is, an MINS and an inertial navigation device of a missile that is a mobile object, that is, an internal configuration of the MINS and a signal transmission / reception path.

【図4】基準航法座標系を説明する図である。FIG. 4 is a diagram illustrating a reference navigation coordinate system.

【図5】移動母体であるミサイル発射艦にローリングが
与えられたときに、移動体であるミサイルの慣性航法装
置であるMINSに作用する加速度を図解する説明図であ
る。
FIG. 5 is an explanatory diagram illustrating acceleration acting on MINS which is an inertial navigation system for a missile which is a moving body when rolling is given to a missile launcher which is a moving body.

【図6】基準航法座標における実測加速度と演算加速度
との関係及び差値を説明する説明図である。
FIG. 6 is an explanatory diagram for explaining a relationship between a measured acceleration and a calculated acceleration in reference navigation coordinates and a difference value.

【図7】基準航法座標におけるMINSの初期座標値を設定
するプロセスのフローチャートの前半である。
FIG. 7 is the first half of the flowchart of the process of setting the initial coordinate values of the MINS in the reference navigation coordinates.

【図8】基準航法座標におけるMINSの初期座標値を設定
するプロセスのフローチャートの後半である。
FIG. 8 is the second half of the flowchart of the process of setting the initial coordinate values of MINS in the reference navigation coordinates.

【図9】移動母体を航空機、移動体を空対空ミサイルと
した場合の慣性航法装置の配置と構成を示した略示図で
ある。
FIG. 9 is a schematic diagram showing an arrangement and a configuration of an inertial navigation system when a moving body is an aircraft and a moving body is an air-to-air missile.

【符号の説明】[Explanation of symbols]

10…ミサイル発射艦 12…SINS 14…ミサイル発射塔 16…ミサイル 18…MINS 30…慣性検出部 32…演算処理部 34…メモリ 36…信号インターフェース 40…慣性検出部 42…演算処理部 44…メモリ 46…信号インターフェース 10 ... Missile launching ship 12 ... SINS 14 ... Missile launching tower 16 ... Missile 18 ... MINS 30 ... Inertia detecting section 32 ... Arithmetic processing section 34 ... Memory 36 ... Signal interface 40 ... Inertial detecting section 42 ... Arithmetic processing section 44 ... Memory 46 … Signal interface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 慣性航法データ検出用の第1の慣性検出
手段を有した移動母体に搭載され、その移動母体から分
離移動する移動体が有する慣性航法データ検出用の第2
の慣性検出手段の基準航法座標における初期座標値を設
定する方法において、 前記移動体が分離移動するまえに前記基準航法座標内で
生じた前記移動母体の動作による加速度データを該移動
母体が有する前記第1の慣性検出手段により検出し、 同時に前記移動体が有する前記第2の慣性検出手段によ
り前記移動母体の動作による加速度データを検出し、 前記基準航法座標における前記第1、第2の両慣性検出
手段相互間の相対的位置偏差の既知量から前記第2の慣
性検出手段により検出すべき前記動作による加速度デー
タを演算データとして演算し、 前記演算データに対する前記第2の慣性検出手段により
実際に検出した前記加速度データの差分を演算し、 これより前記航法座標における初期座標値を求めて前記
第2の慣性検出手段に記憶させることを特徴とした移動
体の慣性手段の初期座標値設定方法。
1. A second inertial navigation data detecting device, which is mounted on a moving body having a first inertial detecting means for detecting inertial navigation data, and which is included in a moving body that separates from the moving mother body.
In the method for setting the initial coordinate values in the reference navigation coordinates of the inertia detection means, the moving mother body has acceleration data due to the motion of the moving mother body occurring in the reference navigation coordinates before the moving body separates and moves. The first inertial detecting means detects the acceleration data by the movement of the moving mother body by the second inertial detecting means of the moving body, and simultaneously the first and second inertial points in the reference navigation coordinates are detected. Acceleration data due to the motion to be detected by the second inertial detection means is calculated as operation data from a known amount of relative position deviation between the detection means, and the second inertial detection means actually operates on the operation data. The difference between the detected acceleration data is calculated, and the initial coordinate value in the navigation coordinates is calculated from this difference and is recorded in the second inertial detection means. Initial coordinate value setting method for inertial means a moving body, characterized in that to.
【請求項2】 移動母体に具備され、該移動母体に発生
した基準航法座標内での回転運動による加速度データを
検出可能な第1の慣性検出手段と、 前記移動母体上に搭載されて該移動母体から分離移動可
能な移動体に具備される共に前記移動母体に発生した回
転運動に伴う前記移動体の回転運動による加速度データ
を検出可能な第2の慣性検出手段と、 前記第1慣性検出手段と前記第2慣性検出手段との基準
座標における相対的位置の差の既知量から前記第2の慣
性検出手段で検出した該移動体の回転運動に伴う加速度
データの補正値を演算可能な演算手段と、 前記演算手段が演算した補正値に基づく前記第2の慣性
検出手段の航法座標の補正値を該第2の慣性検出手段に
前記航法座標における初期値として設定する補正手段と
を、具備して構成され、移動体が移動母体から分離移動
するまえに前記第2慣性検出手段に関する基準航法座標
における初期座標値の設定をおこなうことを特徴とする
移動体の慣性手段の初期座標値設定装置。
2. A first inertial detection means, which is provided on a moving base and is capable of detecting acceleration data due to rotational movement within the reference navigation coordinates generated on the moving base, and mounted on the moving base to perform the movement. A second inertial detection unit that is provided in a movable body that can be separated from the mother body and that can detect acceleration data due to the rotational movement of the movable body that accompanies the rotational movement that occurs in the movable mother body; and the first inertial detection unit. And a calculation means capable of calculating a correction value of acceleration data associated with the rotational movement of the moving body detected by the second inertial detection means from a known amount of a relative position difference between the second inertial detection means and the second inertial detection means. And correction means for setting a correction value of the navigation coordinate of the second inertial detection means based on the correction value calculated by the calculation means to the second inertial detection means as an initial value in the navigation coordinate. hand An initial coordinate value setting device for inertial means of a moving body, which is configured to set an initial coordinate value in reference navigation coordinates related to the second inertial detection means before the moving body separates from the moving mother body.
【請求項3】 前記移動母体は、前記第1の慣性検出手
段を形成する船舶用慣性装置を備えたミサイル搭載艦で
あり、前記第2の慣性検出手段は、該ミサイル搭載艦に
搭載されたミサイルの慣性装置である請求項2に記載の
慣性装置座標系の初期値設定方法。
3. The missile-equipped ship, wherein the movable base is equipped with a ship inertial device forming the first inertial detection means, and the second inertial detection means is installed on the missile-equipped ship. The inertial device coordinate system initial value setting method according to claim 2, wherein the inertial device coordinate system is a missile inertial device.
JP17076492A 1992-06-29 1992-06-29 Method and apparatus for setting initial coordinate values of inertia detecting means of moving body Expired - Fee Related JP3162187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17076492A JP3162187B2 (en) 1992-06-29 1992-06-29 Method and apparatus for setting initial coordinate values of inertia detecting means of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17076492A JP3162187B2 (en) 1992-06-29 1992-06-29 Method and apparatus for setting initial coordinate values of inertia detecting means of moving body

Publications (2)

Publication Number Publication Date
JPH0611354A true JPH0611354A (en) 1994-01-21
JP3162187B2 JP3162187B2 (en) 2001-04-25

Family

ID=15910948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17076492A Expired - Fee Related JP3162187B2 (en) 1992-06-29 1992-06-29 Method and apparatus for setting initial coordinate values of inertia detecting means of moving body

Country Status (1)

Country Link
JP (1) JP3162187B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220791A (en) * 2010-04-08 2011-11-04 Japan Aviation Electronics Industry Ltd Inertial navigation system
CN103925917A (en) * 2014-05-05 2014-07-16 上海新跃仪表厂 System and method for measuring attitude angle rate signal of carrier rocket
CN106052686A (en) * 2016-07-10 2016-10-26 北京工业大学 Full-autonomous strapdown inertial navigation system based on DSPTMS 320F28335
CN106123921A (en) * 2016-07-10 2016-11-16 北京工业大学 Latitude the unknown Alignment Method of SINS under the conditions of dynamic disturbance
KR20170104623A (en) * 2015-10-13 2017-09-15 샹하이 화처 네비게이션 테크놀로지 엘티디. Initial alignment of inertial navigation devices
KR20190001831A (en) * 2017-06-28 2019-01-07 국방과학연구소 Method for calculating tilt angle of ins using roll rotation of launch tube and apparatus thereof
CN109163737A (en) * 2018-11-14 2019-01-08 哈尔滨工程大学 A kind of Transfer Alignment and device based on the sub- INS Closed-loop self checking of multichannel
CN114396965A (en) * 2022-01-17 2022-04-26 广州导远电子科技有限公司 Auxiliary calibration method and device for combined navigation unit and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330092B (en) * 2014-07-24 2017-08-04 南京理工大学 A kind of secondary Transfer Alignment switched based on dual model

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220791A (en) * 2010-04-08 2011-11-04 Japan Aviation Electronics Industry Ltd Inertial navigation system
CN103925917A (en) * 2014-05-05 2014-07-16 上海新跃仪表厂 System and method for measuring attitude angle rate signal of carrier rocket
KR20170104623A (en) * 2015-10-13 2017-09-15 샹하이 화처 네비게이션 테크놀로지 엘티디. Initial alignment of inertial navigation devices
CN106052686A (en) * 2016-07-10 2016-10-26 北京工业大学 Full-autonomous strapdown inertial navigation system based on DSPTMS 320F28335
CN106123921A (en) * 2016-07-10 2016-11-16 北京工业大学 Latitude the unknown Alignment Method of SINS under the conditions of dynamic disturbance
KR20190001831A (en) * 2017-06-28 2019-01-07 국방과학연구소 Method for calculating tilt angle of ins using roll rotation of launch tube and apparatus thereof
CN109163737A (en) * 2018-11-14 2019-01-08 哈尔滨工程大学 A kind of Transfer Alignment and device based on the sub- INS Closed-loop self checking of multichannel
CN109163737B (en) * 2018-11-14 2022-02-22 哈尔滨工程大学 Transfer alignment method and device based on multipath inertial navigation closed-loop self-checking
CN114396965A (en) * 2022-01-17 2022-04-26 广州导远电子科技有限公司 Auxiliary calibration method and device for combined navigation unit and electronic equipment

Also Published As

Publication number Publication date
JP3162187B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
CN101413800B (en) Navigating and steady aiming method of navigation / steady aiming integrated system
US6208937B1 (en) Method and apparatus for generating navigation data
CN106989761B (en) A kind of spacecraft Guidance instrumentation on-orbit calibration method based on adaptive-filtering
CN110926468A (en) Communication-in-motion antenna multi-platform navigation attitude determination method based on transfer alignment
CN109631952B (en) Method for calibrating installation error of attitude reference mirror of optical gyro component for spacecraft
JP3162187B2 (en) Method and apparatus for setting initial coordinate values of inertia detecting means of moving body
CN113340298A (en) Inertial navigation and dual-antenna GNSS external reference calibration method
CN108871323A (en) A kind of high-precision navigation method of the low cost inertial sensor under motor-driven environment
CN111141285B (en) Aviation gravity measuring device
JP2896407B1 (en) Inertial navigation device
JP2001141507A (en) Inertial navigation system
JP3313169B2 (en) Calibration method of set value of coordinate system of inertial reference device in moving object
JP3137438B2 (en) Initial coordinate value setting method for inertial detection means of moving object
CN114264302B (en) Inclination measuring device and method for initializing inertial navigation system thereof
CN113932803B (en) Inertial/geomagnetic/satellite integrated navigation system suitable for high-dynamic aircraft
CN112649001B (en) Gesture and position resolving method for small unmanned aerial vehicle
CN106323226B (en) A method of it measuring inertial navigation system using the Big Dipper and angle is installed with tachymeter
CN110017831B (en) Method for calculating aircraft attitude by geomagnetic information and sonar sensor
CN113703019A (en) Fault processing method of navigation system, electronic equipment and storage medium
JPH07234126A (en) Attitude angle detecting method for angular velocity sensor type attitude angle detector
US9671248B2 (en) Method for calibrating an inertial navigation system with a limited mechanical turning range
KR101990404B1 (en) Method for calculating tilt angle of ins using roll rotation of launch tube and apparatus thereof
JP2525072B2 (en) Method of initializing flying body guidance device
JP3368917B2 (en) Calibration method for inertial detection means of moving object
CN114963873B (en) Quick alignment method for rotary shell based on acceleration information

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110223

LAPS Cancellation because of no payment of annual fees