JPH07234181A - Spectral lighting equipment - Google Patents

Spectral lighting equipment

Info

Publication number
JPH07234181A
JPH07234181A JP4789994A JP4789994A JPH07234181A JP H07234181 A JPH07234181 A JP H07234181A JP 4789994 A JP4789994 A JP 4789994A JP 4789994 A JP4789994 A JP 4789994A JP H07234181 A JPH07234181 A JP H07234181A
Authority
JP
Japan
Prior art keywords
light
concave mirror
diffraction grating
sample
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4789994A
Other languages
Japanese (ja)
Other versions
JP2640212B2 (en
Inventor
Choichi Suga
長市 須賀
Yoji Watanabe
洋二 渡辺
Norihisa Shinohara
憲壽 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP4789994A priority Critical patent/JP2640212B2/en
Publication of JPH07234181A publication Critical patent/JPH07234181A/en
Application granted granted Critical
Publication of JP2640212B2 publication Critical patent/JP2640212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To provide a spectral lighting equipment which can increase a wire range of wavelength dispersion and a narrow wavelength range of ray dispersion with a single equipment. CONSTITUTION:A light source 6 and a recessed surface mirror a10 and a recessed surface mirror b11 for efficiently guiding the illumination light to a spectral chamber 4 are provided at a light source chamber 2 and the illumination light is focused at a slit 19 which is laid out at the focusing position of the recessed surface mirror a10. Also, heat ray absorption filter 13 for eliminating unneeded heat rays in the applied light is provided. The above slit 19, the recessed surface mirror c20, and diffraction gratings A21 and B22 different in the number of grooves, are provided in a spectral chamber 4. The illumination light through the slit 19 changes its direction on the recessed surface mirror c20, is applied to one of the diffraction gratings, is dispersed for each wavelength and is focused on the surface of a sample 23. Also, the diffraction gratings A21 and B22 can alternately travel to positions for applying light to the sample surface from one position within the focal point of the recessed surface mirror c20 by the diffraction grating traveling mechanism and the diffraction grating A21 can change its angle by the diffraction grating angle changing mechanism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種工業材料、製品が
光によって劣化する現象を促進試験する耐光性試験にお
いて、特に劣化の波長依存性を調べるための技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for examining the wavelength dependence of deterioration, particularly in a light resistance test for accelerating the deterioration of various industrial materials and products by light.

【0002】[0002]

【従来の技術】物質の光劣化の波長依存性を調査するた
めの装置は従来より公知であり、特公平3−70176
号公報に代表される。図8は同公報に開示の分光照射装
置1の構成図である。
2. Description of the Related Art An apparatus for investigating the wavelength dependence of photodegradation of a substance is known in the prior art, and is disclosed in Japanese Patent Publication No. 3-70176.
No. publication. FIG. 8 is a configuration diagram of the spectral irradiation device 1 disclosed in the publication.

【0003】図8において、光源室2には、強力な光を
照射するための反射板として楕円鏡68を備え、その第
1焦点に光源6(空冷5kWショートアークキセノンラ
ンプ)が配しあり、光源6からの光束を折り曲げる平面
鏡69と、熱線を吸収する熱線吸収フィルタ13とが設
けてある。分光室4には、楕円鏡68の第2焦点に配し
たスリット19と、スリット19からの光束を折り曲げ
平行光束にして回折格子C71に導く凹面鏡d70と、
回折格子C71で波長別に分散された光を再度折り曲げ
試料23面に照射する凹面鏡e72が配してある。この
装置によれば、例えば、波長範囲250nm〜700n
m間の光が照射面上で約9cmの範囲に分散照射される
ようになっている。又、この装置は、試料23の前方に
設けたハーフミラー73によって、照射光の一部を折り
曲げて照射光系外に出し、波長の分散方向に配列した微
小面受光器74によって波長別の光エネルギーが求めら
れるようになっている。
In FIG. 8, the light source chamber 2 is provided with an elliptical mirror 68 as a reflection plate for irradiating strong light, and the light source 6 (air-cooled 5 kW short arc xenon lamp) is arranged at the first focus thereof. A plane mirror 69 that bends the light flux from the light source 6 and a heat ray absorption filter 13 that absorbs heat rays are provided. In the spectroscopic chamber 4, a slit 19 arranged at the second focal point of the elliptic mirror 68, a concave mirror d70 that guides the light flux from the slit 19 into a parallel light flux and guides it to the diffraction grating C71,
A concave mirror e72 for irradiating the surface of the sample 23 which is bent again with the light dispersed by the diffraction grating C71 for each wavelength is arranged. According to this device, for example, the wavelength range is 250 nm to 700 n.
The light between m is distributed and irradiated on the irradiation surface within a range of about 9 cm. In addition, in this device, a half mirror 73 provided in front of the sample 23 bends a part of the irradiation light to bring it out of the irradiation light system, and a minute surface light receiver 74 arranged in the wavelength dispersion direction arranges the light for each wavelength. Energy is being demanded.

【0004】又、図において、75は光源6を点灯する
ための起動装置、76は光源6を冷却するための冷却ダ
クト、65は微小面受光器74の出力を増幅する増幅
器、77は増幅された出力を演算処理して所定の数値と
する演算回路、66はその数値を表示する表示器であ
る。
Further, in the figure, 75 is a starting device for turning on the light source 6, 76 is a cooling duct for cooling the light source 6, 65 is an amplifier for amplifying the output of the micro surface light receiver 74, and 77 is amplified. An arithmetic circuit for arithmetically processing the output to obtain a predetermined numerical value, and 66 is a display for displaying the numerical value.

【0005】[0005]

【発明が解決しようとする課題】上記したように、分光
照射装置は試料の光劣化における波長依存性を調べるた
めの装置である。さて、分光照射装置で試験する場合、
劣化波長がわからない試料は、なるべく広い波長域を照
射して劣化波長を特定する必要があり、既に劣化波長が
特定されている試料では、その劣化波長近辺の波長を細
かく解析するために照射波長域を限定し、その波長域に
おける波長ごとの線分散(分散幅)を大きくとることが
必要となる。そこで、1台で広範囲の波長域と狭い波長
域でこの線分散を大きくできる分光照射装置が望まれて
いた。
As described above, the spectral irradiation device is a device for investigating the wavelength dependence of the photodegradation of the sample. Now, when testing with a spectral irradiation device,
It is necessary to irradiate as wide a wavelength range as possible to specify the deterioration wavelength for samples that do not know the deterioration wavelength.For samples for which the deterioration wavelength has already been specified, in order to analyze the wavelength near the deterioration wavelength in detail, Is required, and it is necessary to increase the linear dispersion (dispersion width) for each wavelength in that wavelength range. Therefore, there has been a demand for a spectral irradiation device capable of increasing the linear dispersion in a wide wavelength range and a narrow wavelength range with one unit.

【0006】又、分光照射装置は耐光性試験装置でもあ
り、短時間で試料の光劣化及び波長依存性を試験調査で
きることが望ましい。このためには大形の集光装置、即
ち大形凹面鏡を備え、強力な光を試料に分散照射する必
要があるが、凹面鏡を大形にした場合球面収差が大きく
なり分散光の分解能が低下する。そこで、大形凹面鏡に
代わって、非球面鏡を用いれば球面収差の低下は改善さ
れるが、非球面鏡は非常に高価なものであるため装置価
格が高くなり、実用的ではない。
Further, the spectral irradiation device is also a light resistance test device, and it is desirable to be able to test and investigate the photodegradation and wavelength dependence of the sample in a short time. For this purpose, it is necessary to equip the sample with a large concentrator, that is, a large concave mirror, and to irradiate the sample with strong light in a distributed manner, but when the concave mirror is made large, spherical aberration increases and the resolution of dispersed light decreases. To do. Therefore, if an aspherical mirror is used instead of the large concave mirror, the reduction of spherical aberration is improved, but the aspherical mirror is very expensive and the device cost is high, which is not practical.

【0007】又、材料によっては特定波長どうしを重ね
合わせることによって光劣化が増進される場合がある。
この現象を調査するには、例えば特定波長を照射するモ
ノクロメーターを重ね合わせる波長の数だけ用いれば可
能であるが、従来の分光照射装置では不可能であった。
Further, depending on the material, photodegradation may be promoted by superimposing specific wavelengths on each other.
This phenomenon can be investigated by using, for example, the number of overlapping wavelengths of a monochromator for irradiating a specific wavelength, but it has not been possible with a conventional spectral irradiation device.

【0008】又、耐光性試験では試料が置かれる温湿度
環境などを再現し、光劣化と共に温湿度による劣化も加
味した試験が行われている。分光照射装置においても光
劣化の波長依存性の調査及び促進試験と共に試料が置か
れる環境条件をも考慮した試験が望まれていたが、従来
そこまで考慮した分光照射装置はなかった。
In the light resistance test, the temperature and humidity environment in which the sample is placed is reproduced, and a test is performed in which deterioration due to temperature and humidity as well as light deterioration is taken into consideration. In the spectral irradiation device as well, there has been a demand for a test in consideration of the environmental conditions in which the sample is placed together with the investigation and the acceleration test of the wavelength dependence of the photodegradation, but there is no conventional spectral irradiation device.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に以下の手段を採用した。即ち、照射光を集光する反射
鏡を備えた光源と、この反射鏡の焦点に配したスリット
と、スリットを経た光を試料面に集光する凹面鏡と、凹
面鏡の焦点内に配してあり、所定角度で入射した凹面鏡
の反射光を波長別に分散し、固定配置した試料面に照射
する回折格子とからなる分光照射装置において、溝本数
の異なる2個以上の回折格子を配し、該2個以上の回折
格子それぞれを凹面鏡の反射光を入射し前記固定配置し
た試料面に照射できる凹面鏡の焦点内の一位置に移動す
る回折格子移動機構と、該2個以上の回折格子それぞれ
に備えた前記凹面鏡の反射光の入射光角度を変更するた
めの回折格子変角機構とからなる分光照射装置をその第
1の手段とした。
Means for Solving the Problems In order to solve the above problems, the following means are adopted. That is, a light source provided with a reflecting mirror that collects the irradiation light, a slit arranged at the focal point of this reflecting mirror, a concave mirror collecting the light passing through the slit on the sample surface, and a concave mirror arranged inside the focal point of the concave mirror. , A spectroscopic irradiator comprising a diffraction grating that disperses the reflected light of a concave mirror that is incident at a predetermined angle for each wavelength and irradiates the sample surface that is fixedly arranged, and disposes two or more diffraction gratings having different numbers of grooves. Each of the two or more diffraction gratings is equipped with a diffraction grating moving mechanism for moving reflected light from the concave mirror and moving it to a position within the focal point of the concave mirror capable of irradiating the fixedly arranged sample surface. A spectral irradiating device including a diffraction grating changing mechanism for changing the incident light angle of the reflected light of the concave mirror is the first means.

【0010】又、上記第1の手段の凹面鏡を複数個の小
形凹面鏡で構成し、各小形凹面鏡にそれぞれ焦点位置を
調節するための角度調節機構を設けた分光照射装置を第
2の手段とした。
Further, the second embodiment is a spectral irradiation device in which the concave mirror of the first means is composed of a plurality of small concave mirrors, and each small concave mirror is provided with an angle adjusting mechanism for adjusting the focus position. .

【0011】又、上記第1及び第2の手段において、固
定配置した試料前面全体が回折格子の分散光を受けられ
る位置に透明ガラスフィルタを取付けた受光窓を備えた
密閉形状の試験槽と、試料の裏面を冷却するための冷却
装置と、試験槽内の温度及び湿度を調節するための調温
槽を有した試験室を設けた分光照射装置を第3の手段と
し、この試験室に窒素を封入するための配管を接続した
分光照射装置を第4の手段とした。
In the above-mentioned first and second means, a test chamber having a closed shape, which is provided with a light receiving window in which a transparent glass filter is attached at a position where the entire fixed sample front surface can receive the dispersed light of the diffraction grating, A spectral irradiation device provided with a cooling device for cooling the back surface of the sample and a test chamber having a temperature control chamber for adjusting the temperature and humidity in the test chamber was used as a third means, and nitrogen was used in this test chamber. The spectral irradiator connected to the pipe for enclosing is used as the fourth means.

【0012】又、試料面と一定の距離をおき、試料に照
射される回折格子の分散光を妨げずかつその分散光を受
光できる位置に、分散光の分散方向に配した光エネルギ
ーを測定するための1個又は2個以上の受光器と、前記
回折格子移動機構及び回折格子変角機構に連動し、該受
光器の受光感度を溝本数の異なる回折格子及び回折格子
に入射する凹面鏡の反射光の角度に対応した感度に変更
する感度切換機構を設けた分光照射装置を第5の手段と
し、さらに、この受光器中の1個の出力から、その受光
器が受光する波長の光エネルギーを一定に保持するため
に、光源の出力を制御する光エネルギー自動調節機構を
設けた分光照射装置を第6の手段とした。
Further, the light energy is arranged in a dispersion direction of the dispersed light at a position where the dispersed light of the diffraction grating irradiated on the sample is not interfered and the dispersed light can be received at a certain distance from the sample surface. One or two or more light receivers for adjusting the diffraction grating moving mechanism and the diffraction grating angle changing mechanism so that the light receiving sensitivities of the light receivers are different from each other in the number of grooves and the reflection of the concave mirror incident on the diffraction grating. The spectral irradiation device provided with a sensitivity switching mechanism for changing the sensitivity corresponding to the angle of light is used as the fifth means, and further, from one output in this light receiver, the light energy of the wavelength received by the light receiver is obtained. The sixth means is a spectral irradiation device provided with a light energy automatic adjustment mechanism for controlling the output of the light source in order to keep the light source constant.

【0013】[0013]

【作用】回折格子では溝本数が異なると波長ごとの線分
散(分散幅)が異なり、又、回折格子に入射する光束の
角度によって分散波長域が変わる。上記第1の手段で
は、溝本数の異なる回折格子を複数個用い、凹面鏡の焦
点内の一位置から試料面を照射するように各回折格子を
移動できるようにし、1台の装置で異なる線分散の試験
をできるようにするものである。即ち、最小溝本数の回
折格子で最大範囲の波長域の照射を行い、広い波長域で
試料の光劣化波長を探すようにする。又、回折格子の溝
本数が多くなるに従って線分散が大きくなりかつ同一照
射面に対する照射波長域が狭くなから、特定波長を採っ
てみればその波長及び周辺の波長の分散幅が大きくな
り、特定波長の光劣化を細部に亘って調査できることに
なる。さらに、各回折格子に入射する凹面鏡の反射光の
入射角度を変えることによって、照射波長域を変更する
ことができるから、多くの劣化波長域を調査できるもの
である。
In the diffraction grating, if the number of grooves is different, the line dispersion (dispersion width) for each wavelength is different, and the dispersion wavelength range is changed depending on the angle of the light beam incident on the diffraction grating. In the first means, a plurality of diffraction gratings having different numbers of grooves are used, each diffraction grating can be moved so as to irradiate the sample surface from one position within the focal point of the concave mirror, and different line dispersion can be performed by one device. It enables the examination of. That is, the diffraction grating with the minimum number of grooves is used to irradiate the wavelength range of the maximum range, and the photodegradation wavelength of the sample is searched for in a wide wavelength range. Also, as the number of grooves in the diffraction grating increases, the line dispersion increases and the irradiation wavelength range for the same irradiation surface narrows. Therefore, if a specific wavelength is taken, the dispersion width of that wavelength and the surrounding wavelengths will increase, and It is possible to investigate the light deterioration of the wavelength in detail. Furthermore, since the irradiation wavelength range can be changed by changing the incident angle of the reflected light of the concave mirror which enters each diffraction grating, many deterioration wavelength ranges can be investigated.

【0014】又、第2の手段は球面収差を少なくしかつ
集光能力の大きい凹面鏡体を提供しようとするものであ
る。凹面鏡ではその中心に近い平行光線はその焦点に集
光するが、中心から遠い平行光線は凹面鏡側にずれた位
置に集光する、いわゆる球面収差があり、凹面鏡が大き
くなればなるほど球面収差も大きくなり、この球面収差
が大きいと当然分散光の分解能が低下することになる。
そこで、大形凹面鏡と同じ焦点距離の小形凹面鏡(大形
凹面鏡に比べて球面収差が小さい)を複数個組み合わせ
て大形凹面鏡とほぼ同一の集光能力を持たせた凹面鏡体
とし、さらに各小形凹面鏡ごとにその焦点位置を調節で
きるようにすることによって、この凹面鏡体に相当する
大形凹面鏡の焦点に各小形凹面鏡の焦点を一致させるこ
とができ、大形凹面鏡の大きな集光能力を持つと同時に
球面収差を小さくしようとするものである。
The second means is to provide a concave mirror body which has a small spherical aberration and a large light collecting ability. With a concave mirror, parallel rays closer to the center are focused at its focal point, but parallel rays farther from the center are focused at a position displaced to the concave mirror side, which is called spherical aberration.The larger the concave mirror, the greater the spherical aberration. Therefore, if this spherical aberration is large, the resolution of the dispersed light is naturally lowered.
Therefore, a plurality of small concave mirrors (having a smaller spherical aberration than the large concave mirror) with the same focal length as the large concave mirror are combined to form a concave mirror body that has almost the same light-collecting ability as the large concave mirror. By making it possible to adjust the focus position for each concave mirror, the focus of each small concave mirror can be made to match the focus of the large concave mirror corresponding to this concave mirror body, and it has a large light condensing ability of the large concave mirror. At the same time, it is intended to reduce spherical aberration.

【0015】又、回折格子による分散波長域は回折格子
に入射する凹面鏡の反射光束の角度によって決まるか
ら、第2の手段で採用した、各小形凹面鏡に設けた角度
調節機構によって、各凹面鏡の光束の回折格子への入射
角度を変えれば、分散光中の特定波長を重ね合わせるこ
とができる。
Further, since the dispersion wavelength range by the diffraction grating is determined by the angle of the reflected light flux of the concave mirror incident on the diffraction grating, the light flux of each concave mirror is adjusted by the angle adjusting mechanism provided in each small concave mirror adopted in the second means. By changing the angle of incidence on the diffraction grating, the specific wavelengths in the dispersed light can be superposed.

【0016】又、第3の手段は、試料を配置する独立し
た密閉形状の試験室を設けることによって、回折格子、
凹面鏡などの機器に温湿度の影響を与えずに、試料に温
湿度条件を付加した試験を行うようにすると共に一定の
温湿度条件下で試料裏面を冷却することによって試料表
面に結露を発生させるようとするものであり、分光照射
試験装置の試験の幅を広げるもので、例えば、屋外で実
際に使用される環境に近似した条件を付加することによ
り、各波長で、より屋外との相関性の取れた劣化形態を
得ようとするものである。
The third means is to provide a diffraction grating, by providing an independent sealed test chamber in which the sample is placed.
Condensation is generated on the surface of the sample by cooling the backside of the sample under a constant temperature and humidity condition while conducting a test in which the temperature and humidity condition is added to the sample without affecting the temperature and humidity on the equipment such as concave mirror. This is to broaden the test range of the spectral irradiation test equipment.For example, by adding conditions that are similar to the environment actually used outdoors, at each wavelength, the correlation with the outdoors can be improved. It is intended to obtain a deteriorating deterioration mode.

【0017】又、第4の手段は、この試験室に窒素を封
入することによって、試験室内を乾燥状態にすると共に
酸素結合による試料の酸化劣化を防止し、純粋に光劣化
のみの試験を行おうとするものである。
The fourth means is to seal the test chamber with nitrogen to keep the test chamber in a dry state and prevent oxidative deterioration of the sample due to oxygen bonding, and to perform a purely photo-deteriorated test. It is the one to try.

【0018】さらに、第5の手段は、試料に分散照射さ
れる波長の中、特定の1波長あるいは複数の波長のエネ
ルギーを測定することによって、光劣化を定量的に評価
しようとするものである。又、第1の手段において溝本
数の異なる回折格子及び回折格子への凹面鏡の反射光の
入射角度を変更した場合、これら受光器が受光する波長
が異なるが、試料面に分散照射される試料面における波
長の位置は前記回折格子の溝本数、入射角度によって決
められるから、予めこれらに対応した場合の受光器の感
度を求めておけば、前記回折格子移動機構及び回折格子
変角機構に連動させて受光器の感度を変更することがで
きることになる。さらに、第6の手段は、使用時間と共
に照射エネルギーが減衰する特徴を持つ光源において
も、その出力を制御することによって調節波長及びその
周辺の波長を常に一定のエネルギーで照射することがで
き、試験の管理を照射時間で行おうとするものである。
Further, the fifth means is to quantitatively evaluate the photodegradation by measuring the energy of a specific wavelength or a plurality of wavelengths among the wavelengths dispersedly irradiated on the sample. . Further, when the incident angle of the reflected light of the concave mirror to the diffraction grating and the diffraction grating having different numbers of grooves is changed in the first means, the wavelengths received by these light receivers are different, but the sample surface is dispersedly irradiated on the sample surface. Since the position of the wavelength in is determined by the number of grooves of the diffraction grating and the incident angle, if the sensitivity of the light receiver corresponding to these is obtained in advance, it can be linked to the diffraction grating moving mechanism and the diffraction grating changing mechanism. Therefore, the sensitivity of the light receiver can be changed. Further, the sixth means is capable of irradiating the adjustment wavelength and its surrounding wavelengths with a constant energy at all times by controlling the output of the light source having a characteristic that the irradiation energy is attenuated with the lapse of time. It is intended to manage the control by irradiation time.

【0019】[0019]

【実施例】以下、本発明の実施例の分光照射装置1を図
面を用いて説明する。図1は本発明の実施例の要部平面
図、図2はその側面図である。図1及び2において、暗
箱形状の光源室2に、密閉形状の試験室3を接続した分
光室4が連接され、三室とも架台5上に固定されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A spectral irradiation apparatus 1 according to an embodiment of the present invention will be described below with reference to the drawings. 1 is a plan view of an essential part of an embodiment of the present invention, and FIG. 2 is a side view thereof. 1 and 2, a light source chamber 2 having a dark box shape is connected to a spectroscopic chamber 4 to which a test chamber 3 having a closed shape is connected, and all three chambers are fixed on a mount 5.

【0020】光源室2には、光源6として5kWの空冷
ショートアークキセノンランプが垂直に配してあり、こ
の周囲を円筒状のランプハウス7で覆っている。このラ
ンプハウス7には光源6を挟んでほぼ対象位置に照射光
を取り出すための開口8が設けてある。又、ランプハウ
ス7の下端開口は光源室2の床面を貫通し、架台5に固
定した送風機9に接続しており、その上端開口は光源室
2の天井を貫通して装置の外部に突き出している。光源
6の冷却は、送風機9で外気を強制的にランプハウス7
内を下方から上方に流して行い、前記ランプハウス7の
上端開口が排気口となっている。又、送風機9の吸引口
には吸引する外気を清浄にするための空気清浄フィルタ
(図示せず)が設けてある。
In the light source chamber 2, a 5 kW air-cooled short arc xenon lamp is vertically arranged as a light source 6, and the periphery thereof is covered with a cylindrical lamp house 7. The lamp house 7 is provided with an opening 8 for taking out irradiation light at a substantially target position with the light source 6 interposed therebetween. Further, the lower end opening of the lamp house 7 penetrates the floor surface of the light source room 2 and is connected to the blower 9 fixed to the pedestal 5, and the upper end opening thereof penetrates the ceiling of the light source room 2 and projects to the outside of the device. ing. The light source 6 is cooled by the blower 9 forcing the outside air into the lamp house 7
The inside of the lamp house 7 is made to flow upward, and the upper end opening of the lamp house 7 serves as an exhaust port. Further, an air cleaning filter (not shown) for cleaning the outside air to be sucked is provided at the suction port of the blower 9.

【0021】上記ランプハウス7に設けた開口8からの
照射光を効率的に分光室4に導くための反射鏡として、
それら開口8に対応して凹面鏡a10及び凹面鏡b11
が設けてある。凹面鏡a10は照射光を分光室4に導く
ためのもので、凹面鏡b11は凹面鏡a10が捉えられ
ない側の照射光を反射して凹面鏡a10に導くためのも
ので、これら2枚の凹面鏡によって効率よく光源6の照
射光を集光するものである。尚、特公平3−70176
号公報に開示の装置では反射板として楕円鏡を用いてい
るが、楕円鏡は凹面鏡に比べはるかに高価であるため本
実施例では採用しなかった。
As a reflecting mirror for efficiently guiding the irradiation light from the opening 8 provided in the lamp house 7 to the spectroscopic chamber 4,
A concave mirror a10 and a concave mirror b11 corresponding to the openings 8 are formed.
Is provided. The concave mirror a10 is for guiding the irradiation light to the spectroscopic chamber 4, and the concave mirror b11 is for reflecting the irradiation light on the side that cannot be captured by the concave mirror a10 and guiding it to the concave mirror a10. These two concave mirrors efficiently The light emitted from the light source 6 is condensed. In addition, Japanese Patent Publication No. 3-70176
The device disclosed in the publication uses an elliptic mirror as a reflector, but the elliptic mirror is much more expensive than the concave mirror and is not used in this embodiment.

【0022】光源6の照射光は凹面鏡a10によってそ
の焦点に集光される。その焦点位置は光源室2と分光室
4とを仕切る隔壁12に近接した分光室4側になる。さ
て、光源室2側で隔壁12に近接した位置に照射光中の
余分な熱線を除去するための熱線吸収フィルタ13が設
けてある。このフィルタは2枚の紫外線透過フィルタ、
例えば透明石英ガラスフィルタ14の間に冷水を通し、
この冷水に熱線を吸収させて放熱するもので、上記特公
平3−70176号公報に開示のものと基本的に同一の
ものである。又、冷水は分光室4下方の架台5上に固定
した冷却水タンク15内の水を循環させて用い、冷却水
タンク15には冷凍機16に連絡した冷却器17が備え
てある。
The irradiation light from the light source 6 is focused on the focal point thereof by the concave mirror a10. The focal position is on the side of the spectroscopic chamber 4 that is close to the partition 12 that separates the light source chamber 2 and the spectroscopic chamber 4. A heat ray absorption filter 13 for removing extra heat rays in the irradiation light is provided at a position close to the partition wall 12 on the light source chamber 2 side. This filter consists of two UV transmitting filters,
For example, pass cold water between the transparent quartz glass filters 14,
This cold water absorbs heat rays to radiate heat, and is basically the same as that disclosed in Japanese Patent Publication No. 3-70176. The cold water is used by circulating water in a cooling water tank 15 fixed on a mount 5 below the spectroscopic chamber 4, and the cooling water tank 15 is provided with a cooler 17 connected to a refrigerator 16.

【0023】上記光源室2と分光室4とを仕切る隔壁1
2には凹面鏡a10によって集光された照射光が通過す
る小開口18があり、凹面鏡a10の焦点位置にスリッ
ト19が設けてある。さて、分光室4は、このスリット
19、凹面鏡c20及び2個の回折格子A21及び回折
格子B22が設けてある。即ち、スリット19を通過し
た照射光は凹面鏡c20で向きを変え、前記回折格子の
一方に照射され、ここで波長別に分散され、試料23面
に集光するようになっている。
A partition wall 1 for partitioning the light source chamber 2 and the spectroscopic chamber 4
2 has a small aperture 18 through which the irradiation light condensed by the concave mirror a10 passes, and a slit 19 is provided at the focal position of the concave mirror a10. The spectroscopic chamber 4 is provided with the slit 19, the concave mirror c20, and the two diffraction gratings A21 and B22. That is, the irradiation light passing through the slit 19 changes its direction by the concave mirror c20, is irradiated to one side of the diffraction grating, is dispersed here by wavelength, and is condensed on the surface of the sample 23.

【0024】ところで強力な集光光を照射しようとする
場合、即ち、同一光源で、より強い光エネルギーで試料
を照射したり、光路を長くして大面積を光エネルギーの
低下を少なくして照射しようとする場合には大きな凹面
鏡を必要とするが、凹面鏡の球面収差はその直径が大き
くなればなるほど大きくなるため、精密な焦点合わせが
必要な場合は、単純に大形にすることは適当でない。非
球面鏡を用いれば球面収差をなくすことができるがこれ
は高価である。
By the way, when trying to irradiate a strong condensed light, that is, by irradiating the sample with stronger light energy with the same light source, or by irradiating a large area with a large area to reduce the decrease of the light energy. A large concave mirror is required when trying to do so, but the spherical aberration of the concave mirror increases as the diameter increases, so if precise focusing is required, simply increasing the size is not appropriate. . Aspherical mirrors can be used to eliminate spherical aberration, but this is expensive.

【0025】そこで、上記凹面鏡c20を大形にして集
光能力を高めようとする場合、図3に示すように、小形
凹面鏡25を複数個(本実施例では4個)組み合わせた
凹面鏡体24とすれば、大形凹面鏡と同一の集光能力を
持たせることができる。例えば、凹面鏡c20を直径4
00mmの方形状の凹面鏡で、焦点距離850mmとし
た場合、直径200mmで焦点距離850mmの方形状
の小形凹面鏡25を4個組み合わせた凹面鏡体24とす
れば集光能力は等しくなる。ここで、凹面鏡の球面収差
Δは次式で求められるから、上記直径400mmの凹面
鏡の球面収差は約3mm、直径200mmの凹面鏡では
約0.73mmとなり、球面収差を改善することができ
る。
Therefore, when the concave mirror c20 is made large to enhance the light-collecting ability, a concave mirror body 24 in which a plurality of small concave mirrors 25 (four in this embodiment) are combined as shown in FIG. By doing so, it is possible to have the same light-collecting ability as the large concave mirror. For example, if the concave mirror c20 has a diameter of 4
If a rectangular concave mirror of 00 mm and a focal length of 850 mm is used, a concave mirror body 24 in which four small rectangular concave mirrors 25 having a diameter of 200 mm and a focal length of 850 mm are combined together has the same light-collecting ability. Here, since the spherical aberration Δ of the concave mirror is obtained by the following equation, the spherical aberration of the concave mirror having a diameter of 400 mm is about 3 mm, and the spherical aberration of the concave mirror having a diameter of 200 mm is about 0.73 mm, and the spherical aberration can be improved.

【0026】[0026]

【数1】 [Equation 1]

【0027】ところが上記約0.73mmの球面収差は
凹面鏡体24を構成する個々の小形凹面鏡25の球面収
差であるため、これら小形凹面鏡25の焦点を一点に集
光しなければ改善の効果は生じない。そこで、これら個
々の小形凹面鏡25の焦点を一致させるために、小形凹
面鏡25の集光角度を個々に調節する角度調節機構80
を設けた。その一例を図4に示す。
However, the spherical aberration of about 0.73 mm is the spherical aberration of the individual small concave mirrors 25 constituting the concave mirror body 24. Therefore, if the focal points of these small concave mirrors 25 are not focused on one point, the improvement effect will be produced. Absent. Therefore, in order to match the focal points of these individual small concave mirrors 25, an angle adjusting mechanism 80 which individually adjusts the light collecting angle of the small concave mirror 25.
Was set up. An example thereof is shown in FIG.

【0028】図4は図3の側面図である。図において角
度調節機構80は、各小形凹面鏡25の裏面中央と凹面
鏡固定板26とをボールジョイント27を介して固定
し、各形凹面鏡の四隅近くに角度調節ネジ28を垂直に
固定し、各角度調節ネジ28に対応する凹面鏡固定板2
5の各位置にこのネジ28が貫通する小孔を設け、この
ネジ28の各貫通部分をナット29で固定するようにな
っている。従って、ナット29で各ネジ28を調節固定
することによって凹面鏡の照射角度が変更できることに
なり、各小形凹面鏡25の焦点位置が調節できることに
なる。
FIG. 4 is a side view of FIG. In the figure, the angle adjusting mechanism 80 fixes the center of the back surface of each small concave mirror 25 and the concave mirror fixing plate 26 via ball joints 27, and vertically fixes the angle adjusting screws 28 near the four corners of each concave mirror. Concave mirror fixing plate 2 corresponding to the adjusting screw 28
A small hole through which the screw 28 penetrates is provided at each position of 5, and each penetrating portion of the screw 28 is fixed with a nut 29. Therefore, by adjusting and fixing each screw 28 with the nut 29, the irradiation angle of the concave mirror can be changed, and the focal position of each small concave mirror 25 can be adjusted.

【0029】分光照射装置1において試料23に分散照
射される個々の波長幅(線分散)は、上述したように回
折格子の溝本数によって異なり、照射波長域は回折格子
に入射する光の入射角によって異なる。そこで溝本数の
異なる回折格子、即ち溝本数2400本/mmの回折格
子A21と溝本数1200本/mmの回折格子B22の
2種類の回折格子を設け、上記線分散及び照射波長域を
変更できるようにした。図5にその構成の一例(図1の
当該部分の拡大図)を示す。
The individual wavelength widths (line dispersions) dispersedly irradiated to the sample 23 in the spectral irradiation device 1 differ depending on the number of grooves of the diffraction grating as described above, and the irradiation wavelength range is the incident angle of light incident on the diffraction grating. Depends on Therefore, two kinds of diffraction gratings having different numbers of grooves, that is, a diffraction grating A21 having a number of grooves of 2400 / mm and a diffraction grating B22 having a number of grooves of 1200 / mm, are provided so that the line dispersion and the irradiation wavelength range can be changed. I chose FIG. 5 shows an example of the configuration (enlarged view of the relevant portion in FIG. 1).

【0030】図5は、回折格子移動機構30及び回折格
子変角機構31の構成の平面図である。図において、溝
本数2400本/mmの回折格子A21と溝本数120
0本/mmの回折格子B22が水平に配したスライド架
台32の同一直線上に固定してあり、この直線はスリッ
ト19(図1参照)から凹面鏡c20に至る光束の中心
に直交している。又、スライド架台32はガイドレール
33上に摺動可能に固定してある。ガイドレール33と
平行するスライド架台32の端面にラックギア34が設
けてあり、ベース台35に固定したサーボモータa36
の軸に取り付けたピニオンギア37と歯合し、サーボモ
ータa36の回転によってスライド架台32をガイドレ
ール33に沿って水平に移動するようになっている。
又、ガイドレール33の両端近くにはそれぞれフォトセ
ンサーa38及びフォトセンサーb39が固定してあ
り、スライド架台32の端部がその位置に到達したとき
それを検知してサーボモータa36の回転を停止し、ス
ライド架台32をその位置で停止するようになってお
り、例えばフォトセンサーa38によってスライド架台
32が停止したとき回折格子A21の中心が凹面鏡c2
0の反射光の中心と一致し、同様にフォトセンサーb3
9によって停止したとき回折格子B22の中心が凹面鏡
c20反射光の中心と一致するようになる回折格子移動
機構30を構成している。又、回折格子A21は水平方
向に回転可能な回転軸(図示せず)を介してスライド架
台32に固定してある。この回転軸の下方はスライド架
台32を貫通し、その端部に歯車a40(点線で図示)
が固定してあり、スライド架台32の下側に固定したサ
ーボモータb41(点線で図示)の軸に取り付けた歯車
b42と歯合し、サーボモータb41の回転によって回
折格子A21が回転するようになっている。さて、回折
格子A21の回転角度は、サーボモータb41の回転に
伴って回転するポテンショメータ43(点線で図示)と
波長選択スイッチ44(図7参照)によって決定され
る。即ち、個々の波長選択スイッチ44に対応する電圧
とポテンショメータ43の電圧とが平衡するまでサーボ
モータb41を回転し、平衡した時点でサーボモータb
41が停止し、回折格子A21が所定角度回転して停止
するような回折格子変角機構31を構成している。
FIG. 5 is a plan view of the structure of the diffraction grating moving mechanism 30 and the diffraction grating changing mechanism 31. In the figure, a diffraction grating A21 having 2400 grooves / mm and 120 grooves
A 0 / mm diffraction grating B22 is fixed on the same straight line of the horizontally mounted slide base 32, and this straight line is orthogonal to the center of the light flux from the slit 19 (see FIG. 1) to the concave mirror c20. The slide base 32 is slidably fixed on the guide rail 33. A rack gear 34 is provided on the end surface of the slide base 32 parallel to the guide rail 33, and the servo motor a36 fixed to the base base 35 is provided.
It meshes with a pinion gear 37 attached to the shaft of the shaft and the slide base 32 is horizontally moved along the guide rail 33 by the rotation of the servo motor a36.
Further, a photo sensor a38 and a photo sensor b39 are fixed near both ends of the guide rail 33, and when the end of the slide base 32 reaches that position, it is detected and the rotation of the servo motor a36 is stopped. The slide mount 32 is stopped at that position. For example, when the slide mount 32 is stopped by the photo sensor a38, the center of the diffraction grating A21 is concave mirror c2.
It coincides with the center of the reflected light of 0, and similarly, the photo sensor b3
The diffraction grating moving mechanism 30 is configured such that the center of the diffraction grating B22 coincides with the center of the reflected light of the concave mirror c20 when stopped by 9. Further, the diffraction grating A21 is fixed to the slide base 32 via a rotation shaft (not shown) which is rotatable in the horizontal direction. The lower part of this rotary shaft penetrates the slide base 32, and a gear a40 (illustrated by a dotted line) is provided at the end thereof.
Is fixed and meshes with a gear b42 attached to the shaft of a servo motor b41 (illustrated by a dotted line) fixed to the lower side of the slide base 32, and the diffraction grating A21 is rotated by the rotation of the servo motor b41. ing. Now, the rotation angle of the diffraction grating A21 is determined by the potentiometer 43 (shown by a dotted line) and the wavelength selective switch 44 (see FIG. 7) that rotate with the rotation of the servo motor b41. That is, the servo motor b41 is rotated until the voltage corresponding to each wavelength selection switch 44 and the voltage of the potentiometer 43 are balanced, and when the voltage is balanced, the servo motor b41 is rotated.
The diffraction grating angle changing mechanism 31 is configured such that 41 is stopped and the diffraction grating A21 is rotated by a predetermined angle and stopped.

【0031】上記回折格子移動機構30及び回折格子変
角機構31は一体に構成され、凹面鏡c20の焦点内に
固定してある。
The diffraction grating moving mechanism 30 and the diffraction grating changing mechanism 31 are integrally formed and fixed within the focal point of the concave mirror c20.

【0032】本実施例では、回折格子A21の回転で選
択する波長域を250nm〜475nm、350nm〜
575nm及び450nm〜650nmの3種類とし、
回折格子B22の選択波長域を250nm〜700nm
とした。さて、回折格子の分散式は、mλ=d(sin
α−sinβ)で、mは次数、λは波長、dは格子定
数、αは入射角、βは回折角である。ここで、入射角α
は凹面鏡c20の照射光と回折格子A21及び回折格子
B22の法線とでなす角度であり、分散光は一次回折光
を用いる。
In this embodiment, the wavelength range selected by the rotation of the diffraction grating A21 is 250 nm to 475 nm and 350 nm to
Three types of 575 nm and 450 nm to 650 nm,
Select the wavelength range of the diffraction grating B22 from 250 nm to 700 nm
And Now, the dispersion equation of the diffraction grating is mλ = d (sin
α-sin β), m is the order, λ is the wavelength, d is the lattice constant, α is the incident angle, and β is the diffraction angle. Where the incident angle α
Is an angle formed by the irradiation light of the concave mirror c20 and the normal line of the diffraction grating A21 and the diffraction grating B22, and the first-order diffracted light is used as the dispersed light.

【0033】本実施例では回折格子B22を照射する上
記入射角αが37゜となる位置に凹面鏡c20を配し
た。この配置のとき、上記式から、回折格子B22の分
散光はその法線に対して250nmの波長の分散角が1
7.6゜、700nmの分散角が−13.8゜となる。
従って、回折格子B22における250nm〜700n
mの波長域の分散範囲は31.4゜となり、試料23面
がこの範囲内に位置するように試料23を固定配置して
ある。この場合、回折格子B22の法線に対する前記分
散角が等しくないので、これを考慮して試料23を配置
してある。もちろん前記分散角が等しくなるような入射
角αとするために回折格子B22を所定角度傾けて配置
してもよい。
In this embodiment, the concave mirror c20 is arranged at a position where the incident angle α for irradiating the diffraction grating B22 is 37 °. In this arrangement, from the above equation, the dispersion light of the diffraction grating B22 has a dispersion angle of 1 at a wavelength of 250 nm with respect to its normal line.
The dispersion angle at 7.6 ° and 700 nm is -13.8 °.
Therefore, 250 nm to 700 n in the diffraction grating B22
The dispersion range of the wavelength range of m is 31.4 °, and the sample 23 is fixedly arranged so that the surface of the sample 23 is located within this range. In this case, since the dispersion angles with respect to the normal line of the diffraction grating B22 are not equal, the sample 23 is arranged in consideration of this. Of course, the diffraction grating B22 may be tilted by a predetermined angle in order to set the incident angle α so that the dispersion angles become equal.

【0034】又、回折格子A21で上記のような異なる
3種類の波長域で分散光を照射する場合、試料23の配
置は上記のように回折格子B22によって決まっている
から、前記回折格子変角機構31でそれを考慮した入射
角になるように変角することになる。表1にこの波長域
と入射光及び分散角の関係を示す。
When the diffraction grating A21 irradiates the dispersed light in the three different wavelength ranges as described above, the arrangement of the sample 23 is determined by the diffraction grating B22 as described above. The mechanism 31 will change the angle so that the incident angle will be taken into consideration. Table 1 shows the relationship between this wavelength range and the incident light and dispersion angle.

【0035】[0035]

【表1】 [Table 1]

【0036】又、例えば、回折格子A21で250nm
〜475nmの波長域を分散照射する場合、前記凹面鏡
体24に設けてある角度調節機構80を用い、4個の小
形凹面鏡25中の例えば2個の反射角度を変えることに
よって、この250nm〜475nmの波長域と異なる
波長域の分散光を照射でき、例えば上記250nm〜4
75nmの波長域中の310nmの波長の光に460n
mの波長の光を重ねて同時に照射することもできる。
Further, for example, the diffraction grating A21 is 250 nm.
In the case of irradiating the wavelength region of up to 475 nm in a distributed manner, the angle adjusting mechanism 80 provided in the concave mirror body 24 is used to change the reflection angles of, for example, two in the four small concave mirrors 25, and thereby the 250 nm to 475 nm Dispersed light in a wavelength range different from the wavelength range can be irradiated, and for example, the above-mentioned 250 nm to
460n for light with a wavelength of 310nm in the wavelength range of 75nm
It is also possible to superimpose light having a wavelength of m and irradiate them at the same time.

【0037】ここで、標準染布(日本工業規格JIS
L0841 に規定のブルースケール)の4級を試料と
し、310nm及び460nmの単独波長の光による標
準退色(JIS L0804 に規定の変退色用グレース
ケールの4号と堂程度の退色)と310nmの波長の光
に460nmの波長の光を重ね合わせた場合の標準退色
についての実験結果について説明する。 (1)310nmの紫外線単独波長の場合は、50MJ
/m2 の光エネルギーを受けたとき標準退色した。 (2)460nmの可視光線単独波長の場合は、200
MJ/m2 の光エネルギーを受けたとき標準退色した。 (3)上記310nmの単独波長の光に460nmの単
独波長の光を重ね合わせた場合は、5MJ/m2 の光エ
ネルギーを光エネルギーを受けたとき標準退色した。 この実験から、(3)の場合は(1)の約10分の1の
光エネルギーで標準退色することがわかり、単独波長を
重ね合わせることによって光エネルギーが相乗され、よ
り強い光劣化作用を及ぼす場合のあることがわかる。従
って、従来の単独波長のみの波長依存性の調査だけでな
く、こうしたいわゆる相乗光劣化を調査することによっ
て、自然界における光劣化、即ち太陽エネルギーよる光
劣化のメカニズムを各種材料別、波長別に解明できるこ
とになる。
Here, the standard dyed cloth (Japanese Industrial Standard JIS
Using the fourth grade of L0841 specified blue scale as a sample, the standard fading (light gray scale No. 4 for fading and fading specified in JIS L0804 and the fading of the temple) by a single wavelength of 310 nm and 460 nm and the wavelength of 310 nm Experimental results on standard fading when light with a wavelength of 460 nm is superimposed on light will be described. (1) 50 MJ for 310 nm UV wavelength alone
When the light energy of / m 2 was received, the standard bleaching occurred. (2) 200 in the case of a single visible light wavelength of 460 nm
When the light energy of MJ / m 2 was received, the color faded normally. (3) When light with a single wavelength of 460 nm was superposed on light with a single wavelength of 310 nm, standard bleaching occurred when light energy of 5 MJ / m 2 was received. From this experiment, it was found that in the case of (3), the standard color fading occurs with about 1/10 of the light energy of (1), and the light energy is synergized by overlapping the individual wavelengths, and a stronger photodegradation effect is exerted. I know that there are cases. Therefore, it is possible to clarify the mechanism of photodegradation in the natural world, that is, the photodegradation caused by solar energy, by various materials and wavelengths, by investigating such so-called synergistic photodegradation, in addition to the conventional investigation of wavelength dependence of only a single wavelength. become.

【0038】又、試料23は温湿度が調節可能な試験室
3を設けてその中に配置してもよい。図6は試料23を
配置する試験室3の要部構成図である。
The sample 23 may be arranged in the test chamber 3 in which the temperature and humidity can be adjusted. FIG. 6 is a configuration diagram of essential parts of the test chamber 3 in which the sample 23 is arranged.

【0039】図において、試験室3は密閉形状で、試料
23を配置するための試験槽45と、試験槽45内を所
定の温湿度にするための調温槽46とからなる。試験槽
45は上記回折格子B22による分散角を考慮して若干
斜めに分光室4に接続し、試験槽45と分光室4との接
続面には回折格子の分散光が試料23に効果的に照射で
きる大きさの受光窓47が設けてあり、ここに透明石英
ガラスフィルタ14が密着固定してある。調温槽46に
は空気加熱ヒータ48が備えてある。加湿空気を発生す
る加湿器49(図2参照)が架台5床面に配してあり、
加湿空気を送入する蒸気管50を介して調温槽46に接
続している。この調温槽46と試験槽45は、配管途中
にブロワー51を備えた循環配管52と試験槽45床面
と調温槽46天井とを貫通する循環開口53とによって
連絡され、調温槽46内の加温加湿空気がブロワー51
によって試験槽45に送入され、循環開口53通って戻
る循環を行い、試験槽45内を所定の温湿度にするよう
になっている。図示しないが試験槽45には温度センサ
ー及び湿度センサーが設けてあり、試験槽45内の温度
及び湿度を一定に制御するようになっている。
In the figure, the test chamber 3 is of a hermetically sealed shape and comprises a test tank 45 for placing the sample 23 and a temperature control tank 46 for keeping the inside of the test tank 45 at a predetermined temperature and humidity. The test tank 45 is connected to the spectroscopic chamber 4 slightly obliquely in consideration of the dispersion angle of the diffraction grating B22, and the dispersed light of the diffraction grating is effectively applied to the sample 23 at the connection surface between the test tank 45 and the spectroscopic chamber 4. A light receiving window 47 having a size capable of irradiating is provided, and the transparent quartz glass filter 14 is closely fixed thereto. The temperature adjusting tank 46 is provided with an air heater 48. A humidifier 49 (see FIG. 2) that generates humidified air is arranged on the floor of the pedestal 5,
It is connected to the temperature adjusting tank 46 via a steam pipe 50 for feeding humidified air. The temperature adjusting tank 46 and the test tank 45 are connected by a circulation pipe 52 having a blower 51 in the middle of the pipe and a circulation opening 53 penetrating the floor surface of the test tank 45 and the ceiling of the temperature adjusting tank 46. The humidified air inside is blower 51
Is sent to the test tank 45, and is circulated back through the circulation opening 53 to keep the inside of the test tank 45 at a predetermined temperature and humidity. Although not shown, the test tank 45 is provided with a temperature sensor and a humidity sensor so that the temperature and humidity inside the test tank 45 are controlled to be constant.

【0040】この試験槽45に配置する試料23が結露
試験を行えるようにしてもよい。実施例では試料23裏
面に接触する位置に電子冷却素子54(図1参照)を複
数個固定した試料ホルダー55を設け、この試料ホルダ
ー55に試料23を固定し、試験槽45内の所定の位置
に取り付けるようにした。結露試験は、試験槽45内を
一定温湿度に維持すると共に電子冷却素子54で試料2
3の裏面から試料23が露点以下になるように冷却して
試料23表面に結露を生じさせるものである。又、実施
例の電子冷却素子54の放熱は、前記熱線吸収フィルタ
13の放熱に使用した冷却水を用いるような配管(図示
せず)とした。尚、上記試料ホルダー55は、試料23
を一定の曲面上に曲げて取り付ける形状(図1参照)と
した。
The sample 23 placed in the test tank 45 may be capable of conducting a dew condensation test. In the embodiment, a sample holder 55 having a plurality of electronic cooling elements 54 (see FIG. 1) fixed is provided at a position in contact with the back surface of the sample 23, the sample 23 is fixed to the sample holder 55, and a predetermined position in the test tank 45 is provided. I attached it to. In the dew condensation test, the inside of the test tank 45 is maintained at a constant temperature and humidity, and the sample 2 is measured by the electronic cooling element 54.
The sample 23 is cooled from the back surface of No. 3 so that the sample 23 has a dew point or lower, and dew condensation is caused on the surface of the sample 23. Further, the heat dissipation of the electronic cooling element 54 of the embodiment was made by a pipe (not shown) using the cooling water used for the heat dissipation of the heat ray absorbing filter 13. The sample holder 55 is used for the sample 23
Was bent on a certain curved surface to be attached (see FIG. 1).

【0041】さて、試料23によっては光劣化と同時に
空気中の酸素が結合した酸化劣化を生じ、光劣化のみの
評価を行えない場合がある。このため酸素結合による酸
化劣化を生じないようにして、純粋に光劣化のみの試験
を行う場合もある。図6はその場合の構成をも示す一例
で、試験室3に、例えば窒素を送入するための配管を接
続しものである。即ち、窒素を送入するための窒素ボン
ベ(図示せず)に接続した窒素送入管56と窒素を排気
するための窒素排気管57とを調温槽46に接続し、両
配管途中にバルブ58を配したもので、一定時間両配管
途中のバルブ58を開けてから閉じることによって窒素
が試験槽45内及び調温槽46内の空気を排出すると共
に両槽に充満するようになるものである。
Depending on the sample 23, oxidative deterioration due to the combination of oxygen in the air may occur at the same time as the photodegradation, and it may not be possible to evaluate only the photodegradation. Therefore, in some cases, the test may be performed purely by photo-deterioration without causing the oxidative deterioration due to the oxygen bond. FIG. 6 is an example also showing the configuration in that case, in which a pipe for feeding nitrogen, for example, is connected to the test chamber 3. That is, a nitrogen feed pipe 56 connected to a nitrogen cylinder (not shown) for feeding nitrogen and a nitrogen exhaust pipe 57 for exhausting nitrogen are connected to the temperature control tank 46, and a valve is provided in the middle of both pipes. By arranging 58, by opening and closing the valve 58 in the middle of both pipes for a certain period of time, the nitrogen in the test tank 45 and the temperature adjusting tank 46 is discharged and the both tanks are filled with nitrogen. is there.

【0042】又、試料23面に照射される特定の分散光
の光エネルギーを測定してもよい。図1及び図6にその
光エネルギーを測定するための受光器の配置を示す。即
ち、試料23と一定の間隔をおいて試験槽45の外部で
受光窓47下端近接下方に分散光の分散方向に3個の受
光器a59、受光器b60及び受光器c61が一定の間
隔で配してある。これら受光器は試料23面で受けると
きの受光量と同じとなるように、予め試料23からの距
離によってその感度が補正してある。又、上記のように
照射される波長域が異なると各受光器が受光する特定の
波長も異なることになる。そこで、各波長域における受
光波長(各波長域によって異なる)に合わせてた校正値
が予め求めてあり、前記回折格子移動機構30及び回折
格子変角機構31の作動に連動し、即ち、各受光器に連
絡した増幅器65(図7参照)にはその出力を前記校正
値に対応した出力とするためのトリマー(図示せず)が
設けてあり、このトリマーが受光波長それぞれに連動し
て切り換えられ、自動的に受光器の感度切換を行うよう
になっている。表2に受光波長の一例を示す。
The light energy of the specific dispersed light with which the surface of the sample 23 is irradiated may be measured. 1 and 6 show the arrangement of a photodetector for measuring the light energy. That is, three light receivers a59, light receivers b60, and light receivers c61 are arranged outside the test tank 45 near the lower end of the light receiving window 47 at a constant distance from the sample 23 in the dispersion direction of the dispersed light. I am doing it. The sensitivity of each of these light receivers is corrected in advance by the distance from the sample 23 so that the amount of light received by the surface of the sample 23 is the same. Further, if the wavelength range of irradiation is different as described above, the specific wavelength received by each light receiver will also be different. Therefore, a calibration value corresponding to the light receiving wavelength in each wavelength region (which varies depending on each wavelength region) is obtained in advance and is interlocked with the operation of the diffraction grating moving mechanism 30 and the diffraction grating changing mechanism 31, that is, each light receiving wavelength. The amplifier 65 (see FIG. 7) connected to the instrument is provided with a trimmer (not shown) for setting its output to an output corresponding to the calibration value, and this trimmer is switched in association with each of the received wavelengths. , The sensitivity of the light receiver is automatically switched. Table 2 shows an example of the received light wavelength.

【0043】[0043]

【表2】 [Table 2]

【0044】又、前記各波長域において、上記3個の受
光器中の1個を選択しそれが受光する光エネルギーが常
に一定になるように、その受光器の光エネルギーの受光
量の変化量から、光源6の入力電力制御する光エネルギ
ー自動調節機構62を設けてもよい。本実施例で光源6
として用いたショートアークキセノンランプのように、
使用時間と共に照射エネルギーが減衰するものであって
も、この光エネルギー自動調節機構62によって特定波
長及びその周辺の波長を常に一定エネルギーで照射する
ことによって、試験の管理を照射時間で行うことができ
るようになる。
Further, in each of the wavelength regions, one of the three light receivers is selected, and the amount of change in the amount of light received by the light receiver is adjusted so that the light energy received by the light receiver is always constant. Therefore, a light energy automatic adjustment mechanism 62 for controlling the input power of the light source 6 may be provided. In this embodiment, the light source 6
Like the short arc xenon lamp used as
Even if the irradiation energy is attenuated with the time of use, the light energy automatic adjustment mechanism 62 always irradiates the specific wavelength and the wavelengths around it with constant energy, so that the test can be managed in the irradiation time. Like

【0045】図7は上記光エネルギーの測定機構63、
受光器の感度切換機構64及び光エネルギー自動調節機
構62の一例でである。図を用いてその機構を説明す
る。 (1)波長選択スイッチ44(図示しない制御盤に配
置)で試料23面に分散照射する波長域を選択する。 (2)回折格子移動機構30が作動し、選択した波長域
によって回折格子A21又は回折格子B22が凹面鏡c
20からの光束を入射する位置に移動する。 イ.選択波長域が250nm〜700nmのときは回折
格子B22を選択する。 ロ.選択波長域が250nm〜475nm、350nm
〜575nm又は450nm〜650nmのときは回折
格子A21を選択する。 (3)(2)のロの場合、回折格子変角機構31によっ
て選択した波長域が分散照射できるように、即ち、前記
表1で示す入射角になるように回折格子A21を回転す
る。 (4)(2)のイ及び(3)によって4種の波長域のい
ずれかの1つが決定されると同時に、各受光器a59、
受光器b60及び受光器c61それぞれに連絡する増幅
器65のトリマーが決定波長に対応して切り換わり、各
受光器が決定波長域における受光波長(前記表2で示し
た波長)の感度に切り換えられる。 (5)各受光器a、b及びcは上記決定波長域における
特定の波長の光エネルギーを受光し、それぞれに備えた
増幅器65でその出力を増幅する。増幅された各出力は
図示しない演算回路で所定の数値として求められ、表示
器66で選択表示できるようになっている。もちろん各
受光器で受光した光エネルギーの積算値も表示できるよ
うにしてもよく、各受光器ごとの光エネルギーをプリン
トアウトできるようにしてもよい。 (6)光源6の照射エネルギーの調節は、受光器a、b
又はcのいずれか1つの出力を選択し、予め光源6の照
射エネルギーを設定してあるエネルギー設定調節器に送
られ、設定エネルギー値と比較演算され光源6の電力を
調整することによって行うようになっている。
FIG. 7 shows the light energy measuring mechanism 63,
It is an example of a sensitivity switching mechanism 64 and a light energy automatic adjustment mechanism 62 of the light receiver. The mechanism will be described with reference to the drawings. (1) The wavelength selection switch 44 (arranged on a control panel (not shown)) selects a wavelength range in which the surface of the sample 23 is dispersed and irradiated. (2) The diffraction grating moving mechanism 30 operates, and the diffraction grating A21 or the diffraction grating B22 is concave mirror c depending on the selected wavelength range.
It moves to the position where the light flux from 20 enters. I. When the selected wavelength range is 250 nm to 700 nm, the diffraction grating B22 is selected. B. Selectable wavelength range is 250nm-475nm, 350nm
In the case of ˜575 nm or 450 nm to 650 nm, the diffraction grating A21 is selected. In the cases of (3) and (2), the diffraction grating A21 is rotated so that the wavelength range selected by the diffraction grating angle changing mechanism 31 can be dispersedly irradiated, that is, the incidence angle shown in Table 1 above. (4) One of the four kinds of wavelength bands is determined by (a) and (3) of (2), and at the same time, each of the light receivers a59,
The trimmer of the amplifier 65 connected to each of the photodetector b60 and the photodetector c61 switches corresponding to the determined wavelength, and each photodetector is switched to the sensitivity of the received wavelength (wavelength shown in Table 2) in the determined wavelength range. (5) Each of the light receivers a, b, and c receives the light energy of a specific wavelength in the determined wavelength range, and the output is amplified by the amplifier 65 provided for each. Each amplified output is obtained as a predetermined numerical value by an arithmetic circuit (not shown) and can be selectively displayed on the display 66. Of course, the integrated value of the light energy received by each light receiver may be displayed, or the light energy for each light receiver may be printed out. (6) The irradiation energy of the light source 6 is adjusted by the light receivers a and b.
Alternatively, one of the outputs c or c is selected and sent to an energy setting controller in which the irradiation energy of the light source 6 has been set in advance, and is compared with the set energy value and calculated to adjust the power of the light source 6. Has become.

【0046】上記(1)から(6)で、(1)から
(4)が受光器の感度切換機構64、(5)が光エネル
ギーの測定機構63、(6)が光源6の出力を制御する
光エネルギー自動調節機構62に関する説明である。
In the above (1) to (6), (1) to (4) control the sensitivity switching mechanism 64 of the optical receiver, (5) controls the light energy measuring mechanism 63, and (6) controls the output of the light source 6. 6 is a description of a light energy automatic adjustment mechanism 62 that performs.

【0047】尚、当然のことながら、試料23に分散照
射する波長によってその高次の波長が重なって照射され
るため、該当波長に対応した次数カットフィルタを設け
る必要がある。図示しないが、本実施例では試料23面
の前面に近接した位置に、この次数カットフィルタを照
射波長域に応じて取り替え可能に固定してある。
As a matter of course, since the higher-order wavelengths are overlapped and irradiated by the wavelengths that are dispersedly irradiated to the sample 23, it is necessary to provide an order cut filter corresponding to the corresponding wavelengths. Although not shown, in the present embodiment, the order cut filter is fixed at a position close to the front surface of the sample 23 so as to be replaceable according to the irradiation wavelength range.

【0048】[0048]

【効果】本発明によれば、広範囲の波長域の照射と狭い
波長域で線分散の大きな照射ができ、さらに線分散の大
きな照射波長域を変更できるので、劣化波長の特定と劣
化波長及びその近辺の波長による光劣化を詳細に検討で
きるので、従来複数台の装置を用いて行っていた分光照
射試験が1台で可能となった。
[Effect] According to the present invention, irradiation in a wide wavelength range and irradiation with a large line dispersion in a narrow wavelength range can be performed, and the irradiation wavelength range with a large line dispersion can be changed. Since the photodegradation due to the wavelength in the vicinity can be examined in detail, the single spectral irradiation test, which was conventionally performed using a plurality of devices, is now possible.

【0049】又、小形凹面鏡を複数個組合せた凹面鏡体
とし、さらに各小形凹面鏡の焦点位置を調節可能にした
ので、大形凹面鏡と同一の集光能力を有すると共に球面
収差を小さくできるので、分解能が高く、高エネルギー
かつ精密な試験が可能となると共に同一出力の光源であ
っても光エネルギーの低下を少なくしてより大面積の照
射ができ、例えば引張り試験供する試験片(いわゆるダ
ンベル状の試験片)の試験が可能になった。又、試料に
温湿度などの各種環境条件を考慮した試験ができるの
で、屋外における試料の劣化とより相関ある試験結果が
得られる装置となった。
Further, since the concave mirror body is formed by combining a plurality of small concave mirrors, and the focus position of each small concave mirror can be adjusted, it has the same light-collecting ability as the large concave mirror and the spherical aberration can be reduced. It is possible to perform high-precision, high-energy and precise tests, and even with a light source of the same output, it is possible to irradiate a larger area by reducing the decrease in light energy. For example, a test piece used for a tensile test (so-called dumbbell-shaped test It is now possible to test one piece. Further, since the test can be performed on the sample in consideration of various environmental conditions such as temperature and humidity, the device can obtain the test result more correlated with the deterioration of the sample outdoors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の分光照射装置の要部構成図
(平面図)。
FIG. 1 is a configuration diagram (plan view) of a main part of a spectral irradiation apparatus according to an embodiment of the present invention.

【図2】図1の側面図。FIG. 2 is a side view of FIG.

【図3】小形凹面鏡を組み合わせて構成した凹面鏡体の
一例。
FIG. 3 is an example of a concave mirror body configured by combining small concave mirrors.

【図4】図3の側面図。FIG. 4 is a side view of FIG.

【図5】回折格子移動機構及び回折格子変角機構の要部
構成図(平面図)。
FIG. 5 is a configuration diagram (plan view) of a main part of a diffraction grating moving mechanism and a diffraction grating changing mechanism.

【図6】試験室の要部構成図。FIG. 6 is a configuration diagram of a main part of a test room.

【図7】光エネルギーの測定、受光器の感度切換及び光
エネルギー自動調節を行うための機構を説明する模式
図。
FIG. 7 is a schematic diagram illustrating a mechanism for measuring light energy, switching sensitivity of a light receiver, and automatically adjusting light energy.

【図8】従来の分光照射装置の構成図。FIG. 8 is a configuration diagram of a conventional spectral irradiation device.

【符号の説明】[Explanation of symbols]

1 分光照射装置 2 光源室 3 試験室 4 分光室 6 光源 10 凹面鏡a 11 凹面鏡b 13 熱線吸収フィルタ 14 透明石英ガラスフィルタ 19 スリット 20 凹面鏡c 21 回折格子A 22 回折格子B 23 試料 24 凹面鏡体 25 小形凹面鏡 30 回折格子移動機構 31 回折格子変角機構 45 試験槽 46 調温槽 47 受光窓 54 電子冷却素子 56 窒素送入管 57 窒素排気管 59 受光器a 60 受光器b 61 受光器c 62 光エネルギー自動調節機構 63 光エネルギー測定機構 64 感度切換機構 80 角度調節機構 DESCRIPTION OF SYMBOLS 1 Spectral irradiation device 2 Light source room 3 Test room 4 Spectroscopy room 6 Light source 10 Concave mirror a 11 Concave mirror b 13 Heat ray absorption filter 14 Transparent quartz glass filter 19 Slit 20 Concave mirror c 21 Diffraction grating A 22 Diffraction grating B 23 Sample 24 Concave mirror 25 Small Concave mirror 30 Diffraction grating moving mechanism 31 Diffraction grating angle changing mechanism 45 Test tank 46 Temperature control tank 47 Light receiving window 54 Electronic cooling element 56 Nitrogen inlet pipe 57 Nitrogen exhaust pipe 59 Light receiver a 60 Light receiver b 61 Light receiver c 62 Light energy Automatic adjustment mechanism 63 Light energy measurement mechanism 64 Sensitivity switching mechanism 80 Angle adjustment mechanism

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 照射光を集光する反射鏡を備えた光源
と、この反射鏡の焦点に配したスリットと、スリットを
経た光を試料面に集光する凹面鏡と、凹面鏡の焦点内に
配してあり、所定角度で入射した凹面鏡の反射光を波長
別に分散し、固定配置した試料面に照射する回折格子と
からなる分光照射装置において、溝本数の異なる2個以
上の回折格子を配し、該2個以上の回折格子それぞれを
凹面鏡の反射光を入射し前記固定配置した試料面に照射
できる凹面鏡の焦点内の一位置に移動する回折格子移動
機構と、該2個以上の回折格子それぞれに備えた前記凹
面鏡の反射光の入射光角度を変更するための回折格子変
角機構とからなり、異なる波長範囲の試験及び異なる線
分散の試験ができることを特徴とする分光照射装置。
1. A light source having a reflecting mirror for converging irradiation light, a slit arranged at the focal point of the reflecting mirror, a concave mirror for condensing light passing through the slit on a sample surface, and a concave mirror arranged inside the focal point of the concave mirror. In a spectral irradiator that consists of a diffraction grating that disperses the reflected light of a concave mirror that has entered at a predetermined angle for each wavelength and irradiates the sample surface that is fixedly arranged, arrange two or more diffraction gratings with different numbers of grooves. A diffraction grating moving mechanism for moving the respective two or more diffraction gratings to a position within a focal point of the concave mirror capable of entering the reflected light of the concave mirror and irradiating the fixedly arranged sample surface, and each of the two or more diffraction gratings. And a diffraction grating angle changing mechanism for changing the incident light angle of the reflected light of the concave mirror provided in, and a test of different wavelength ranges and a test of different line dispersion can be performed.
【請求項2】 前記凹面鏡は複数個の小形凹面鏡で構成
し、各小形凹面鏡にそれぞれ焦点位置を調節するための
角度調節機構を設け、前記凹面鏡より小さな球面収差で
かつ前記凹面鏡と同一の集光能力を有した試験又は異な
る特定波長の分光エネルギーを同時に重ね合わせた相乗
光劣化試験ができることを特徴とする請求項1記載の分
光照射装置。
2. The concave mirror is composed of a plurality of small concave mirrors, each small concave mirror is provided with an angle adjusting mechanism for adjusting a focal position, and the converging light has a spherical aberration smaller than that of the concave mirror and is the same as that of the concave mirror. The spectral irradiation apparatus according to claim 1, wherein a test having ability or a synergistic photodegradation test in which spectral energies of different specific wavelengths are simultaneously superposed can be performed.
【請求項3】 固定配置した試料前面全体が回折格子の
分散光を受けられる位置に透明ガラスフィルタを取付け
た受光窓を備えた密閉形状の試験槽と、試料の裏面を冷
却するための冷却装置と、試験槽内の温度及び湿度を調
節するための調温槽を有した試験室を設けたことを特徴
とする請求項1又は2記載の分光照射装置。
3. A closed test tank having a light receiving window with a transparent glass filter attached at a position where the entire front surface of a fixed sample can receive the dispersed light of a diffraction grating, and a cooling device for cooling the back surface of the sample. And a test chamber having a temperature control tank for adjusting the temperature and humidity in the test tank.
【請求項4】 前記試験室に窒素を封入するための配管
を接続したことを特徴とする請求項3記載の分光照射装
置。
4. The spectral irradiation apparatus according to claim 3, wherein a pipe for sealing nitrogen is connected to the test chamber.
【請求項5】 試料面と一定の距離をおき、試料に照射
される回折格子の分散光を妨げずかつその分散光を受光
できる位置に、分散光の分散方向に配した光エネルギー
を測定するための1個又は2個以上の受光器と、前記回
折格子移動機構及び回折格子変角機構に連動し、該受光
器の受光感度を溝本数の異なる回折格子及び回折格子に
入射する凹面鏡の反射光の角度に対応した感度に変更す
る感度切換機構を設けたことを特徴とする請求項1、
2、3又は4記載の分光照射装置。
5. The optical energy distributed in the dispersion direction of the dispersed light is measured at a position where the dispersed light of the diffraction grating irradiated to the sample is not interfered and the dispersed light can be received at a certain distance from the surface of the sample. One or two or more light receivers for adjusting the diffraction grating moving mechanism and the diffraction grating angle changing mechanism so that the light receiving sensitivities of the light receivers are different from each other in the number of grooves and the reflection of the concave mirror incident on the diffraction grating. 2. A sensitivity switching mechanism for changing the sensitivity according to the angle of light is provided.
The spectral irradiation device according to 2, 3, or 4.
【請求項6】 前記受光器中の1個の出力から、その受
光器が受光する波長の光エネルギーを一定に保持するた
めに、光源の出力を制御する光エネルギー自動調節機構
を設けたことを特徴とする請求項5記載の分光照射装
置。
6. A light energy automatic adjustment mechanism for controlling the output of a light source is provided in order to keep constant the light energy of the wavelength received by the light receiver from one output in the light receiver. The spectral irradiation apparatus according to claim 5, which is characterized in that.
JP4789994A 1994-02-22 1994-02-22 Spectral irradiation device Expired - Fee Related JP2640212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4789994A JP2640212B2 (en) 1994-02-22 1994-02-22 Spectral irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4789994A JP2640212B2 (en) 1994-02-22 1994-02-22 Spectral irradiation device

Publications (2)

Publication Number Publication Date
JPH07234181A true JPH07234181A (en) 1995-09-05
JP2640212B2 JP2640212B2 (en) 1997-08-13

Family

ID=12788250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4789994A Expired - Fee Related JP2640212B2 (en) 1994-02-22 1994-02-22 Spectral irradiation device

Country Status (1)

Country Link
JP (1) JP2640212B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221502A (en) * 2004-02-02 2005-08-18 Atlas Material Testing Technology Llc Accelerated weathering test apparatus with full spectrum calibration, monitoring and control
WO2012002219A1 (en) * 2010-06-29 2012-01-05 岩崎電気株式会社 Irradiation device
KR20150003368A (en) * 2012-04-27 2015-01-08 이 아이 듀폰 디 네모아 앤드 캄파니 Devices for determining photoprotective materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221502A (en) * 2004-02-02 2005-08-18 Atlas Material Testing Technology Llc Accelerated weathering test apparatus with full spectrum calibration, monitoring and control
WO2012002219A1 (en) * 2010-06-29 2012-01-05 岩崎電気株式会社 Irradiation device
KR20150003368A (en) * 2012-04-27 2015-01-08 이 아이 듀폰 디 네모아 앤드 캄파니 Devices for determining photoprotective materials

Also Published As

Publication number Publication date
JP2640212B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
US6236456B1 (en) Optical system for a scanning fluorometer
US6316774B1 (en) Optical system for a scanning fluorometer
US3973849A (en) Self-calibratable spectrum analyzer
US6313471B1 (en) Scanning fluorometer
KR20200027564A (en) Overlay measurement using multiple parameter configurations
CA2381742A1 (en) Infrared spectrometer for the measurement of isotopic ratios
JP2000039398A (en) Integral optical measuring apparatus and optically measuring method
US4966458A (en) Optical system for a multidetector array spectrograph
US6232608B1 (en) Optimization systems in a scanning fluorometer
JP3299937B2 (en) Confocal microspectrophotometer system
CN104483104A (en) Spectral response analysis system for photoelectric detector
US4875773A (en) Optical system for a multidetector array spectrograph
JPH03202754A (en) Atomic absorption spectrophotometer for simultaneous analysis of many elements and simultaneous analysis method of many elements
JPH07234181A (en) Spectral lighting equipment
JP3609029B2 (en) Detector and liquid sample measuring device
US11486828B2 (en) Fluorescence photometer and observation method
IE53138B1 (en) Optical beam splitter
JP2957917B2 (en) Optical accelerated spectral degradation test equipment
KR101714651B1 (en) Plate type NDIR gas analyzer
JPH07140004A (en) Spectroscopic analysis apparatus
JP2001174708A (en) Infrared microscope
JPH1151854A (en) Spectroscopic analyzer
JP3295418B2 (en) Spectrometer
JPH08233732A (en) Spectroscopic analyzer
JP2004191353A (en) Internal quality evaluation apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970218

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees