JPH1151854A - Spectroscopic analyzer - Google Patents

Spectroscopic analyzer

Info

Publication number
JPH1151854A
JPH1151854A JP21440997A JP21440997A JPH1151854A JP H1151854 A JPH1151854 A JP H1151854A JP 21440997 A JP21440997 A JP 21440997A JP 21440997 A JP21440997 A JP 21440997A JP H1151854 A JPH1151854 A JP H1151854A
Authority
JP
Japan
Prior art keywords
unit
light
enclosure
analysis
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21440997A
Other languages
Japanese (ja)
Inventor
Seiichi Takizawa
精一 瀧澤
Masayuki Kashiyuu
政幸 加洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21440997A priority Critical patent/JPH1151854A/en
Publication of JPH1151854A publication Critical patent/JPH1151854A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/151Gas blown

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spectroscopic analyzer in which the durability and the analytical accuracy are not affected even when the analyzer is used in a dusty site. SOLUTION: The spectroscopic analyzer comprises a detecting section 3 for irradiating an object with a measuring light beam from a light source 1 and receiving the light reflected on the object or transmitted through the object, and a section A for analyzing the components of the object spectroscopically based on the spectrum of a light received at the detecting section 3. A gas is supplied, while removing dust through a dust removing means F, to the inside of a section O surrounding the light source 1 and the spectroscopic analyzing section A such that the pressure in the surrounding part P will be higher than the pressure on the outside. Furthermore, a ventilation means T discharges the inner air, the spectroscopic analyzing section A is provided with an analysis start command from a command means 11 and the detecting section 3 is disposed on the outside of the surrounding part P.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光源部からの測定
用光線を分析対象物に照射し、且つ、分析対象物からの
反射光又は透過光を受光するように構成された検出部
と、その検出部が受光した光の分光スペクトルを得て、
得られた分光スペクトルに基づいて、分析対象物に含ま
れる成分を分析する分光分析部が設けられた分光分析装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection unit configured to irradiate a measurement light beam from a light source unit to an object to be analyzed and to receive reflected light or transmitted light from the object to be analyzed. Obtain the spectrum of the light received by the detector,
The present invention relates to a spectroscopic analyzer provided with a spectroscopic analysis unit for analyzing a component contained in an analyte based on an obtained spectroscopic spectrum.

【0002】[0002]

【従来の技術】かかる分光分析装置において、従来は、
特に防塵対策が施されていなかった。
2. Description of the Related Art In such a spectroscopic analyzer, conventionally,
In particular, no dust protection measures were taken.

【0003】[0003]

【発明が解決しようとする課題】ところで、かかる分光
分析装置は、光源部や分光分析部に塵埃が入り込むと塵
埃に影響されて分光スペクトルが変化して分析精度が低
下する虞があり、又、マイクロコンピュータを中心とし
た精密部品で構成されているため、塵埃の多い雰囲気に
曝されるのを防止する必要がある。従って、従来の分光
分析装置は、塵埃の少ない場所で使用する必要があり、
使用場所に制限があるため、使い勝手が悪く改善が望ま
れていた。
Incidentally, in such a spectroscopic analyzer, when dust enters the light source section or the spectroscopic analysis section, the spectroscopic spectrum is changed by the dust and the analysis accuracy may be reduced. Since it is composed of precision parts, mainly microcomputers, it is necessary to prevent exposure to a dusty atmosphere. Therefore, the conventional spectrometer needs to be used in a place with little dust,
Since there is a restriction on the place of use, the usability is poor and improvement has been desired.

【0004】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、塵埃の多い場所でも耐久性及び
分析精度に影響を受けずに使用することができる分光分
析装置を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a spectroscopic analyzer which can be used without being affected by durability and analysis accuracy even in a dusty place. It is in.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の特徴構
成によれば、光源部及び分光分析部を囲む囲い部の内部
は、除塵手段にて除塵された気体が外部よりも圧力が高
くなる状態で充満していて、内部に外部の雰囲気が入り
込むのが阻止される。それによって、光源部及び分光分
析部の周囲の雰囲気は、塵埃の少ない雰囲気に維持する
ことができる。又、検出部及び指令手段は、囲い部の外
部に設けられているので、分析対象物を検出部に対して
分析のための所定の位置に配置したり、指令手段にて分
析開始を指令したりする作業の操作性が低下することが
ない。従って、塵埃の多い場所でも耐久性及び分析精度
に影響を受けず、しかも操作性が低下することなく使用
することができる分光分析装置を提供することができる
ようになった。
According to the first aspect of the present invention, the inside of the enclosure surrounding the light source section and the spectroscopic analysis section has a higher pressure than the outside when the gas removed by the dust removal means is higher than the outside. As a result, the atmosphere is prevented from entering the inside. Thereby, the atmosphere around the light source unit and the spectroscopic analysis unit can be maintained in an atmosphere with less dust. Further, since the detection unit and the command unit are provided outside the enclosure, the analysis target is arranged at a predetermined position for analysis with respect to the detection unit, or the command unit instructs the start of analysis. The operability of the work to be performed does not decrease. Therefore, it has become possible to provide a spectroscopic analyzer which can be used without being affected by durability and analysis accuracy even in a place where there is a lot of dust and the operability is not deteriorated.

【0006】請求項2に記載の特徴構成によれば、光源
部を冷却するために元々設けられている冷却ファンの通
流気体が、囲い部の外部に排出されるように構成すると
ともに、給気ファンを、除塵手段にて除塵される状態で
気体を囲い部内に供給するように設け、並びに、給気フ
ァンによる単位時間当たりの気体の供給量が、冷却ファ
ンによる単位時間当たりの気体の供給量よりも大になる
ように構成して、囲い部の内部に、除塵手段にて除塵さ
れた気体が外部よりも圧力が高くなる状態で充満するよ
うにしてある。更に、給気ファンにより供給された気体
の一部が、冷却ファンによる気流に導かれて光源部を通
流することになるので、光源部を通流する気体の通気量
が増大する。従って、元々設けられている冷却ファンを
利用して、通気手段を構成しながら、更に、光源部の冷
却能力が向上するという効果を奏することができる。
According to the second aspect of the present invention, the gas flowing through the cooling fan originally provided for cooling the light source is discharged to the outside of the enclosure. An air fan is provided to supply gas into the enclosure in a state where dust is removed by the dust removing means, and a supply amount of gas per unit time by the supply fan is equal to a supply of gas per unit time by the cooling fan. It is configured to be larger than the amount, and the inside of the enclosure is filled with the gas removed by the dust removing means at a pressure higher than the outside. Further, a part of the gas supplied by the air supply fan is guided to the airflow by the cooling fan and flows through the light source unit, so that the gas flow rate of the gas flowing through the light source unit increases. Therefore, it is possible to achieve the effect that the cooling capacity of the light source unit is further improved while configuring the ventilation unit using the cooling fan originally provided.

【0007】請求項3に記載の特徴構成によれば、分析
結果を表示する表示手段が囲い部の内部に設けられてい
るが、囲い部の外部から、囲い部に設けられた透明部分
を通して、表示手段の表示情報を視認することができ
る。従って、精密部品で構成されている表示手段の耐久
性が塵埃により影響を受けるのを防止しながら、表示手
段の表示情報を視認するための操作性が低下するのを防
止することができる。
According to the third aspect of the present invention, the display means for displaying the analysis result is provided inside the enclosure, but from outside the enclosure through a transparent portion provided in the enclosure. The display information on the display means can be visually recognized. Therefore, it is possible to prevent the durability of the display means made of precision parts from being affected by dust and to prevent the operability for visually recognizing the display information of the display means from deteriorating.

【0008】請求項4に記載の特徴構成によれば、分光
分析部が、青果物を分析対象物として、青果物に含まれ
る成分を分析するように構成されている。つまり、かか
る分光分析装置は、青果物の成分分析用に使用される場
合があり、例えば、青果物の生産者組合等において、青
果物の選別のために使用される場合があるが、青果物に
は土埃が付着しているものが多い。従って、本発明は、
青果物を分析対象物とする分光分析装置に適用すると、
好適である。
According to a fourth aspect of the present invention, the spectroscopic analysis unit is configured to analyze components contained in the fruits and vegetables with the fruits and vegetables as an analysis target. That is, such a spectroscopic analyzer may be used for component analysis of fruits and vegetables, for example, in a group of producers of fruits and vegetables, etc., it may be used for sorting of fruits and vegetables, but dust is not included in the fruits and vegetables. Many are attached. Therefore, the present invention
When applied to a spectroscopic analyzer that uses fruits and vegetables as the analysis target,
It is suitable.

【0009】[0009]

【発明の実施の形態】以下、図面に基づいて、本発明の
実施の形態を説明する。図1に示すように、分光分析装
置は、本体部M、制御部C、及び、光源部1からの測定
用光線を分析対象物に照射し且つ分析対象物からの反射
光を受光するように構成された検出部としての投受光ア
ダプタ3を夫々別体にて備えるとともに、本体部M及び
制御部Cを載置するラックRを備えて構成してある。
尚、図1の(イ)は、後述する囲い部Pを取り外した状
態を示し、(ロ)は、囲い部Pを取り付けた状態を示
す。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the spectroscopic analyzer irradiates a measurement light beam from a main body unit M, a control unit C, and a light source unit 1 to an analysis target and receives reflected light from the analysis target. The light emitting / receiving adapter 3 as a configured detecting unit is separately provided, and a rack R on which the main unit M and the control unit C are mounted is provided.
FIG. 1A shows a state in which an enclosure P described later is removed, and FIG. 1B shows a state in which the enclosure P is attached.

【0010】図2にも示すように、本体部Mは、ケーシ
ング9内に、投受光アダプタ3が受光した光の分光スペ
クトルを得る分光部4、光源部1、及び、その光源部1
に冷却用の空気を通流させる冷却ファン10等を設けて
構成してあり、冷却ファン10は、その吐出部をケーシ
ング9の排気用開口部9aに合わせて設けてある。ケー
シング9には、通気用のスリット9bを形成してある。
As shown in FIG. 2, the main body M includes a spectroscopic section 4 for obtaining a spectroscopic spectrum of light received by the light emitting and receiving adapter 3, a light source section 1, and the light source section 1 in a casing 9.
The cooling fan 10 is provided so that the cooling air can flow therethrough. The cooling fan 10 is provided with its discharge portion aligned with the exhaust opening 9 a of the casing 9. The casing 9 has a slit 9b for ventilation.

【0011】図1に示すように、制御部Cは、分光部4
にて得られた分光スペクトルに基づいて分析対象物に含
まれる成分を分析する処理部5、その処理部5の分析結
果を表示出力する表示手段としての液晶ディスプレイ
7、及び、分析条件等を設定するキーボード8を一体ユ
ニット状に組み付けて構成してある。つまり、分光部4
及び処理部5にて、投受光アダプタ3が受光した光の分
光スペクトルを得て、得られた分光スペクトルに基づい
て分析対象物に含まれる成分を分析する分光分析部Aを
構成してある。
As shown in FIG. 1, the control unit C includes a spectroscopic unit 4
A processing unit 5 for analyzing components contained in the analysis object based on the spectrum obtained in the step 5, a liquid crystal display 7 as a display means for displaying and outputting the analysis result of the processing unit 5, and setting analysis conditions and the like. Keyboard 8 to be integrated into an integrated unit. That is, the spectral unit 4
The processing unit 5 constitutes a spectral analysis unit A that obtains a spectral spectrum of light received by the light emitting / receiving adapter 3 and analyzes components contained in the analysis target based on the obtained spectral spectrum.

【0012】図1、図3及び図4にしめすように、投受
光アダプタ3には、処理部5に対して分析開始を指令す
る指令手段としての開始スイッチ11を付設してある。
そして、本体部Mとそれとは別体の投受光アダプタ3と
を、光源部1からの測定用光線を投受光アダプタ3に導
くとともに、投受光アダプタ3が受光した光を分光部4
に導く計測用プローブ2にて接続してある。
As shown in FIGS. 1, 3 and 4, the light emitting / receiving adapter 3 is provided with a start switch 11 as command means for commanding the processing section 5 to start analysis.
Then, the main body M and the separate light emitting and receiving adapter 3 are guided to the measuring light emitting and receiving adapter 3 from the light source 1 and the light received by the light emitting and receiving adapter 3 is split into the spectroscopic part 4.
Is connected by a measurement probe 2 leading to the above.

【0013】図1及び図2に示すように、本体部M及び
制御部Cを囲む囲い部Pと、その囲い部Pの内部の圧力
が外部よりも高くなるように除塵手段Fとしてのフィル
タ15を通過させて外部の空気を内部に供給するととも
に、内部の空気を排出する通気手段Tを設け、開始スイ
ッチ11を付設した投受光アダプタ3を、囲い部Pの外
部に設けてある。
As shown in FIGS. 1 and 2, an enclosure P surrounding the main body M and the control section C, and a filter 15 as a dust removing means F so that the pressure inside the enclosure P becomes higher than the outside. Is provided, a ventilation means T for supplying outside air to the inside and discharging the inside air is provided, and the light emitting / receiving adapter 3 provided with the start switch 11 is provided outside the enclosure P.

【0014】ラック部Rは、一対の縦枠体12と2枚の
棚部材13とを一体的に組み付けたものを、固定手段
(図示せず)を備えたキャスタ14にて移動自在なよう
に構成してある。そして、キャスタ14にて所定の場所
に移動させて、その場所に前記固定手段によって固定配
置するように構成してある。
The rack portion R is formed by integrally assembling a pair of vertical frame members 12 and two shelf members 13 so as to be movable by a caster 14 having fixing means (not shown). It is composed. Then, it is configured to be moved to a predetermined place by the casters 14 and fixedly arranged at the place by the fixing means.

【0015】板状材16を、上下2枚の棚部材13と縦
枠体12にて形成される矩形状の枠部に嵌め込む状態で
設けてある。板状材16には、通気用開口部16aと、
投受光アダプタ3に接続された計測用プローブ2を挿通
するためのの孔16bを形成してある。給気ファン17
を、通気用開口部16aに嵌め込んだ状態で板状材16
に支持させて設け、フィルタ15を、給気ファン17の
吸気側に位置させた状態で板状材16に支持させて設け
てある。
The plate member 16 is provided so as to be fitted into a rectangular frame portion formed by the upper and lower two shelf members 13 and the vertical frame member 12. The plate-like material 16 has a ventilation opening 16a,
A hole 16b for inserting the measuring probe 2 connected to the light emitting / receiving adapter 3 is formed. Air supply fan 17
Is fitted into the ventilation opening 16a, and
The filter 15 is provided so as to be supported by the plate-like material 16 in a state where the filter 15 is positioned on the intake side of the air supply fan 17.

【0016】計測用プローブ2を、板状材16の孔16
bに挿通して、その計測用プローブ2により、本体部M
と、板状材16に対して本体部Mとは反対側に位置させ
た投受光アダプタ3とを接続してある。
The measurement probe 2 is connected to the hole 16
b, and the main body M
And the light emitting / receiving adapter 3 located on the opposite side of the main body portion M with respect to the plate-like material 16.

【0017】透明で可撓製を備えたシート材(例えば、
ビニール)から成る直方体形状の袋状部材18を、一対
の縦枠体12にて支持される状態で、ラック部Rに被せ
て設け、袋状部材18の開口縁を下段の棚部材13の周
縁に合わせて、それらを帯状部材19とビス20にて接
合してある。袋状部材18において、板状材16と重な
る部分には給気用開口部18aを、本体部Mのケーシン
グ9の排気用開口部9aに重なる部分には排気用開口部
18bを夫々形成してある。更に、袋状部材18には、
スリットを設けるとともに、そのスリットを開閉自在な
ようにファスナ18cを設けてある。袋状部材18の給
気用開口部18aの開口縁を、帯状部材19とビス20
にて板状材16に接合し、袋状部材18の排気用開口部
18bの開口縁を、帯状部材19とビス20にて本体部
Mのケーシング9に接合してある。
A transparent and flexible sheet material (for example,
A rectangular parallelepiped bag-like member 18 made of vinyl) is provided over the rack portion R in a state where the bag-like member 18 is supported by the pair of vertical frames 12, and the opening edge of the bag-like member 18 is set to the peripheral edge of the lower shelf member 13. These are joined together with a band-shaped member 19 and a screw 20. In the bag-like member 18, an air supply opening 18 a is formed in a portion overlapping the plate-shaped material 16, and an exhaust opening 18 b is formed in a portion overlapping the exhaust opening 9 a of the casing 9 of the main body M. is there. Further, the bag-like member 18 has
A slit is provided, and a fastener 18c is provided to open and close the slit. The opening edge of the air supply opening 18a of the bag-like member 18 is
, The opening edge of the exhaust opening 18 b of the bag-like member 18 is joined to the casing 9 of the main body M by the band-like member 19 and the screw 20.

【0018】従って、袋状部材18と下段の棚部材13
とにより、囲い部Pを構成してある。尚、ファスナ18
cの操作によって、袋状部材18のスリットが開閉でき
るので、囲い部Pを取り付けた状態で、内部の点検やキ
ーボード8の操作等が可能なようになっている。又、囲
い部Pの一部を透明の袋状部材18にて構成して、囲い
部Pを取り付けた状態で、液晶ディスプレイ7の表示情
報が視認できるようにしてある。
Accordingly, the bag-like member 18 and the lower shelf member 13
Thus, the enclosure P is formed. In addition, fastener 18
Since the slit of the bag-like member 18 can be opened and closed by the operation of c, it is possible to inspect the inside, operate the keyboard 8 and the like with the enclosure P attached. Further, a part of the enclosure P is formed of a transparent bag-shaped member 18 so that display information on the liquid crystal display 7 can be visually recognized in a state where the enclosure P is attached.

【0019】給気ファン17により、外部の空気がフィ
ルタ15を通過して除塵されて囲い部Pの内部に供給さ
れ、冷却ファン10により、囲い部P内の空気が、ケー
シング9のスリット9bを通じて、ケーシング9内に導
入され、ケーシング9内を通流して、袋状部材18の排
気用開口部18bから外部に排出される。そして、給気
ファン17の単位時間当たりの給気量が、冷却ファン1
0の単位時間当たりの排気量よりの大になるようにして
あり、もって、給気ファン17及び冷却ファン10によ
って、通気手段Tを構成している。
The outside air passes through the filter 15 and is dust-removed by the air supply fan 17 and supplied to the inside of the enclosure P. The cooling fan 10 allows the air in the enclosure P to pass through the slit 9 b of the casing 9. Is introduced into the casing 9, flows through the casing 9, and is discharged to the outside through the exhaust opening 18 b of the bag-shaped member 18. The air supply amount of the air supply fan 17 per unit time is determined by the cooling fan 1.
The air exhaust amount per unit time is set to be larger than zero, and the air supply fan 17 and the cooling fan 10 constitute the ventilation means T.

【0020】以下、図3に基づいて、光源部1、計測用
プローブ2、投受光アダプタ3、分光部4及び処理部5
について説明を加える。光源部1は、赤外線光を測定用
光線として放射するタングステン−ハロゲンランプ1a
と、そのタングステン−ハロゲンランプ1aからの測定
用光線を平行光線束に成形するレンズ1bにより構成し
てある。光源部1には、光源部1からの測定用光線を分
析対象物Sに照射する照射状態と照射しない非照射状態
とに切り換え自在なシャッタ部6を設けてある。そのシ
ャッタ部6は、レンズ1bと計測用プローブ2における
測定用光線の入射端部との間において、測定用光線を遮
光する遮光状態と遮光しない非遮光状態とに移動自在に
支持されたシャッタ板6aと、そのシャッタ板6aを移
動駆動する電磁ソレノイド6bとを備えて構成してあ
る。シャッタ部6を非遮光状態に切り換えることによ
り、前記照射状態になり、遮光状態に切り換えることに
より、前記非照射状態になる。
Hereinafter, based on FIG. 3, the light source unit 1, the measuring probe 2, the light emitting and receiving adapter 3, the spectral unit 4, and the processing unit 5 will be described.
Is added. The light source unit 1 includes a tungsten-halogen lamp 1a that emits infrared light as a measurement light beam.
And a lens 1b for shaping the measuring light beam from the tungsten-halogen lamp 1a into a parallel light beam. The light source unit 1 is provided with a shutter unit 6 that can be switched between an irradiation state in which a measurement light beam from the light source unit 1 irradiates the analysis target S and a non-irradiation state in which irradiation is not performed. The shutter portion 6 is a shutter plate movably supported between the lens 1b and the incident end of the measurement light beam on the measurement probe 2 in a light-shielded state for shielding the measurement light beam and a non-light-shielded state for not shielding the measurement light beam. 6a and an electromagnetic solenoid 6b for moving and driving the shutter plate 6a. By switching the shutter unit 6 to the non-light-shielding state, the irradiation state is set, and by switching to the light-shielding state, the non-irradiation state is set.

【0021】計測用プローブ2は、照射用光ファイバ2
aと、受光用光ファイバ2bとを備えて構成してある。
照射用光ファイバ2aと受光用光ファイバ2bとは、照
射用光ファイバ2aにおける測定用光線の入射端部側及
び受光用光ファイバ2bにおける拡散反射光の出射端部
側を除いた部分を、環状の照射用光ファイバ2aの内部
に受光用光ファイバ2bが位置する同軸状に形成してあ
り、同軸状の先端面では、照射用光ファイバ2aの環状
の先端面とその内部の受光用光ファイバ2bの円状の先
端面が面一になっている。
The measuring probe 2 includes an irradiation optical fiber 2.
a and a light receiving optical fiber 2b.
The irradiating optical fiber 2a and the receiving optical fiber 2b are formed in a ring shape except for the incident end side of the measuring light beam in the irradiating optical fiber 2a and the emitting end side of the diffuse reflection light in the receiving optical fiber 2b. The light receiving optical fiber 2b is located coaxially inside the irradiation optical fiber 2a, and the coaxial end face has an annular tip end face of the irradiation optical fiber 2a and the light receiving optical fiber inside it. The circular tip surface of 2b is flush.

【0022】図4にも示すように、投受光アダプタ3
は、計測用プローブ2の先端に接続される。その投受光
アダプタ3は、外筒体3aと、その外筒体3aの内部に
その外筒体3aと間隔を隔てて同軸状に位置する内筒体
3bと、外筒体3aと内筒体3bとを連結する連結部材
3cと、外筒体3aの一端部に外嵌状に固着した取り付
け筒体3dと、その取り付け筒体3dに螺挿したネジ3
eを備えて構成してある。そして、取り付け筒体3dを
計測用プローブ2に外嵌してネジ3eを締め付けること
により、投受光アダプタ3を計測用プローブ2の先端に
接続する。尚、図中の3fは、上記のように組み付けた
外筒体3a及び内筒体3bを、それら先端部を露出させ
た状態で内装するプローブケーシングである。
As shown in FIG.
Is connected to the tip of the measurement probe 2. The light emitting and receiving adapter 3 includes an outer cylinder 3a, an inner cylinder 3b coaxially located inside the outer cylinder 3a at a distance from the outer cylinder 3a, an outer cylinder 3a and the inner cylinder. A connecting member 3c for connecting the connecting cylinder 3b to the mounting cylinder 3b, a mounting cylinder 3d externally fixed to one end of the outer cylinder 3a, and a screw 3 screwed into the mounting cylinder 3d.
e. Then, the light emitting / receiving adapter 3 is connected to the tip of the measuring probe 2 by externally fitting the mounting cylinder 3d to the measuring probe 2 and tightening the screw 3e. Reference numeral 3f in the drawing denotes a probe casing that houses the outer cylindrical body 3a and the inner cylindrical body 3b assembled as described above with their distal ends exposed.

【0023】内筒体3bは、筒内径及び筒外径が基端側
のファイバ接続部に近づくほど小径となる截頭円錐形状
に形成するとともに、周壁の厚みが計測用プローブ2に
近づくほど小となるように形成してある。更に、内筒体
3bは、その基端側のファイバ接続部においては、内径
を受光用光ファイバ2bの円状の先端面の直径と略同一
とし、周壁の厚みを受光用光ファイバ2bの先端面と照
射用光ファイバ2aの先端面との間隔と略同一としてあ
る。又、内筒体3bの内周面及び外周面は光の反射が可
能な鏡面に仕上げてある。外筒体3aは、筒内径及び筒
外径が基端側のファイバ接続部に近づくほど小径となる
截頭円錐形状に形成してある。更に、外筒体3aは、そ
の基端側のファイバ接続部においては、内径を照射用光
ファイバ2aの環状の先端面の外径と略同一としてあ
る。又、外筒体3aの内周面は、光の反射が可能な鏡面
に仕上げてある。
The inner cylindrical body 3b is formed in a truncated conical shape in which the inner diameter and the outer diameter of the cylinder become smaller as it approaches the fiber connection portion on the base end side, and the thickness of the peripheral wall becomes smaller as it approaches the probe 2 for measurement. It is formed so that it becomes. Further, the inner cylindrical body 3b has an inner diameter substantially the same as the diameter of the circular distal end surface of the light receiving optical fiber 2b at the fiber connection portion on the base end side, and the thickness of the peripheral wall is equal to the distal end of the light receiving optical fiber 2b. The distance between the surface and the distal end surface of the irradiation optical fiber 2a is substantially the same. The inner and outer peripheral surfaces of the inner cylindrical body 3b are finished to mirror surfaces capable of reflecting light. The outer cylinder 3a is formed in a truncated conical shape in which the inner diameter and the outer diameter of the cylinder become smaller as they approach the fiber connection portion on the base end side. Further, the outer cylindrical body 3a has an inner diameter substantially the same as the outer diameter of the annular distal end surface of the irradiation optical fiber 2a at the fiber connection portion on the base end side. The inner peripheral surface of the outer cylinder 3a is finished to a mirror surface capable of reflecting light.

【0024】つまり、内筒体3bにおける基端側のファ
イバ接続部の開口部の形状が受光用光ファイバ2bの先
端面の形状と略同一となるとともに、内筒体3bの基端
部と外筒体3aの基端部により形成される環状の開口部
の形状が、照射用光ファイバ2aの環状の先端面の形状
と略同一となるようにしてある。又、投受光アダプタ3
を計測用プローブ2の先端に接続すると、内筒体3bの
開口部が受光用光ファイバ2bの先端面と対向した状態
で位置し、且つ、内筒体3bと外筒体3aとに形成され
る開口部が受光用光ファイバ2aの先端面と対向した状
態で位置するように構成してある。そして、内筒体3b
の先端部と外筒体3aの先端部とにより形成される環状
の開口部を照射部Oとして、内筒体3bの先端開口部を
受光部Iとして、夫々機能させるようにしてある。
That is, the shape of the opening of the fiber connection portion on the proximal end side of the inner cylindrical body 3b becomes substantially the same as the shape of the distal end surface of the optical fiber 2b for light reception, and the shape of the outer end of the inner cylindrical body 3b is substantially the same as that of the outer end. The shape of the annular opening formed by the base end of the cylindrical body 3a is substantially the same as the shape of the annular distal end surface of the irradiation optical fiber 2a. In addition, light emitting and receiving adapter 3
Is connected to the distal end of the measurement probe 2, the opening of the inner cylindrical body 3b is located in a state facing the distal end surface of the light-receiving optical fiber 2b, and is formed in the inner cylindrical body 3b and the outer cylindrical body 3a. The opening is located so as to face the distal end surface of the light receiving optical fiber 2a. And the inner cylinder 3b
An annular opening formed by the distal end of the outer cylindrical body 3a and the distal end of the outer cylindrical body 3a function as the irradiating section O, and the distal opening of the inner cylindrical body 3b functions as the light receiving section I.

【0025】従って、下記のように、投受光アダプタ3
の先端部に当付けた分析対象物Sに対して測定用光線が
照射されるとともに、分析対象物Sからの拡散反射光が
受光される。即ち、シャッタ部6を非遮光状態に切り換
える。すると、照射用光ファイバ2aにて導かれた光源
部1からの測定用光線は、照射用光ファイバ2aの先端
面から内筒体3bと外筒体3aの間の空間内に入射し
て、前記空間内を通過し、内筒体3bの先端部と外筒体
3aの先端部とにより形成される環状の照射部Oから分
析対象物Sに対して出射する。そして、分析対象物Sか
らの拡散反射光は、内筒体3bの先端開口部にて機能さ
せる受光部Iから、内筒体3b内に入射して、内筒体3
b内を通過し、受光用光ファイバ2bの先端面に対して
出射して、受光用光ファイバ2bにて、分光部4へと導
かれる。
Therefore, as described below, the light emitting / receiving adapter 3
A measurement light beam is applied to the analysis target S abutted on the tip of the sample, and diffuse reflection light from the analysis target S is received. That is, the shutter unit 6 is switched to the non-light-shielded state. Then, the measuring light beam from the light source unit 1 guided by the irradiation optical fiber 2a enters the space between the inner cylinder 3b and the outer cylinder 3a from the distal end surface of the irradiation optical fiber 2a, The light passes through the space and is emitted toward the analysis target S from an annular irradiation unit O formed by the tip of the inner cylinder 3b and the tip of the outer cylinder 3a. Then, the diffusely reflected light from the analysis target S enters the inner cylinder 3b from the light receiving section I functioning at the opening at the tip end of the inner cylinder 3b,
b, the light exits toward the distal end surface of the light receiving optical fiber 2b, and is guided to the light splitting unit 4 by the light receiving optical fiber 2b.

【0026】上述のように、測定用プローブ2の先端に
投受光アダプタ3を接続することにより、分析対象物S
に対する測定用光線の照射部Oと、分析対象物Sからの
反射光の受光部Iとの間隔を広くすることができるの
で、分析対象物Sからの拡散反射光を受光することがで
きるのである。
As described above, by connecting the light emitting / receiving adapter 3 to the tip of the measuring probe 2, the object S
Since the distance between the measurement light irradiation unit O and the light receiving unit I of the reflected light from the analysis target S can be widened, the diffuse reflection light from the analysis target S can be received. .

【0027】分光部4は、受光用光ファイバ2bにて導
かれた拡散反射光を反射する反射鏡4aと、反射鏡4a
により反射された拡散反射光を分光反射する凹面回折格
子4bと、凹面回折格子4bにより分光反射された各波
長毎の光線束強度を検出するアレイ型受光素子4cを備
えている。アレイ型受光素子4cは、凹面回折格子4b
にて分光反射された拡散反射光を、同時に波長毎に受光
するとともに波長毎の信号に変換して出力する。反射鏡
4a、凹面回折格子4b及びアレイ型受光素子4cは、
外部からの光を遮光するアルミニウム製の暗箱4d内に
配置してあり、受光用光ファイバ2bにて導かれた拡散
反射光は、暗箱4dに形成した入射孔4eを通じて暗箱
4d内に導くように構成してある。
The spectroscopic unit 4 includes a reflecting mirror 4a for reflecting the diffusely reflected light guided by the light receiving optical fiber 2b, and a reflecting mirror 4a.
A concave diffraction grating 4b that spectrally reflects the diffuse reflection light reflected by the optical element, and an array-type light receiving element 4c that detects the light flux intensity for each wavelength spectrally reflected by the concave diffraction grating 4b. The array type light receiving element 4c includes a concave diffraction grating 4b.
At the same time, the light is simultaneously received for each wavelength and converted into a signal for each wavelength and output. The reflecting mirror 4a, the concave diffraction grating 4b, and the array type light receiving element 4c
It is arranged in an aluminum dark box 4d that blocks light from the outside, and diffused and reflected light guided by the light receiving optical fiber 2b is guided into the dark box 4d through an incident hole 4e formed in the dark box 4d. It is composed.

【0028】処理部5について説明を加える。処理部5
は、マイクロコンピュータを利用して構成してあり、開
始スイッチ11にて開始指令が与えられると、シャッタ
部6を非遮光状態に切り換え、アレイ型受光素子4cか
らの出力信号を処理して、吸光度スペクトル、及び、吸
光度スペクトルの波長領域での二次微分値を得るととも
に、その二次微分値に基づいて、分析対象物Sに含まれ
る成分を分析し、その分析結果を液晶ディスプレイ7に
出力させるとともに、シャッタ部6を遮光状態に切り換
える。
The processing section 5 will be described. Processing unit 5
Is configured using a microcomputer. When a start command is given by a start switch 11, the shutter unit 6 is switched to a non-light-shielded state, an output signal from the array type light receiving element 4c is processed, and the The spectrum and the second derivative in the wavelength region of the absorbance spectrum are obtained, and the components included in the analyte S are analyzed based on the second derivative, and the analysis result is output to the liquid crystal display 7. At the same time, the shutter section 6 is switched to a light-shielded state.

【0029】処理部5は、下記の演算式(以下、検量式
と称する)による重回帰分析に基づいて、分析対象物S
に含まれる各成分量を算出する。 Y=K0 +K1 ×A(λ1 )+K2 ×A(λ2 )+K3
×A(λ3 )…… 但し、 Y ;成分量 K0 ,K1 ,K2 ,K3 …… ;係数 A(λ1 ),A(λ2 ),A(λ3 )……;特定波長λ
における吸光度スペクトルの二次微分値
The processing unit 5 analyzes the object S based on the multiple regression analysis based on the following arithmetic expression (hereinafter referred to as a calibration expression).
The amount of each component contained in is calculated. Y = K 0 + K 1 × A (λ 1 ) + K 2 × A (λ 2 ) + K 3
× A (λ 3 ) where Y: component amount K 0 , K 1 , K 2 , K 3 …; coefficient A (λ 1 ), A (λ 2 ), A (λ 3 ) ……; Wavelength λ
Derivative of absorbance spectrum at

【0030】処理部5には、分析対象物の品種夫々につ
いて、成分毎に、特定の検量式を設定してある。つま
り、上記検量式において、分析対象物の品種夫々につい
て、成分毎に特定の係数K0 ,K1 ,K2 ,K3 ……、
波長λ1 ,λ2 ,λ3 ……を設定してある。
In the processing unit 5, a specific calibration formula is set for each component for each type of the analyte. That is, in the above calibration formula, specific coefficients K 0 , K 1 , K 2 , K 3, ...
Wavelengths λ 1 , λ 2 , λ 3 ... Are set.

【0031】そして、処理部5は、キーボード8にて設
定された品種に対応するように、上記検量式を設定し
て、その設定した検量式に基づいて成分量を求める。
Then, the processing unit 5 sets the above-mentioned calibration formula so as to correspond to the type set on the keyboard 8, and obtains the component amounts based on the set calibration formula.

【0032】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 囲い部Pの具体構成は、上記の実施形態におい
て例示した構成以外にも、種々の構成が可能である。例
えば、上記の実施形態における袋状部材18に代えて、
プラスチック製、金属製等の板状体にて、ラックRの周
囲を囲ってもよい。あるいは、本体部M及び制御部Cを
ラックRに載置せずに、本体部M及び制御部Cを、直
接、囲い部Pとして機能させる箱状体の内部に設けても
よい。
[Another Embodiment] Next, another embodiment will be described. (A) The specific configuration of the enclosure P may be various configurations other than the configuration exemplified in the above embodiment. For example, instead of the bag-like member 18 in the above embodiment,
The periphery of the rack R may be surrounded by a plate made of plastic or metal. Alternatively, the main body M and the control unit C may be provided directly inside a box-shaped body that functions as the enclosure P without mounting the main body M and the control unit C on the rack R.

【0033】(ロ) 通気手段Tの具体構成は、上記の
実施形態において例示した構成以外にも、種々の構成が
可能である。例えば、上記の実施形態においては、冷却
ファン10による通流空気が囲い部Pの外部に排出され
るように構成して、通気手段Fを冷却ファン10を利用
して構成する場合について例示した。これに代えて、冷
却ファン10による通流空気が囲い部Pの内部に排出さ
れるように構成して、通気手段Fを給気ファン17のみ
で構成してもよい。この場合、囲い部Pに空気抜き用の
通気孔を形成してもよい。
(B) As the specific configuration of the ventilation means T, various configurations other than the configuration exemplified in the above embodiment are possible. For example, in the above-described embodiment, an example has been described in which the air flowing through the cooling fan 10 is configured to be discharged to the outside of the enclosure P, and the ventilation unit F is configured using the cooling fan 10. Alternatively, the air flowing through the cooling fan 10 may be configured to be discharged into the enclosure P, and the ventilation unit F may include only the air supply fan 17. In this case, an air vent for venting air may be formed in the enclosure P.

【0034】あるいは、囲い部P内の圧力が一定に維持
されるように、差圧ダンパを囲い部Pに設けてもよい。
Alternatively, a differential pressure damper may be provided in the enclosure P so that the pressure in the enclosure P is kept constant.

【0035】(ハ) 除塵手段Fの具体構成は、上記の
実施形態において例示したフィルタ15以外にも、種々
の構成が可能である。例えば、図5に示すように、水面
部の上方を水面部と間隔を開けて閉塞した水槽21にて
構成して、給気ファン17にて、空気を水槽21の水中
を通流させて、空気中の塵埃を水にて除去させてから、
囲い部P内に供給するようにしてもよい。この場合、水
槽21内の水を所定の温度に調節するようにすると、囲
い部P内の温度の変動を小さくすることができるので、
分析精度を向上させることができる。又、囲い部P内の
温度を低くすることもできるので、装置の耐久性を向上
させることができる。
(C) As the specific structure of the dust removing means F, various structures other than the filter 15 exemplified in the above embodiment are possible. For example, as shown in FIG. 5, the upper part of the water surface part is constituted by a water tank 21 closed at an interval from the water surface part, and the air is supplied by the air supply fan 17 so that the water flows through the water in the water tank 21. After removing dust in the air with water,
You may make it supply in the surrounding part P. In this case, if the water in the water tank 21 is adjusted to a predetermined temperature, the fluctuation in the temperature in the enclosure P can be reduced.
Analysis accuracy can be improved. Further, since the temperature in the enclosure P can be lowered, the durability of the device can be improved.

【0036】(ニ) 指令手段の具体構成は、上記の実
施形態において例示した開始スイッチ11以外にも、種
々の構成が可能である。例えば、分析対象物Sの有無を
検出するセンサにて構成してもよい。この場合は、操作
者は、分析開始の指令、及び、分析終了の指令の為の操
作が不要となるので、操作性を一層向上させることがで
きる。
(D) As the specific configuration of the command means, various configurations are possible other than the start switch 11 exemplified in the above embodiment. For example, a sensor that detects the presence or absence of the analysis target S may be configured. In this case, the operator does not need to perform an operation for issuing a command to start analysis and a command to end analysis, so that operability can be further improved.

【0037】(ホ) 検出部の具体構成は、上記の実施
形態において例示した投受光アダプタ3以外にも、種々
の構成が可能である。例えば、分析対象物Sを透過した
透過光を受光するように構成してもよい。
(E) Various configurations are possible for the specific configuration of the detection unit other than the light emitting and receiving adapter 3 exemplified in the above embodiment. For example, it may be configured to receive the transmitted light transmitted through the analysis target S.

【0038】(ヘ) 上記の実施形態においては、指令
手段を検出部に付設する場合について例示したが、指令
手段を検出部とは別体で設けてもよい。
(F) In the above embodiment, the case where the command means is attached to the detection unit has been exemplified, but the command means may be provided separately from the detection unit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】分光分析装置の全体構成を示す斜視図FIG. 1 is a perspective view showing the overall configuration of a spectroscopic analyzer.

【図2】分光分析装置の横断面図FIG. 2 is a cross-sectional view of the spectroscopic analyzer.

【図3】分光分析装置のブロック図FIG. 3 is a block diagram of a spectroscopic analyzer.

【図4】投受光アダプタにおける測定用光線の光路に沿
った断面図
FIG. 4 is a cross-sectional view along the optical path of a measuring light beam in the light emitting and receiving adapter.

【図5】別実施形態における通気手段及び除塵手段を示
すブロック図
FIG. 5 is a block diagram illustrating a ventilation unit and a dust removal unit according to another embodiment.

【符号の説明】[Explanation of symbols]

1 光源部 3 検出部 7 表示手段 11 指令手段 10 冷却ファン 17 給気ファン A 分光分析部 F 除塵手段 P 囲い部 T 通気手段 DESCRIPTION OF SYMBOLS 1 Light source part 3 Detecting part 7 Display means 11 Command means 10 Cooling fan 17 Air supply fan A Spectroscopic analysis part F Dust removal means P Enclosure part T Ventilation means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源部からの測定用光線を分析対象物に
照射し、且つ、分析対象物からの反射光又は透過光を受
光するように構成された検出部と、 その検出部が受光した光の分光スペクトルを得て、得ら
れた分光スペクトルに基づいて、分析対象物に含まれる
成分を分析する分光分析部が設けられた分光分析装置で
あって、 前記光源部及び前記分光分析部を囲む囲い部と、 その囲い部の内部の圧力が外部よりも高くなるように、
除塵手段にて塵埃が除去される状態で気体を内部に供給
するとともに、内部の気体を排出する通気手段が設けら
れ、 前記分光分析部に対して分析開始を指令する指令手段、
及び、前記検出部が前記囲い部の外部に設けられている
分光分析装置。
1. A detection unit configured to irradiate a measurement light beam from a light source unit to an object to be analyzed and to receive reflected light or transmitted light from the object to be analyzed, and the detection unit receives the light. A spectral analysis apparatus provided with a spectral analysis unit that obtains a light spectrum and analyzes components included in an analyte based on the obtained spectrum, wherein the light source unit and the spectrum analysis unit are provided. So that the pressure inside the enclosure and the pressure inside the enclosure is higher than the outside
A gas supply unit for supplying gas to the inside in a state where dust is removed by the dust removal unit, and a ventilation unit for discharging the inside gas are provided, a command unit for instructing the spectroscopic analysis unit to start analysis,
And a spectroscopic analyzer in which the detection unit is provided outside the enclosure.
【請求項2】 前記除塵手段にて除塵される状態で気体
を前記囲い部内に供給する給気ファンが設けられ、 前記光源部に冷却用の気体を通流させる冷却ファンによ
る通流気体が、前記囲い部の外部に排出されるように構
成され、 前記給気ファンによる単位時間当たりの気体の供給量
が、前記冷却ファンによる単位時間当たりの気体の排出
量よりも大になるように構成されて、前記通気手段が、
前記給気ファンと前記冷却ファンとから構成されている
請求項1記載の分光分析装置。
2. An air supply fan for supplying gas into the enclosure in a state where dust is removed by the dust removing means is provided, and a gas flowing through the cooling fan that allows a cooling gas to flow through the light source unit is provided. It is configured to be discharged to the outside of the enclosure, and the supply amount of gas per unit time by the air supply fan is configured to be larger than the discharge amount of gas per unit time by the cooling fan. The ventilation means,
2. The spectroscopic analyzer according to claim 1, comprising the air supply fan and the cooling fan.
【請求項3】 前記分光分析部の分析結果を表示する表
示手段が、前記囲い部の内部に設けられ、 前記表示手段の表示情報が前記囲い部の外部から視認可
能なように、前記囲い部に透明部分が備えられている請
求項1又は2記載の分光分析装置。
3. A display means for displaying an analysis result of the spectroscopic analysis unit is provided inside the enclosure, and the display unit is configured to display information on the display unit from outside the enclosure. 3. The spectroscopic analyzer according to claim 1, further comprising a transparent portion.
【請求項4】 前記分光分析部が、青果物を分析対象物
とし、青果物に含まれる成分を分析するように構成され
ている請求項1〜3のいずれか1項に記載の分光分析装
置。
4. The spectroscopic analyzer according to claim 1, wherein the spectroscopic analyzer is configured to analyze a component contained in the fruits and vegetables with the fruits and vegetables as an analysis target.
JP21440997A 1997-08-08 1997-08-08 Spectroscopic analyzer Pending JPH1151854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21440997A JPH1151854A (en) 1997-08-08 1997-08-08 Spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21440997A JPH1151854A (en) 1997-08-08 1997-08-08 Spectroscopic analyzer

Publications (1)

Publication Number Publication Date
JPH1151854A true JPH1151854A (en) 1999-02-26

Family

ID=16655317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21440997A Pending JPH1151854A (en) 1997-08-08 1997-08-08 Spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JPH1151854A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079247A1 (en) * 1999-06-21 2000-12-28 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Side multiple-lamp on-line inside quality inspecting device
EP1215480A1 (en) * 1999-09-24 2002-06-19 Kabushikikaisha Kajitsuhihakaihinshitsu Kenkyujo Two side multiple lamp online inner part inspection apparatus
WO2005088273A1 (en) * 2004-03-12 2005-09-22 Joy World Pacific Co., Ltd. Method of measuring calorie of object and device of measuring calorie of object
JP2006194767A (en) * 2005-01-14 2006-07-27 Iseki & Co Ltd Measuring method of internal component information of fruit
JP2008122412A (en) * 2004-03-12 2008-05-29 Aomori Prefecture Method of measuring calorie of food item, and device for measuring calorie of food item
JP2008209160A (en) * 2007-02-23 2008-09-11 Hitachi Cable Ltd Hollow fiber bundle
JP2017058267A (en) * 2015-09-17 2017-03-23 株式会社サタケ Reflection type component analysis device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079247A1 (en) * 1999-06-21 2000-12-28 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Side multiple-lamp on-line inside quality inspecting device
EP1215480A1 (en) * 1999-09-24 2002-06-19 Kabushikikaisha Kajitsuhihakaihinshitsu Kenkyujo Two side multiple lamp online inner part inspection apparatus
EP1215480A4 (en) * 1999-09-24 2003-04-23 Kabushikikaisha Kajitsuhihakai Two side multiple lamp online inner part inspection apparatus
AU766245B2 (en) * 1999-09-24 2003-10-09 Kabushiki Kaisha Kajitsu Hihakai Hinshitsu Kenkyujo Two side multiple lamp online inner part inspection apparatus
US7068368B1 (en) 1999-09-24 2006-06-27 Kabushikikaisha Kajitsuhihakaihinshitsukenkyujo Two-side multiple lamp online inner part inspection apparatus
WO2005088273A1 (en) * 2004-03-12 2005-09-22 Joy World Pacific Co., Ltd. Method of measuring calorie of object and device of measuring calorie of object
JP2008122412A (en) * 2004-03-12 2008-05-29 Aomori Prefecture Method of measuring calorie of food item, and device for measuring calorie of food item
US8808628B2 (en) 2004-03-12 2014-08-19 Joy World Pacific Co., Ltd. Device for measuring calories of food items based on near-infrared optical measurements using a plurality of light sources
JP2006194767A (en) * 2005-01-14 2006-07-27 Iseki & Co Ltd Measuring method of internal component information of fruit
JP4621876B2 (en) * 2005-01-14 2011-01-26 井関農機株式会社 Near-infrared spectrum measuring device
JP2008209160A (en) * 2007-02-23 2008-09-11 Hitachi Cable Ltd Hollow fiber bundle
JP2017058267A (en) * 2015-09-17 2017-03-23 株式会社サタケ Reflection type component analysis device

Similar Documents

Publication Publication Date Title
US6667808B2 (en) Multifunctional fourier transform infrared spectrometer system
WO2016059865A1 (en) Optical grain evaluation device and combine harvester provided with optical grain evaluation device
JP7297186B2 (en) Laser detection system and method for detecting the presence, absence or amount of at least one substance in a sample gas
US4540281A (en) Double-beam spectrophotometer
US20050275844A1 (en) Variable Exposure Rotary Spectrometer
US8302461B2 (en) Gas detector having an acoustic measuring cell and selectively adsorbing surface
US20080013085A1 (en) Self-calibrating optical reflectance probe system
JPS62212551A (en) Gas chamber for test used for spectrometer
JP5377487B2 (en) Method and apparatus for identifying thin films on a substrate
JPH1151854A (en) Spectroscopic analyzer
JP3992390B2 (en) Spectroscopic analysis method
US7359049B2 (en) Light source device and spectrophotometer with the light source device
JP2000019108A (en) Infrared gas analyzer
EP2092296B1 (en) Measurement head and method for optical spectroscopic measurements
JP6452652B2 (en) Optical grain evaluation system
JPH10123047A (en) Spectroscopic analyzer
JP2004191353A (en) Internal quality evaluation apparatus
EP1785719A1 (en) Optical detection method and optical detector
JPH1096689A (en) Spectroscopic analyzer
EP1800111A1 (en) Measuring device and system for measuring spectral reflectance characteristics
JPH06180284A (en) Non-dispersive infrared gas measuring device
JPH08233732A (en) Spectroscopic analyzer
JPH02115749A (en) Spectrophotometer
JP2966731B2 (en) Spectrometer
JP3114290B2 (en) Detection unit in near-infrared spectrometer